1
|
Rintz E, Ziemian M, Kobus B, Gaffke L, Pierzynowska K, Wegrzyn G. Synergistic effects of resveratrol and enzyme replacement therapy in the Mucopolysaccharidosis type I. Biochem Pharmacol 2024; 229:116467. [PMID: 39111602 DOI: 10.1016/j.bcp.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare genetic disorder caused by mutations in the IDUA gene, leading to alpha-L-iduronidase enzyme deficiency and resulting in the accumulation of glycosaminoglycans (GAG; heparan and dermatan sulfate) in lysosomes. The consequent GAG accumulation within cells leads to organ dysfunction and a range of debilitating symptoms. Enzyme replacement therapy (ERT) is the prevailing treatment, but its limitations (including high cost, time requirements, inefficiency in treatment of central nervous system (CNS), and immunogenicity) necessitate exploration of alternative therapeutic strategies. This research propose a novel approach leveraging the synergistic effects of ERT and resveratrol-induced autophagy. Resveratrol, with its immunomodulatory and GAG degradation-stimulating properties, holds a promise in mitigating immune responses triggered by ERT. Moreover, its ability to penetrate the blood-brain barrier presents a potential solution for addressing CNS manifestations. This study employed cells from MPS I patients to investigate the combined effects of resveratrol and the enzyme. Evaluation of the therapeutic impact involved assessing GAG accumulation, enzyme testing, and examining lysosome functionality and the autophagy process through fluorescence microscopy and Western blotting. The combined therapy stimulated the lysosomal mannose-6-phosphate receptor (M6PR) and lysosome biogenesis through the transcription factor EB (TFEB). Additionally, initial block of autophagy in autophagosome formation was relieved after the combined therapy and resveratrol alone. Together with increased enzyme activity through stimulation of the receptor, this synergistic therapy can be considered a new potential treatment for MPS I patients, improving their overall quality of life.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Maja Ziemian
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Barbara Kobus
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Badenetti L, Yu SH, Colonna MB, Hull R, Bethard JR, Ball L, Flanagan-Steet H, Steet R. Multi-omic analysis of a mucolipidosis II neuronal cell model uncovers involvement of pathways related to neurodegeneration and drug metabolism. Mol Genet Metab 2024; 143:108596. [PMID: 39461112 DOI: 10.1016/j.ymgme.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Defining the molecular consequences of lysosomal dysfunction in neuronal cell types remains an area of investigation that is needed to understand many underappreciated phenotypes associated with lysosomal disorders. Here we characterize GNPTAB-knockout DAOY medulloblastoma cells using different genetic and proteomic approaches, with a focus on how altered gene expression and cell surface abundance of glycoproteins may explain emerging neurological issues in individuals with GNPTAB-related disorders, including mucolipidosis II (ML II) and mucolipidosis IIIα/β (ML IIIα/β). The two knockout clones characterized demonstrated all the biochemical hallmarks of this disease, including loss of intracellular glycosidase activity due to impaired mannose 6-phosphate-dependent lysosomal sorting, lysosomal cholesterol accumulation, and increased markers of autophagic dysfunction. RNA sequencing identified altered transcript abundance of several neuronal markers and genes involved in drug metabolism and transport, and neurodegeneration-related pathways. Using selective exo-enzymatic labeling (SEEL) coupled with proteomics to profile cell surface glycoproteins, we demonstrated altered abundance of several glycoproteins in the knockout cells. Most striking was increased abundance of the amyloid precursor protein and apolipoprotein B, indicating that loss of GNPTAB function in these cells corresponds with elevation in proteins associated with neurodegeneration. The implication of these findings on lysosomal disease pathogenesis and the emerging neurological manifestations of GNPTAB-related disorders is discussed.
Collapse
Affiliation(s)
- Lorenzo Badenetti
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Seok-Ho Yu
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Maxwell B Colonna
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Rony Hull
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Jennifer R Bethard
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | | | - Richard Steet
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America.
| |
Collapse
|
3
|
Mao SJ, Chen QQ, Dai YL, Dong GP, Zou CC. The diagnosis and management of mucopolysaccharidosis type II. Ital J Pediatr 2024; 50:207. [PMID: 39380047 PMCID: PMC11463001 DOI: 10.1186/s13052-024-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive inherited lysosomal storage disease. With pathogenic variants of the IDS gene, the activity of iduronate-2-sulfatase (IDS) is reduced or lost, causing the inability to degrade glycosaminoglycans (GAGs) in cells and influencing cell function, eventually resulting in multisystemic manifestations, such as a coarse face, dysostosis multiplex, recurrent respiratory tract infections, and hernias. Diagnosing MPS II requires a combination of clinical manifestations, imaging examinations, urinary GAGs screening, enzyme activity, and genetic testing. Currently, symptomatic treatment is the main therapeutic approach. Owing to economic and drug availability issues, only a minority of patients opt for enzyme replacement therapy or hematopoietic stem cell transplantation. The limited awareness of the disease, the lack of widespread detection technology, and uneven economic development contribute to the high rates of misdiagnosis and missed diagnosis in China.
Collapse
Affiliation(s)
- Shao-Jia Mao
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Chen
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang-Li Dai
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guan-Ping Dong
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao-Chun Zou
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Nourbakhsh N, Esfahani EA. "Mucopolysaccharidosis syndrome in a 9-Year-old boy: oral-dental management and diagnostic considerations": a case report. BMC Oral Health 2024; 24:1140. [PMID: 39334095 PMCID: PMC11438088 DOI: 10.1186/s12903-024-04859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) comprises a group of metabolic diseases with a disorder in the function of lysosomal enzymes that lead to the accumulation of glycosaminoglycans (mucopolysaccharides) (Kubaski et al. in Diagnostics 10:161, 2020; Hampe et al. in Cells 9:1838, 2020; Tomatsu et al. Mol Genet Metab 110(1-2):42-53, 2013). At least seven variants of this disorder have been identified to date (Muenzer et al. in Pediatrics 124(6):e1228-e1239, 2009; Muenzer et al. in Eur J Pediatr 171:181-8, 2012). this study aims to report a case of mucopolysaccharidosis in a 9-year-old child. Also, the treatments and dental observations made for the child have been described. Also, a review of past articles has been done to report the types of diseases, medical and dental considerations, etc. of this disease. CASE DESCRIPTION the present case report describes the orofacial and systemic characteristics, diagnostic methods, and dental management of a 9-year-old boy with MPS with a one-year follow-up in association with a brief review of past articles. CONCLUSION Since MPS patients have many changes in their oral and dental structures, they pose many challenges for dentists. Also, these patients need considerations in dentistry due to the involvement of different body organs. Knowing the oral-dental and systemic problems of these patients can help their dentists to provide effective and safe treatment for them.
Collapse
Affiliation(s)
- Nosrat Nourbakhsh
- Department of Pediatrics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Asnaashari Esfahani
- Department of Pediatrics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Zanetti A, Tomanin R. Targeting Neurological Aspects of Mucopolysaccharidosis Type II: Enzyme Replacement Therapy and Beyond. BioDrugs 2024; 38:639-655. [PMID: 39177874 PMCID: PMC11358193 DOI: 10.1007/s40259-024-00675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare, pediatric, neurometabolic disorder due to the lack of activity of the lysosomal hydrolase iduronate 2-sulfatase (IDS), normally degrading heparan sulfate and dermatan sulfate within cell lysosomes. The deficit of activity is caused by mutations affecting the IDS gene, leading to the pathological accumulation of both glycosaminoglycans in the lysosomal compartment and in the extracellular matrix of most body districts. Although a continuum of clinical phenotypes is described, two main forms are commonly recognized-attenuated and severe-the latter being characterized by an earlier and faster clinical progression and by a progressive impairment of central nervous system (CNS) functions. However, attenuated forms have also been recently described as presenting some neurological involvement, although less deep, such as deficits of attention and hearing loss. The main treatment for the disease is represented by enzyme replacement therapy (ERT), applied in several countries since 2006, which, albeit showing partial efficacy on some peripheral organs, exhibited a very poor efficacy on bones and heart, and a total inefficacy on CNS impairment, due to the inability of the recombinant enzyme to cross the blood-brain barrier (BBB). Together with ERT, whose design enhancements, performed in the last few years, allowed a possible brain penetration of the drug through the BBB, other therapeutic approaches aimed at targeting CNS involvement in MPS II were proposed and evaluated in the last decades, such as intrathecal ERT, intracerebroventricular ERT, ex vivo gene therapy, or adeno-associated viral vector (AAV) gene therapy. The aim of this review is to summarize the main clinical aspects of MPS II in addition to current therapeutic options, with particular emphasis on the neurological ones and on the main CNS-targeted therapeutic approaches explored through the years.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health SDB, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy.
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padua, Italy.
| |
Collapse
|
6
|
Wiśniewska K, Wolski J, Żabińska M, Szulc A, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics (Basel) 2024; 14:1734. [PMID: 39202222 PMCID: PMC11353205 DOI: 10.3390/diagnostics14161734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdansk, Polanki 117, 80-305 Gdansk, Poland;
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| |
Collapse
|
7
|
Chen TY, Lin SP, Huang DF, Huang HS, Tsai FC, Lee LJ, Lin HY, Huang HP. Mature neurons from iPSCs unveil neurodegeneration-related pathways in mucopolysaccharidosis type II: GSK-3β inhibition for therapeutic potential. Cell Death Dis 2024; 15:302. [PMID: 38684682 PMCID: PMC11058230 DOI: 10.1038/s41419-024-06692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Mucopolysaccharidosis (MPS) type II is caused by a deficiency of iduronate-2-sulfatase and is characterized by the accumulation of glycosaminoglycans (GAGs). Without effective therapy, the severe form of MPS II causes progressive neurodegeneration and death. This study generated multiple clones of induced pluripotent stem cells (iPSCs) and their isogenic controls (ISO) from four patients with MPS II neurodegeneration. MPS II-iPSCs were successfully differentiated into cortical neurons with characteristic biochemical and cellular phenotypes, including axonal beadings positive for phosphorylated tau, and unique electrophysiological abnormalities, which were mostly rescued in ISO-iPSC-derived neurons. RNA sequencing analysis uncovered dysregulation in three major signaling pathways, including Wnt/β-catenin, p38 MAP kinase, and calcium pathways, in mature MPS II neurons. Further mechanistic characterization indicated that the dysregulation in calcium signaling led to an elevated intracellular calcium level, which might be linked to compromised survival of neurons. Based on these dysregulated pathways, several related chemicals and drugs were tested using this mature MPS II neuron-based platform and a small-molecule glycogen synthase kinase-3β inhibitor was found to significantly rescue neuronal survival, neurite morphology, and electrophysiological abnormalities in MPS II neurons. Our results underscore that the MPS II-iPSC-based platform significantly contributes to unraveling the mechanisms underlying the degeneration and death of MPS II neurons and assessing potential drug candidates. Furthermore, the study revealed that targeting the specific dysregulation of signaling pathways downstream of GAG accumulation in MPS II neurons with a well-characterized drug could potentially ameliorate neuronal degeneration.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - De-Fong Huang
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
8
|
Catalano F, Vlaar EC, Dammou Z, Katsavelis D, Huizer TF, Zundo G, Hoogeveen-Westerveld M, Oussoren E, van den Hout HJ, Schaaf G, Pike-Overzet K, Staal FJ, van der Ploeg AT, Pijnappel WP. Lentiviral Gene Therapy for Mucopolysaccharidosis II with Tagged Iduronate 2-Sulfatase Prevents Life-Threatening Pathology in Peripheral Tissues But Fails to Correct Cartilage. Hum Gene Ther 2024; 35:256-268. [PMID: 38085235 PMCID: PMC11044872 DOI: 10.1089/hum.2023.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024] Open
Abstract
Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.
Collapse
Affiliation(s)
- Fabio Catalano
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva C. Vlaar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Zina Dammou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Drosos Katsavelis
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tessa F. Huizer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Giacomo Zundo
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esmeralda Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannerieke J.M.P. van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J.T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W.W.M. Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Pinheiro CV, Ribeiro RT, Roginski AC, Brondani M, Zemniaçak ÂB, Hoffmann CIH, Amaral AU, Wajner M, Baldo G, Leipnitz G. Disturbances in mitochondrial bioenergetics and control quality and unbalanced redox homeostasis in the liver of a mouse model of mucopolysaccharidosis type II. Mol Cell Biochem 2024:10.1007/s11010-024-04952-y. [PMID: 38498105 DOI: 10.1007/s11010-024-04952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/26/2024] [Indexed: 03/20/2024]
Abstract
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.
Collapse
Affiliation(s)
- Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Ana Cristina Roginski
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Morgana Brondani
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Ângela Beatris Zemniaçak
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Postgraduation Program in Integral Health Care, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Guilherme Baldo
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
10
|
Smith MC, Belur LR, Karlen AD, Erlanson O, Furcich J, Lund TC, Seelig D, Kitto KF, Fairbanks CA, Kim KH, Buss N, McIvor RS. Comparative dose effectiveness of intravenous and intrathecal AAV9.CB7.hIDS, RGX-121, in mucopolysaccharidosis type II mice. Mol Ther Methods Clin Dev 2024; 32:101201. [PMID: 38374962 PMCID: PMC10875268 DOI: 10.1016/j.omtm.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disease caused by iduronate-2-sulfatase (IDS) deficiency, leading to accumulation of glycosaminoglycans (GAGs) and the emergence of progressive disease. Enzyme replacement therapy is the only currently approved treatment, but it leaves neurological disease unaddressed. Cerebrospinal fluid (CSF)-directed administration of AAV9.CB7.hIDS (RGX-121) is an alternative treatment strategy, but it is unknown if this approach will affect both neurologic and systemic manifestations. We compared the effectiveness of intrathecal (i.t.) and intravenous (i.v.) routes of administration (ROAs) at a range of vector doses in a mouse model of MPS II. While lower doses were completely ineffective, a total dose of 1 × 109 gc resulted in appreciable IDS activity levels in plasma but not tissues. Total doses of 1 × 1010 and 1 × 1011 gc by either ROA resulted in supraphysiological plasma IDS activity, substantial IDS activity levels and GAG reduction in nearly all tissues, and normalized zygomatic arch diameter. In the brain, a dose of 1 × 1011 gc i.t. achieved the highest IDS activity levels and the greatest reduction in GAG content, and it prevented neurocognitive deficiency. We conclude that a dose of 1 × 1010 gc normalized metabolic and skeletal outcomes, while neurologic improvement required a dose of 1 × 1011 gc, thereby suggesting the prospect of a similar direct benefit in humans.
Collapse
Affiliation(s)
- Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia Erlanson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN 55455, USA
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolyn A. Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Nick Buss
- REGENXBIO Inc., Rockville, MD 20850, USA
| | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
12
|
Liu K, Wan G, Li Y, Liang Z, Meng Y, Yuan X, Duan J. Co-Analysis of Serum and Urine Differentially Expressed Proteins in Mucopolysaccharidosis Type I. J Proteome Res 2024; 23:718-727. [PMID: 38164767 DOI: 10.1021/acs.jproteome.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by the deficiency of the enzyme α-l-iduronidase (IDUA), typically leading to devastating secondary pathophysiological cascades. Due to the irreversible nature of the disease's progression, early diagnosis and interventional treatment has become particularly crucial. Considering the fact that serum and urine are the most commonly used specimens in clinical practice for detection, we conducted an analysis to identify the differential protein profile in the serum and urine of MPS I patients using the tandem mass tag (TMT) technique. A total of 182 differentially expressed proteins (DEPs) were detected in serum, among which 9 showed significant differences as confirmed by parallel reaction monitoring (PRM) analysis. The proteins APOA1 and LGFBP3 were downregulated in serum, while the expression levels of ALDOB, CD163, CRTAC1, DPP4, LAMP2, SHBG, and SPP2 exhibited an increase. In further exploratory studies of urinary proteomics, 32 identified DEPs were consistent with the discovered findings in serum tests, specifically displaying a high diagnostic area under the curve (AUC) value. Thus, our study demonstrates the value of serum-urine integrated proteomic analysis in evaluating the clinical course of MPS I and other potential metabolic disorders, shedding light on the importance of early detection and intervention in these conditions.
Collapse
Affiliation(s)
- Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Gefan Wan
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yongcong Li
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Zhenlong Liang
- Department of Clinical Laboratory, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Yan Meng
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Xiaozhou Yuan
- Department of Clinical Laboratory, The First Medical Center of PLA General Hospital, Beijing 100853, China
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jinyan Duan
- Department of Clinical Laboratory, The First Medical Center of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
14
|
Tuyaa-Boustugue P, Jantzen I, Zhang H, Young SP, Broqua P, Tallandier M, Entchev E. Reduction of lysosome abundance and GAG accumulation after odiparcil treatment in MPS I and MPS VI models. Mol Genet Metab Rep 2023; 37:101011. [PMID: 38053941 PMCID: PMC10694777 DOI: 10.1016/j.ymgmr.2023.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/07/2023] Open
Abstract
Deficiencies of lysosomal enzymes responsible for the degradation of glycosaminoglycans (GAG) cause pathologies commonly known as the mucopolysaccharidoses (MPS). Each type of MPS is caused by a deficiency in a specific GAG-degrading enzyme and is characterized by an accumulation of disease-specific GAG species. Previously, we have shown the potential of the beta-D-xyloside, odiparcil, as an oral GAG clearance therapy for Maroteaux-Lamy syndrome (MPS VI), an MPS characterized by an accumulation of chondroitin sulphate (CS) and dermatan sulphate (DS). This work suggested that odiparcil acts via diverting the synthesis of CS and DS into odiparcil-bound excretable GAG. Here, we investigated the effect of odiparcil on lysosomal abundance in fibroblasts from patients with MPS I and MPS VI. In MPS VI fibroblasts, odiparcil reduced the accumulation of a lysosomal-specific lysotracker dye. Interestingly, a reduction of the lysotracker dye was also observed in odiparcil-treated fibroblasts from patients with MPS I, a disorder characterized by an accumulation of DS and heparan sulphate (HS). Furthermore, odiparcil was shown to be effective in reducing CS, DS, and HS concentrations in liver and eye, as representative organs, in MPS VI and MPS I mice treated with 3 doses of odiparcil over 3 and 9 months, respectively. In conclusion, our data demonstrates odiparcil efficiently reduced lysosome abundance and tissue GAG concentrations in in vitro and in vivo models of MPS VI and MPS I and has potential as a treatment for these disorders.
Collapse
Affiliation(s)
| | | | - Haoyue Zhang
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA
| | - Sarah P. Young
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke School of Medicine, Durham, NC, USA
| | - Pierre Broqua
- Inventiva Pharma, 50 Rue de Dijon, Daix 21121, France
| | | | | |
Collapse
|
15
|
Tavares AMV, Gonzalez EA, Viana IS, Visioli F, Vera LNP, Baldo G. Characterization of heart disease in mucopolysaccharidosis type II mice. Cardiovasc Pathol 2023; 67:107575. [PMID: 37730078 DOI: 10.1016/j.carpath.2023.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Mucopolysaccharidosis type II (MPSII) is a progressive lysosomal storage disease caused by mutations in the IDS gene, that leads to iduronate 2-sulfatase (IDS) enzyme deficiency. The enzyme catalyzes the first step of degradation of two glycosaminoglycans (GAGs), heparan sulfate (HS) and dermatan sulfate (DS). The consequences of MPSII are progressively harmful and can lead to death by cardiac failure. The aim of this study was to characterize the cardiovascular disease in MPSII mice. Thus, we evaluated the cardiovascular function of MPSII male mice at 6, 8, and 10 months of age, through functional, histological, and biochemical analyzes. Echocardiographic analyses showed a progressive loss in cardiac function, observed through parameters such as reduction in ejection fraction (46% in control versus 28% in MPS II at 10 months, P < .01) and fractional area change (31% versus 23%, P < .05). Similar results were found in parameters of vascular competence, obtained by echo Doppler. Both aortic dilatation and an increase in pulmonary resistance were observed at all time points in MPSII mice. The histological analyses showed an increase in the thickness of the heart valves (2-fold thicker than control values at 10 months). Biochemical analyzes confirmed GAG storage in these tissues, with a massive elevation of DS in the myocardium. Furthermore, an important increase in the activity of proteases such as cathepsin S and B (up to 5-fold control values) was found and could be related to the progressive loss of cardiac function observed in MPSII mice. In this work, we demonstrated that loss of cardiac function in MPSII mice started at 6 months of age, although its global cardiac capacity was still preserved at this time. Disease progressed at later time points leading to heart failure. The MPSII mice at later times reproduce many of the cardiovascular events found in patients with Hunter's disease.
Collapse
Affiliation(s)
- Angela Maria Vicente Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia - UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, CEP: 90035-003, RS, Brazil
| | - Esteban Alberto Gonzalez
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil
| | - Isabelle Souza Viana
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil
| | - Fernanda Visioli
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil
| | - Luisa Natalia Pimentel Vera
- Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia - UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, CEP: 90035-003, RS, Brazil; Centro de Pesquisa Experimental- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, CEP 90035-903, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular - UFRGS Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501970, RS, Brazil.
| |
Collapse
|
16
|
Badenetti L, Manzoli R, Trevisan M, D'Avanzo F, Tomanin R, Moro E. A novel CRISPR/Cas9-based iduronate-2-sulfatase (IDS) knockout human neuronal cell line reveals earliest pathological changes. Sci Rep 2023; 13:10289. [PMID: 37357221 DOI: 10.1038/s41598-023-37138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/16/2023] [Indexed: 06/27/2023] Open
Abstract
Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.
Collapse
Affiliation(s)
- Lorenzo Badenetti
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Rosa Manzoli
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Francesca D'Avanzo
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
| | - Rosella Tomanin
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
17
|
Smith MC, Belur LR, Karlen AD, Podetz-Pedersen K, Erlanson O, Laoharawee K, Furcich J, Lund TC, You Y, Seelig D, Webber BR, McIvor RS. Generation and characterization of an immunodeficient mouse model of mucopolysaccharidosis type II. Mol Genet Metab 2023; 138:107539. [PMID: 37023503 DOI: 10.1016/j.ymgme.2023.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.
Collapse
Affiliation(s)
- Miles C Smith
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lalitha R Belur
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Andrea D Karlen
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kelly Podetz-Pedersen
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Olivia Erlanson
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kanut Laoharawee
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Troy C Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Yun You
- Mouse Genetics Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN, United States
| | - Beau R Webber
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - R Scott McIvor
- Department of Genetics, Cell Biology and Development, University Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
18
|
Mucopolysaccharidoses: Cellular Consequences of Glycosaminoglycans Accumulation and Potential Targets. Int J Mol Sci 2022; 24:ijms24010477. [PMID: 36613919 PMCID: PMC9820209 DOI: 10.3390/ijms24010477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.
Collapse
|
19
|
Guffon N, Genevaz D, Lacombe D, Le Peillet Feuillet E, Bausson P, Noel E, Maillot F, Belmatoug N, Jaussaud R. Understanding the challenges, unmet needs, and expectations of mucopolysaccharidoses I, II and VI patients and their caregivers in France: a survey study. Orphanet J Rare Dis 2022; 17:448. [PMID: 36564803 PMCID: PMC9786416 DOI: 10.1186/s13023-022-02593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage diseases caused by defective enzyme activity involved in the catalysis of glycosaminoglycans. Published data on adult patients with MPS remains scarce. Therefore, the present qualitative survey study was aimed at understanding knowledge of the disease, unmet needs, expectations, care, and overall medical management of adult/adolescent patients with MPS I, II and VI and their caregivers in France. RESULTS A total of 25 patients (MPS I, np = 11; MPS II, np = 9; MPS VI, np = 5) were included and about 36 in-depth interviews (caregivers alone, nc = 8; patients-caregiver pair, nc+p = 22; patients alone, np = 6) were conducted. Except one (aged 17 years), all patients were adults (median age: 29 years [17-50]) and diagnosed at median age of 4 years [0.4-30], with mainly mothers as caregivers (nc = 16/19). Patients were classified into three groups: Group A, Patients not able to answer the survey question because of a severe cognitive impairment (np = 8); Group B, Patients able to answer the survey question with low or no cognitive impairment and high motor disability (np = 10); and Group C, Patients able to answer the survey question with low or no cognitive impairment and low motor disability (np = 7). All groups were assessed for impact of disease on their daily lives based on a scale of 0-10. Caregivers in Group A were found to be most negatively affected by the disease, except for professional activity, which was most significantly impacted in Group B (4.7 vs. 5.4). The use of orthopaedic/medical equipments, was more prevalent in Groups A and B, versus Group C. Pain management was one of the global unmet need expressed by all groups. Group A caregivers expected better support from childcare facilities, disability clinics, and smooth transition from paediatric care to adult medicine. Similarly, Group B caregivers expected better specialised schools, whereas Group C caregivers expected better psychological support and greater flexibility in weekly infusion schedules for their patients. CONCLUSIONS The survey concluded that more attention must be paid to the psychosocial status of patients and caregivers. The preference for reference centre for follow-up and treatment, hospitalizations and surgeries were evident. The most significant needs expressed by the patients and caregivers include better understanding of the disease, pain management, monitoring of complications, flexibility in enzyme replacement therapy, home infusions especially for attenuated patients, and improved transitional support from paediatric to adult medicine.
Collapse
Affiliation(s)
- Nathalie Guffon
- grid.413852.90000 0001 2163 3825Reference Center for Inherited Metabolic Disorders of Lyon, (CERLYMM), Hospices Civils de Lyon, 69677 Bron, France
| | | | - Didier Lacombe
- grid.42399.350000 0004 0593 7118Medical Genetics Unit, University Hospital of Bordeaux, INSERM U1211, 33076 Bordeaux, France
| | | | - Pascale Bausson
- Study Department, AplusA Company, 92641 Boulogne Billancourt, France
| | - Esther Noel
- grid.412220.70000 0001 2177 138XUniversity Hospital of Strasbourg, BP 426, 67100 Strasbourg, France
| | - François Maillot
- grid.411167.40000 0004 1765 1600Department of Internal Medicine, Regional University Hospital of Tours, 37000 Tours, France
| | - Nadia Belmatoug
- grid.411599.10000 0000 8595 4540Reference Center of Lysosomal Diseases, Beaujon Hospital, 92110 Clichy, France
| | - Roland Jaussaud
- grid.410527.50000 0004 1765 1301Department of Internal Medicine and Clinical Immunology, Nancy University Hospital, 54500 Vandoeuvre-Les-Nancy, France
| |
Collapse
|
20
|
Smith MC, Belur LR, Karlen AD, Erlanson O, Podetz-Pedersen KM, McKenzie J, Detellis J, Gagnidze K, Parsons G, Robinson N, Labarre S, Shah S, Furcich J, Lund TC, Tsai HC, McIvor RS, Bonner M. Phenotypic Correction of Murine Mucopolysaccharidosis Type II by Engraftment of Ex Vivo Lentiviral Vector-Transduced Hematopoietic Stem and Progenitor Cells. Hum Gene Ther 2022; 33:1279-1292. [PMID: 36226412 PMCID: PMC9808798 DOI: 10.1089/hum.2022.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10-20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II.
Collapse
Affiliation(s)
- Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olivia Erlanson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelly M. Podetz-Pedersen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | - Saumil Shah
- bluebird bio, Inc., Cambridge, Massachusetts, USA
| | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA,Correspondence: Dr. R. Scott McIvor, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | |
Collapse
|
21
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
22
|
Pierzynowska K, Żabińska M, Gaffke L, Cyske Z, Węgrzyn G. Changes in expression of signal transduction-related genes, and formation of aggregates of GPER1 and OXTR receptors in mucopolysaccharidosis cells. Eur J Cell Biol 2022; 101:151232. [DOI: 10.1016/j.ejcb.2022.151232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
|
23
|
Grant N, Sohn YB, Ellinwood NM, Okenfuss E, Mendelsohn BA, Lynch LE, Braunlin EA, Harmatz PR, Eisengart JB. Timing is everything: Clinical courses of Hunter syndrome associated with age at initiation of therapy in a sibling pair. Mol Genet Metab Rep 2022; 30:100845. [PMID: 35242576 PMCID: PMC8856919 DOI: 10.1016/j.ymgmr.2022.100845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Hunter syndrome, or mucopolysaccharidosis (MPS) II, is a rare lysosomal disorder characterized by progressive, multi-system disease. As most symptoms cannot be reversed once established, early detection and treatment prior to the onset of clinical symptoms are critical. However, it is difficult to identify affected individuals early in disease, and therefore the long-term outcomes of initiating treatment during this optimal time period are incompletely described. We report long-term clinical outcomes of treatment when initiated prior to obvious clinical signs by comparing the courses of two siblings with neuronopathic Hunter syndrome (c.1504 T > G[p.W502G]), one who was diagnosed due to clinical disease (Sibling-O, age 3.7 years) and the other who was diagnosed before disease was evident (Sibling-Y, age 12 months), due to his older sibling's findings. The brothers began enzyme replacement therapy within a month of diagnosis. Around the age of 5 years, Sibling-O had a cognitive measurement score in the impaired range of <55 (average range 85–115), whereas Sibling-Y at this age received a score of 91. Sibling-O has never achieved toilet training and needs direct assistance with toileting, dressing, and washing, while Sibling-Y is fully toilet-trained and requires less assistance with daily activities. Both siblings have demonstrated sensory-seeking behaviors, hyperactivity, impulsivity, and sleep difficulties; however, Sibling-O demonstrates physical behaviors that his brother does not, namely biting, pushing, and frequent elopement. Since the time of diagnosis, Sibling-O has had significant joint contractures and a steady deterioration in mobility leading to the need for an adaptive stroller at age 11, while Sibling-Y at age 10.5 could hike more than 6 miles without assistance. After nearly a decade of therapy, there were more severe and life-limiting disease manifestations for Sibling-O; data from caregiver interview indicated substantial differences in Quality of Life for the child and the family, dependent on timing of ERT. The findings from this sibling pair provide evidence of superior somatic and neurocognitive outcomes associated with presymptomatic treatment of Hunter syndrome, aligned with current considerations for newborn screening.
Collapse
Affiliation(s)
- Nathan Grant
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | - Julie B. Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Corresponding author at: Department of Pediatrics, 717 Delaware St SE, Ste. 353, Minneapolis, MN 55414, USA.
| |
Collapse
|
24
|
Sousa Martins R, Rocha S, Guimas A, Ribeiro R. Hunter Syndrome: The Phenotype of a Rare Storage Disease. Cureus 2022; 14:e21985. [PMID: 35282545 PMCID: PMC8906563 DOI: 10.7759/cureus.21985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Hunter syndrome is a rare lysosomal storage disorder with systemic involvement that occurs over time. Affected patients have coarse facial features, growth retardation with short stature, and skeletal deformities called dysostosis multiplex; joint stiffness, progressive mental retardation, and organomegaly are some of the clinical signs. It ranges from mild to severe manifestations and the distinction between them is related to neurological involvement. Cardiac and respiratory failure is commonly the cause of early death (before adulthood) for severe forms, but those with attenuated forms who have normal cognitive development can survive until late adulthood. Treatment with enzyme replacement therapy is available and can improve the prognosis of this disease. The authors present a case of a 36-year-old male with Hunter syndrome to show not only the clinical features typical of this multisystemic disease that should alert to a prompt investigation but also to remind that treatment must start as early as possible to reach the best outcome. Management of this disease is typically challenging and requires a multidisciplinary approach.
Collapse
|
25
|
Matsuhisa K, Imaizumi K. Loss of Function of Mutant IDS Due to Endoplasmic Reticulum-Associated Degradation: New Therapeutic Opportunities for Mucopolysaccharidosis Type II. Int J Mol Sci 2021; 22:ijms222212227. [PMID: 34830113 PMCID: PMC8618218 DOI: 10.3390/ijms222212227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| | - Kazunori Imaizumi
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| |
Collapse
|