1
|
Antunes SS, Forn-Cuní G, Romeiro NC, Spaink HP, Verbeek FJ, Muzitano MF. Embryonic and larval zebrafish models for the discovery of new bioactive compounds against tuberculosis. Drug Discov Today 2024; 29:104163. [PMID: 39245344 DOI: 10.1016/j.drudis.2024.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Tuberculosis (TB) is a world health challenge the treatment of which is impacted by the rise of drug-resistant strains. Thus, there is an urgent need for new antitubercular compounds and novel approaches to improve current TB therapy. The zebrafish animal model has become increasingly relevant as an experimental system. It has proven particularly useful during early development for aiding TB drug discovery, supporting both the discovery of new insights into mycobacterial pathogenesis and the evaluation of therapeutical toxicity and efficacy in vivo. In this review, we summarize the past two decades of zebrafish-Mycobacterium marinum research and discuss its contribution to the field of bioactive antituberculosis therapy development.
Collapse
Affiliation(s)
- Stella S Antunes
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nelilma C Romeiro
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Michelle F Muzitano
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Maier FI, Klinger D, Grieshober M, Noschka R, Rodriguez A, Wiese S, Forssmann WG, Ständker L, Stenger S. Lysozyme: an endogenous antimicrobial protein with potent activity against extracellular, but not intracellular Mycobacterium tuberculosis. Med Microbiol Immunol 2024; 213:9. [PMID: 38900248 PMCID: PMC11189972 DOI: 10.1007/s00430-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Endogenous antimicrobial peptides (AMPs) play a key role in the host defense against pathogens. AMPs attack pathogens preferentially at the site of entry to prevent invasive infection. Mycobacterium tuberculosis (Mtb) enters its host via the airways. AMPs released into the airways are therefore likely candidates to contribute to the clearance of Mtb immediately after infection. Since lysozyme is detectable in airway secretions, we evaluated its antimicrobial activity against Mtb. We demonstrate that lysozyme inhibits the growth of extracellular Mtb, including isoniazid-resistant strains. Lysozyme also inhibited the growth of non-tuberculous mycobacteria. Even though lysozyme entered Mtb-infected human macrophages and co-localized with the pathogen we did not observe antimicrobial activity. This observation was unlikely related to the large size of lysozyme (14.74 kDa) because a smaller lysozyme-derived peptide also co-localized with Mtb without affecting the viability. To evaluate whether the activity of lysozyme against extracellular Mtb could be relevant in vivo, we incubated Mtb with fractions of human serum and screened for antimicrobial activity. After several rounds of sub-fractionation, we identified a highly active fraction-component as lysozyme by mass spectrometry. In summary, our results identify lysozyme as an antimycobacterial protein that is detectable as an active compound in human serum. Our results demonstrate that the activity of AMPs against extracellular bacilli does not predict efficacy against intracellular pathogens despite co-localization within the macrophage. Ongoing experiments are designed to unravel peptide modifications that occur in the intracellular space and interfere with the deleterious activity of lysozyme in the extracellular environment.
Collapse
Affiliation(s)
- Felix Immanuel Maier
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - David Klinger
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - Mark Grieshober
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - Reiner Noschka
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany
| | - Armando Rodriguez
- Core Facility of Functional Peptidomics, Ulm University, Meyerhoferstraße 4, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Albert Einstein Allee 23, 89081, Ulm, Germany
| | | | - Ludger Ständker
- Core Facility of Functional Peptidomics, Ulm University, Meyerhoferstraße 4, 89081, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Infection and Hygiene, Ulm University, Ulm, Germany.
| |
Collapse
|
3
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Huang X, Chu C, Shi C, Zhang J, Yan B, Shan F, Wang D, Shi Y, Peng C, Tang BZ. Seeing is believing: Efficiency evaluation of multifunctional ionic-dependent AIEgens for tuberculosis. Biomaterials 2023; 302:122301. [PMID: 37690379 DOI: 10.1016/j.biomaterials.2023.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant public health threat with high rates of infection and mortality. Rapid and reliable theranostics of TB are essential to control transmission and shorten treatment duration. In this study, we report two cationic aggregation-inducing emission luminogens (AIEgens) named TTVP and TTPy, which have different functional charged moieties, to investigate their potential for simultaneous tracing and photodynamic therapy in TB infection. TTVP and TTPy exhibit intrinsic positive charges, excellent water solubility, and near-infrared (NIR) emission. Based on ionic-function relationships, TTVP, with more positive charges, demonstrates a stronger binding affinity to Mycobacterium marinum (M.m), (a close genetic relative of Mtb), compared to TTPy. Both TTVP and TTPy exhibit high efficiency in generating reactive oxygen species (ROS) when exposed to white light irradiation, enabling effective photodynamic killing of M.m in vitro. Additionally, we achieved long-term, real-time, noninvasive, continuous tracing, and evaluated therapeutic performance in vivo. Notably, TTVP outperformed TTPy in intracellular killing of M.m, suggesting a possible correlation between the labeling and photodynamic killing abilities of AIEgens. These findings provide valuable insights and a design basis for cationic AIEgens in TB research, offering potential advancements in TB theranostics.
Collapse
Affiliation(s)
- Xueni Huang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China; Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Chengshengze Chu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chunzi Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiulong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Bo Yan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Chen Peng
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
5
|
Shleider Carnero Canales C, Marquez Cazorla J, Furtado Torres AH, Monteiro Filardi ET, Di Filippo LD, Costa PI, Roque-Borda CA, Pavan FR. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Pharmaceutics 2023; 15:2409. [PMID: 37896169 PMCID: PMC10610444 DOI: 10.3390/pharmaceutics15102409] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Latent tuberculosis infection (LTBI) represents a subclinical, asymptomatic mycobacterial state affecting approximately 25% of the global population. The substantial prevalence of LTBI, combined with the risk of progressing to active tuberculosis, underscores its central role in the increasing incidence of tuberculosis (TB). Accurate identification and timely treatment are vital to contain and reduce the spread of the disease, forming a critical component of the global strategy known as "End TB." This review aims to examine and highlight the most recent scientific evidence related to new diagnostic approaches and emerging therapeutic treatments for LTBI. While prevalent diagnostic methods include the tuberculin skin test (TST) and interferon gamma release assay (IGRA), WHO's approval of two specific IGRAs for Mycobacterium tuberculosis (MTB) marked a significant advancement. However, the need for a specific test with global application viability has propelled research into diagnostic tests based on molecular diagnostics, pulmonary immunity, epigenetics, metabolomics, and a current focus on next-generation MTB antigen-based skin test (TBST). It is within these emerging methods that the potential for accurate distinction between LTBI and active TB has been demonstrated. Therapeutically, in addition to traditional first-line therapies, anti-LTBI drugs, anti-resistant TB drugs, and innovative candidates in preclinical and clinical stages are being explored. Although the advancements are promising, it is crucial to recognize that further research and clinical evidence are needed to solidify the effectiveness and safety of these new approaches, in addition to ensuring access to new drugs and diagnostic methods across all health centers. The fight against TB is evolving with the development of more precise diagnostic tools that differentiate the various stages of the infection and with more effective and targeted treatments. Once consolidated, current advancements have the potential to transform the prevention and treatment landscape of TB, reinforcing the global mission to eradicate this disease.
Collapse
Affiliation(s)
- Christian Shleider Carnero Canales
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | - Jessica Marquez Cazorla
- Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (C.S.C.C.)
| | | | | | | | - Paulo Inácio Costa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| | - Cesar Augusto Roque-Borda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
6
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 2023; 14:1194923. [PMID: 37266428 PMCID: PMC10230078 DOI: 10.3389/fimmu.2023.1194923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most important infectious agents worldwide and causes more than 1.5 million deaths annually. To make matters worse, the drug resistance among Mtb strains has risen substantially in the last few decades. Nowadays, it is not uncommon to find patients infected with Mtb strains that are virtually resistant to all antibiotics, which has led to the urgent search for new molecules and therapies. Over previous decades, several studies have demonstrated the efficiency of antimicrobial peptides to eliminate even multidrug-resistant bacteria, making them outstanding candidates to counterattack this growing health problem. Nevertheless, the complexity of the Mtb cell wall makes us wonder whether antimicrobial peptides can effectively kill this persistent Mycobacterium. In the present review, we explore the complexity of the Mtb cell wall and analyze the effectiveness of antimicrobial peptides to eliminate the bacilli.
Collapse
|
7
|
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol 2023; 14:1119574. [PMID: 37056758 PMCID: PMC10086130 DOI: 10.3389/fimmu.2023.1119574] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intracellular bacteria cause a wide range of diseases, and their intracellular lifestyle makes infections difficult to resolve. Furthermore, standard therapy antibiotics are often unable to eliminate the infection because they have poor cellular uptake and do not reach the concentrations needed to kill bacteria. In this context, antimicrobial peptides (AMPs) are a promising therapeutic approach. AMPs are short cationic peptides. They are essential components of the innate immune response and important candidates for therapy due to their bactericidal properties and ability to modulate host immune responses. AMPs control infections through their diverse immunomodulatory effects stimulating and/or boosting immune responses. This review focuses on AMPs described to treat intracellular bacterial infections and the known immune mechanisms they influence.
Collapse
|
8
|
Makvandi P, Song H, Yiu CKY, Sartorius R, Zare EN, Rabiee N, Wu WX, Paiva-Santos AC, Wang XD, Yu CZ, Tay FR. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res 2023; 10:8. [PMID: 36829246 PMCID: PMC9951506 DOI: 10.1186/s40779-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Italy. .,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | | | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Wei-Xi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng-Zhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Usharani N, Kanth SV, Saravanan N. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Int J Biol Macromol 2023; 227:262-272. [PMID: 36521715 DOI: 10.1016/j.ijbiomac.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis with highest morbidity and mortality every year. The evolution of anti-TB drugs is promising in controlling and treating TB. Yet, the drug response varies depending on the bacterial load and host immunological profiles. The prolonged anti-TB treatment regimen and high pill burden leads to poor adherence to treatment and acquired drug resistance. In the clinical arena, sustainable nanotechnology improves the targeted strategies leading to enhance therapeutic recovery with minimum treatment duration and virtuous drug adherence. Determinants of nanosystems are the size, nature, formulation techniques, stable dosing patterns, bioavailability and toxicity. In the treatment of chronic illness, nanomedicines inclusive of biological macromolecules such as lipids, peptides, and nucleic acids occur to be a successive alternative to synthetic carriers. Most biological nanomaterials possess antimicrobial properties with other intrinsic characteristics. Recently, the pulmonary delivery of anti-TB drugs through polymeric nanocarrier systems is shown to be effective in achieving optimal drug levels in lungs for longer duration, enhanced tissue permeation and sustained systemic clearance. This thematic review provides a holistic insight into the nanodelivery systems pertinent to the therapeutic applications in pulmonary tuberculosis describing the choice of carriers, optimized process, metabolic action and excretion processes.
Collapse
Affiliation(s)
- Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Swarna Vinodh Kanth
- Centre for Human and Organizational Resources Development, CSIR-Central Leather Research Institute, Chennai, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
10
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
11
|
Degiacomi G, Makarov V, Pasca MR, Chiarelli LR. New Drugs and Novel Cellular Targets against Tuberculosis. Int J Mol Sci 2022; 23:ijms232213680. [PMID: 36430162 PMCID: PMC9693588 DOI: 10.3390/ijms232213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), one of the most life-threatening communicable diseases, which causes 10 million new cases each year and results in an estimated 1 [...].
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
12
|
Arenas NE, Pieffet G, Rocha-Roa C, Guerrero MI. Design of a specific peptide against phenolic glycolipid-1 from Mycobacterium leprae and its implications in leprosy bacilli entry. Mem Inst Oswaldo Cruz 2022; 117:e220025. [PMID: 35857971 PMCID: PMC9296141 DOI: 10.1590/0074-02760220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycobacterium leprae, the causative agent of Hansen’s
disease, causes neural damage through the specific interaction between the
external phenolic glycolipid-1 (PGL-1) and laminin subunit alpha-2 (LAMA2)
from Schwann cells. OBJECTIVE To design a LAMA2-based peptide that targets PGL-1 from M.
leprae. METHODS We retrieved the protein sequence of human LAMA2 and designed a specific
peptide using the Antimicrobial Peptide Database and physicochemical
parameters for antimycobacterial peptide-lipid interactions. We used the
AlphaFold2 server to predict its three-dimensional structure, AUTODOCK-VINA
for docking, and GROMACS programs for molecular dynamics simulations. FINDINGS We analysed 52 candidate peptides from LAMA2, and subsequent screening
resulted in a single 60-mer peptide. The mapped peptide comprises four
β-sheets and a random coiled region. This peptide exhibits a 45% hydrophobic
ratio, in which one-third covers the same surface. Molecular dynamics
simulations show that our predicted peptide is stable in aqueous solution
and remains stable upon interaction with PGL-1 binding. In addition, we
found that PGL-1 has a preference for one of the two faces of the predicted
peptide, which could act as the preferential binding site of PGL-1. MAIN CONCLUSIONS Our LAMA2-based peptide targeting PGL-1 might have the potential to
specifically block this key molecule, suggesting that the preferential
region of the peptide is involved in the initial contact during the
attachment of leprosy bacilli to Schwann cells.
Collapse
Affiliation(s)
- Nelson Enrique Arenas
- Hospital Universitario, Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia
| | - Gilles Pieffet
- Universidad de los Andes, Departamento de Química, Bogotá, Colombia
| | - Cristian Rocha-Roa
- Universidad del Quindío, Facultad de Ciencias de la Salud, Grupo de Estudio en Parasitología y Micología Molecular-GEPAMOL, Armenia, Quindío, Colombia
| | | |
Collapse
|
13
|
Rasi V, Hameed OA, Matthey P, Bera S, Grandgenett DP, Salentinig S, Walch M, Hoft DF. Improved Purification of Human Granzyme A/B and Granulysin Using a Mammalian Expression System. Front Immunol 2022; 13:830290. [PMID: 35300343 PMCID: PMC8921980 DOI: 10.3389/fimmu.2022.830290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Owais Abdul Hameed
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patricia Matthey
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sibes Bera
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Stefan Salentinig
- Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| |
Collapse
|
14
|
Michel T, Ollert M, Zimmer J. A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. Int J Mol Sci 2022; 23:ijms23020797. [PMID: 35054985 PMCID: PMC8776043 DOI: 10.3390/ijms23020797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.
Collapse
Affiliation(s)
- Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Correspondence:
| |
Collapse
|