1
|
Buglak AA. Antioxidant properties of α-amino acids: a density functional theory viewpoint. Free Radic Res 2024; 58:380-387. [PMID: 39101778 DOI: 10.1080/10715762.2024.2385338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
The antioxidant properties of 21 proteinogenic amino acids (AAs) and 3,4-dioxophenylanine (DOPA) have been studied in implicit water using density functional theory (DFT). All the calculations have been performed according to three oxidation mechanisms: (1) hydrogen-atom transfer (HAT); (2) single electron transfer followed by proton transfer (SET-PT); and (3) sequential proton-loss electron transfer (SPLET). As a result, five AAs with the highest antioxidant capacity have been established: DOPA, selenocysteine (Sec), tyrosine (Tyr), cysteine (Cys), and tryptophan (Trp). Also, global reactivity in terms of hardness/softness has been evaluated, as well as Fukui indices of local reactivity. Trp has been determined as the most reactive molecule, whereas selenium atom of Sec has been established as the most reactive atom. All the findings are in agreement with the recent literature on both experimental and theoretical studies of amino acids antioxidant activity. However, to the best of my knowledge, the calculations for one electron redox reactions of zwitterionic amino acids in implicit water have been performed for the first time.
Collapse
Affiliation(s)
- Andrey A Buglak
- Faculty of Physics, St. Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Kobus M, Friedrich T, Zorn E, Burmeister N, Maison W. Medicinal Chemistry of Drugs with N-Oxide Functionalities. J Med Chem 2024; 67:5168-5184. [PMID: 38549449 PMCID: PMC11017254 DOI: 10.1021/acs.jmedchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Molecules with N-oxide functionalities are omnipresent in nature and play an important role in Medicinal Chemistry. They are synthetic or biosynthetic intermediates, prodrugs, drugs, or polymers for applications in drug development and surface engineering. Typically, the N-oxide group is critical for biomedical applications of these molecules. It may provide water solubility or decrease membrane permeability or immunogenicity. In other cases, the N-oxide has a special redox reactivity which is important for drug targeting and/or cytotoxicity. Many of the underlying mechanisms have only recently been discovered, and the number of applications of N-oxides in the healthcare field is rapidly growing. This Perspective article gives a short summary of the properties of N-oxides and their synthesis. It also provides a discussion of current applications of N-oxides in the biomedical field and explains the basic molecular mechanisms responsible for their biological activity.
Collapse
Affiliation(s)
- Michelle Kobus
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Timo Friedrich
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eilika Zorn
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nils Burmeister
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Martiryan AI, Shahinyan GA, Aleksanyan IL, Hambardzumyan LP. Synthesis, Photophysical Properties and Antioxidant Activity of Novel Quinoline Derivatives. J Fluoresc 2023:10.1007/s10895-023-03519-2. [PMID: 38015297 DOI: 10.1007/s10895-023-03519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Novel quinoline derivatives were synthesized based on 6-amino-substituted quinoline, and antioxidant activity of these compounds is studied by p-nitroso-N,N-dimethylaniline assay. The rate of the reaction between OH radicals and quinoline derivatives is determined by photometric method and the obtained results are compared with that of well-known antioxidant vitamin C. Quinoline derivatives exhibit pronounced antioxidant activity, which strongly depends on the structural features of compounds. Photophysical properties such as UV-Vis absorption and fluorescence maxima, and Stokes shift are also reported. To reveal the potential application of novel quinoline derivatives as fluorescence probes the values of quantum yields are determined and the obtained results are explained in terms of structural features of compounds.
Collapse
Affiliation(s)
- Armen I Martiryan
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, 0025, Armenia.
- Department of Organic Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, 0025, Armenia.
| | - Gohar A Shahinyan
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, 0025, Armenia
| | - Iskuhi L Aleksanyan
- Department of Organic Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, 0025, Armenia
| | - Lilit P Hambardzumyan
- Department of Organic Chemistry, Faculty of Chemistry, Yerevan State University, Yerevan, 0025, Armenia
| |
Collapse
|
4
|
Allegritti E, Battista S, Maggi MA, Marconi C, Galantini L, Giansanti L. Novel liposomal formulations for protection and delivery of levodopa: Structure-properties correlation. Int J Pharm 2023; 643:123230. [PMID: 37454830 DOI: 10.1016/j.ijpharm.2023.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Liposomes are promising drug carriers for a wide range of central nervous system disorders, such as Parkinson's disease (PD), since they can protect active substances from degradation and could be administered intranasally, ensuring a direct access to the brain. Levodopa (LD), the drug commonly used to treat PD, spontaneously oxidizes in aqueous solutions and thus needs to be stabilized. Our investigation focuses on the preparation and the physico-chemical characterization of mixed liposomes to vehiculate LD and two natural substances (L-ascorbic acid and quercetin) that can prevent its oxidation and contribute to the treatment of Parkinson's disease. These co-loaded vesicles were prepared using a saturated phospholipid and structurally related cationic or analogue N-oxide surfactants and showed different properties, based on their composition. In particular, ex-vivo permeability tests using porcine nasal mucosa were performed, denoting that subtle variations of the lipids structure can significantly affect the delivery of LD to the target site.
Collapse
Affiliation(s)
- Elena Allegritti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, AQ, Italy
| | - Sara Battista
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, AQ, Italy
| | - Maria Anna Maggi
- Hortus Novus, Via Campo Sportivo 2, Canistro, 67051 L'Aquila, Italy
| | - Claudia Marconi
- Dipartimento di Chimica, Università di Roma "Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luciano Galantini
- Dipartimento di Chimica, Università di Roma "Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luisa Giansanti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, AQ, Italy.
| |
Collapse
|
5
|
Bochynek M, Lewińska A, Witwicki M, Dębczak A, Łukaszewicz M. Formation and structural features of micelles formed by surfactin homologues. Front Bioeng Biotechnol 2023; 11:1211319. [PMID: 37485321 PMCID: PMC10360134 DOI: 10.3389/fbioe.2023.1211319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Surfactin, a group of cyclic lipopeptides produced by Bacillus subtilis, possesses surfactant properties and is a promising natural and biologically active compound. In this study, we present a comprehensive characterization of surfactin, including its production, chromatographic separation into pure homologues (C12, C13, C14, C15), and investigation of their physicochemical properties. We determined adsorption isotherms and interpreted them using the Gibbs adsorption equation, revealing that the C15 homologue exhibited the strongest surface tension reduction (27.5 mN/m), while surface activity decreased with decreasing carbon chain length (32.2 mN/m for C12). Critical micelle concentration (CMC) were also determined, showing a decrease in CMC values from 0.35 mM for C12 to 0.08 mM for C15. We employed dynamic light scattering (DLS), transmission electron microscopy (TEM), and density functional theory (DFT) calculations to estimate the size of micellar aggregates, which increased with longer carbon chains, ranging from 4.7 nm for C12 to 5.7 nm for C15. Furthermore, aggregation numbers were determined, revealing the number of molecules in a micelle. Contact angles and emulsification indexes (E24) were measured to assess the functional properties of the homologues, showing that wettability increased with chain length up to C14, which is intriguing as C14 is the most abundant homologue. Our findings highlight the relationship between the structure and properties of surfactin, providing valuable insights for understanding its biological significance and potential applications in various industries. Moreover, the methodology developed in this study can be readily applied to other cyclic lipopeptides, facilitating a better understanding of their structure-properties relationship.
Collapse
Affiliation(s)
- Michał Bochynek
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- InventionBio S.A., Bydgoszcz, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
- OnlyBio S.A., Bydgoszcz, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Dębczak
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Puławy, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- InventionBio S.A., Bydgoszcz, Poland
| |
Collapse
|
6
|
Ziółkowska A, Witwicki M. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24044001. [PMID: 36835412 PMCID: PMC9959031 DOI: 10.3390/ijms24044001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-283 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
7
|
Battista S, Bellio P, Fagnani L, Allegritti E, Nazzicone L, Galantini L, Celenza G, Giansanti L. Structurally Related Liposomes Containing N-Oxide Surfactants: Physicochemical Properties and Evaluation of Antimicrobial Activity in Combination with Therapeutically Available Antibiotics. Mol Pharm 2022; 19:788-797. [PMID: 35170971 PMCID: PMC8905576 DOI: 10.1021/acs.molpharmaceut.1c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Although liposomes
are largely investigated as drug delivery systems,
they can also exert a pharmacological activity if devoid of an active
principle as a function of their composition. Specifically, charged
liposomes can electrostatically interact with bacterial cells and,
in some cases, induce bacterial cell death. Moreover, they also show
a high affinity toward bacterial biofilms. We investigated the physicochemical
and antimicrobial properties of liposomes formulated with a natural
phospholipid and four synthetic l-prolinol-derived surfactants
at 9/1 and 8/2 molar ratios. The synthetic components differ in the
nature of the polar headgroup (quaternary ammonium salt or N-oxide) and/or the length of the alkyl chain (14 or 16
methylenes). These differences allowed us to investigate the effect
of the molecular structure of liposome components on the properties
of the aggregates and their ability to interact with bacterial cells.
The antimicrobial properties of the different formulations were assessed
against Gram-negative and Gram-positive bacteria and fungi. Drug–drug
interactions with four classes of available clinical antibiotics were
evaluated against Staphylococcus spp. The target
of each class of antibiotics plays a pivotal role in exerting a synergistic
effect. Our results highlight that the liposomal formulations with
an N-oxide moiety are required for the antibacterial
activity against Gram-positive bacteria. In particular, we observed
a synergism between oxacillin and liposomes containing 20 molar percentage
of N-oxide surfactants onStaphylococcus
haemolyticus, Staphylococcus epidermidis, andStaphylococcus aureus. In the
case of liposomes containing 20 molar percentage of the N-oxide surfactant with 14 carbon atoms in the alkyl chain for S. epidermidis, the minimum inhibitory concentration
was 0.125 μg/mL, well below the breakpoint value of the antibiotic.
Collapse
Affiliation(s)
- Sara Battista
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| | - Pierangelo Bellio
- Dipartimento di Scienze Chimiche Applicate e Biotecnologie, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| | - Lorenza Fagnani
- Dipartimento di Scienze Chimiche Applicate e Biotecnologie, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| | - Elena Allegritti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| | - Lisaurora Nazzicone
- Dipartimento di Scienze Chimiche Applicate e Biotecnologie, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| | - Luciano Galantini
- Dipartimento di Chimica, Università degli Studi di Roma "Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Giuseppe Celenza
- Dipartimento di Scienze Chimiche Applicate e Biotecnologie, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| | - Luisa Giansanti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio 10, 67010 Coppito, AQ, Italy
| |
Collapse
|
8
|
Design and Engineering of "Green" Nanoemulsions for Enhanced Topical Delivery of Bakuchiol Achieved in a Sustainable Manner: A Novel Eco-Friendly Approach to Bioretinol. Int J Mol Sci 2021; 22:ijms221810091. [PMID: 34576253 PMCID: PMC8472396 DOI: 10.3390/ijms221810091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
In the present work, we establish novel "environmentally-friendly" oil-in-water nanoemulsions to enhance the transdermal delivery of bakuchiol, the so-called "bioretinol" obtained from powdered Psoralea corylifolia seeds via a sustainable process, i.e., using a supercritical fluid extraction approach with pure carbon dioxide (SC-CO2). According to Green Chemistry principles, five novel formulations were stabilized by "green" hybrid ionic surfactants such as coco-betaine-surfactin molecules obtained from coconut and fermented rapeseed meal. Preliminary optimization studies involving three dispersion stability tests, i.e., centrifugation, heating, and cooling cycles, indicated the most promising candidates for further physicochemical analysis. Finally, nanoemulsion colloidal characterization provided by scattering (dynamic and electrophoretic light scattering as well as backscattering), microscopic (transmission electron and confocal laser scanning microscopy), and spectroscopic (UV-Vis spectroscopy) methods revealed the most stable nanocarrier for transdermal biological investigation. In vitro, topical experiments provided on human skin cell line HaCaT keratinocytes and normal dermal NHDF fibroblasts indicated high cell viability upon treatment of the tested formulation with a final 0.02-0.2 mg/mL bakuchiol concentration. This excellent biocompatibility was confirmed by ex vivo and in vivo tests on animal and human skin tissue. The improved permeability and antiaging potential of the bakuchiol-encapsulated rich extract were observed, indicating that the obtained ecological nanoemulsions are competitive with commercial retinol formulations.
Collapse
|