1
|
Gil-Nagel A, Cross JH, Devinsky O, Ceulemans B, Lagae L, Knupp K, Schoonjans AS, Ryvlin P, Thiele EA, Polega S, Lothe A, Nabbout R. Comprehensive scoping review of fenfluramine's role in managing generalized tonic-clonic seizures in developmental and epileptic encephalopathies. Epilepsia 2024; 65:2186-2199. [PMID: 39030735 DOI: 10.1111/epi.18020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/22/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are characterized by pharmacoresistant seizures and developmental delay. Patients with DEEs experience multiple seizure types, including tonic-clonic seizures (TCS) that can be generalized tonic-clonic (GTCS) or focal evolving to bilateral tonic-clonic (FBTCS). Fenfluramine (FFA) has demonstrated efficacy in reduction of TCS in patients with Dravet syndrome (DS), Lennox-Gastaut syndrome (LGS), and other DEEs. Using the PRISMA-ScR (Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Review) guidelines, we performed a scoping review to describe changes in TCS in patients treated with FFA. A comprehensive search of five literature databases was conducted up to February 14, 2023. Studies were included if they reported change in GTCS or TCS (but not FBTCS) after treatment with FFA in patients with DEEs. Duplicate patients and studies with unclear efficacy data were excluded. Fourteen of 422 studies met the eligibility criteria. Data extracted and evaluated by expert clinicians identified 421 unique patients with DS (in nine studies), CDKL5 deficiency disorder, SCN8A-related disorder, LGS, SCN1B-related disorder, and other DEEs. The median percent reduction in GTCS or TCS from baseline was available in 10 studies (n = 328) and ranged from 47.2% to 100%. Following FFA treatment, 10 studies (n = 144) reported ≥50% reduction in GTCS or TCS from baseline in 72% of patients; in nine of those (n = 112), 54% and 29% of patients achieved ≥75% and 100% reduction in GTCS or TCS from baseline, respectively. Overall, this analysis highlighted improvements in GTCS or TCS frequency when patients were treated with FFA regardless of the DEE evaluated. Future studies may confirm the impact of FFA on TCS reduction and on decreased premature mortality risk (including sudden unexpected death in epilepsy), improvement in comorbidities and everyday executive function, decreased health care costs, and improvement in quality of life.
Collapse
Affiliation(s)
| | - J Helen Cross
- University College London (UCL) National Institute for Health and Care Research (NIHR) Biomedical Research Centres (BRC) Great Ormond Street Institute of Child Health, London, UK
| | - Orrin Devinsky
- New York University Langone Medical Center, New York, New York, USA
| | | | | | - Kelly Knupp
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | | | | | - Rima Nabbout
- Reference Center for Rare Epilepsies, Necker Enfants Malades Hospital, APHP, U1163 Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Mittur A, Madanick R, Langlois M, Boyd B. Effect of Hepatic Impairment on the Pharmacokinetics of Fenfluramine and Norfenfluramine. J Clin Pharmacol 2024; 64:887-898. [PMID: 38523492 DOI: 10.1002/jcph.2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Fenfluramine (Fintepla®) is approved for the treatment of seizures associated with the rare epileptic encephalopathies Dravet syndrome and Lennox-Gastaut syndrome. Fenfluramine is extensively metabolized; thus, patients with hepatic impairment (HI) might experience changes in exposure to fenfluramine or its metabolites. In this phase 1 study, we investigated the pharmacokinetics (PK) and safety of a single oral dose of 0.35 mg/kg fenfluramine in subjects with mild (n = 8), moderate (n = 8), or severe (n = 7) HI (Child-Pugh A/B/C, respectively) and healthy control subjects (n = 22) matched for sex, age, and BMI. All subjects underwent serial sampling to determine total plasma concentrations of fenfluramine and its active metabolite, norfenfluramine. Hepatic impairment was associated with increases in fenfluramine exposures, mainly area-under-the-curve (AUC). Geometric least squares mean ratios (90% confidence intervals) for fenfluramine AUC0-∞ in mild, moderate, and severe HI versus healthy controls were 1.98 (1.36-2.90), 2.13 (1.43-3.17), and 2.77 (1.82-4.24), respectively. Changes in exposure to norfenfluramine in mild, moderate, and severe HI were minimal compared with normal hepatic function. Exposures to fenfluramine and norfenfluramine in all HI groups were within the ranges that have been characterized in the overall development program, including ranges examined in exposure-response relationships for efficacy and safety in patients, and determined to have an acceptable safety profile. Mild and moderate HI had a modest effect on fenfluramine exposure that was not clinically meaningful, whereas the higher fenfluramine exposure in severe HI may require dose reduction based on general caution in this population. The modest decrease in norfenfluramine exposure is not considered clinically relevant.
Collapse
Affiliation(s)
| | - Ryan Madanick
- PPD, Thermo Fisher Scientific, Morrisville, North Carolina, USA
| | | | - Brooks Boyd
- UCB Biosciences, Inc, Morrisville, North Carolina, USA
| |
Collapse
|
3
|
Xu Y, Chen D, Liu L. Optimal dose of fenfluramine in adjuvant treatment of drug-resistant epilepsy: evidence from randomized controlled trials. Front Neurol 2024; 15:1371704. [PMID: 38590719 PMCID: PMC10999678 DOI: 10.3389/fneur.2024.1371704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Objective Several clinical trials have suggested that fenfluramine (FFA) is effective for the treatment of epilepsy in Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS). However, the exploration of its optimal target dose is ongoing. This study aimed to summarize the best evidence to inform this clinical issue. Materials and methods We searched PubMed, Embase (via Ovid), and Web of Science for relevant literature published before December 1st, 2023. Randomized, double-blind, placebo-controlled studies that evaluated the efficacy, safety, and tolerability of FFA in DS and LGS were identified and meta-analysis was performed according to doses. The study was registered with PROSPERO (CRD42023392454). Results Six hundred and twelve patients from four randomized controlled trials were enrolled. The results demonstrated that FFA at 0.2, 0.4, or 0.7 mg/kg/d showed significantly greater efficacy compared to placebo in terms of at least 50% reduction (p < 0.001, p < 0.001, p < 0.001) and at least 75% reduction (p < 0.001, p = 0.007, p < 0.001) in monthly seizure frequency from baseline. Moreover, significantly more patients receiving FFA than placebo were rated as much improved or very much improved in CGI-I by both caregivers/parents and investigators (p < 0.001). The most common treatment-emergent adverse events were decreased appetite, diarrhea, fatigue, and weight loss, with no valvular heart disease or pulmonary hypertension observed in any participant. For dose comparison, 0.7 mg/kg/d group presented higher efficacy on at least 75% reduction in seizure (p = 0.006) but not on at least 50% reduction. Weight loss (p = 0.002), decreased appetite (p = 0.04), and all-cause withdrawal (p = 0.036) were more common in 0.7 mg/kg/d group than 0.2 mg/kg/d. There was no statistical difference in other safety parameters between these two groups. Conclusion The higher range of the licensed dose achieves the optimal balance between efficacy, safety, and tolerability in patients with DS and LGS. Clinical trial registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023392454.
Collapse
Affiliation(s)
| | | | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Mastrangelo M, Manti F, Ricciardi G, Bove R, Greco C, Tolve M, Pisani F. The burden of epilepsy on long-term outcome of genetic developmental and epileptic encephalopathies: A single tertiary center longitudinal retrospective cohort study. Epilepsy Behav 2024; 152:109670. [PMID: 38335860 DOI: 10.1016/j.yebeh.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND This retrospective cohort analysis highlighted neurodevelopmental outcome predictors of genetic developmental and epileptic encephalopathies (DEE). PATIENTS AND METHODS Patients' demographic, clinical and molecular genetics data were collected. All patients underwent clinical, developmental, and neuropsychological assessments. RESULTS We recruited 100 participants (53 males, 47 females) with a mean follow-up lasting 10.46 ± 8.37 years. Age at epilepsy-onset was predictive of poor adaptive and cognitive functions (VABS-II score, r = 0.350, p = 0.001; BRIEF control subscale, r = -0.253; p = 0.031). Duration of epilepsy correlated negatively with IQ (r = -0.234, p = 0.019) and VABS-II score (r = -0.367, p = 0.001). Correlations were found between delayed/lacking EEG maturation/organization and IQ (r = 0.587, p = 0.001), VABS-II score (r = 0.658, p = 0.001), BRIEF-MI and BRIEF-GEC scores (r = -0.375, p = 0.001; r = -0.236, p = 0.033), ASEBA anxiety (r = -0.220, p = 0.047) and ADHD (r = -0.233, p = 0.035) scores. The number of antiseizure medications (ASMs) correlated with IQ (r = -0.414, p = 0.001), VABS-II (r = -0.496, p = 0.001), and BRIEF-MI (r = 0.294, p = 0.012) scores; while age at the beginning of therapy with ASEBA anxiety score (r = 0.272, p = 0.013). The occurrence of status epilepticus was associated with worse adaptive performances. The linear regression analysis model showed that delayed/lacking EEG maturation/organization had a significant influence on the IQ (R2 = 0.252, p < 0.001) and the BRIEF-GEC variability (R2 = 0.042, p = 0.036). The delayed/lacking EEG maturation/organization and the duration of epilepsy also had a significant influence on the VABS-II score (R2 = 0.455, p = 0.005). CONCLUSIONS Age at seizure-onset, EEG maturation/organization, duration of epilepsy, occurrence of status epilepticus, age at the introduction and number of ASMs used are reliable predictors of long-term outcomes in patients with genetic DEE.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Department of Women/Child Health and Urological Science, Sapienza University of Rome, Rome, Italy; Unit of Child Neurology and Psychiatry, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy.
| | - Filippo Manti
- Unit of Child Neurology and Psychiatry, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy; Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giacomina Ricciardi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Rossella Bove
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Carlo Greco
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Manuela Tolve
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy; Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Cha J, Filatov G, Smith SJ, Gammaitoni AR, Lothe A, Reeder T. Fenfluramine increases survival and reduces markers of neurodegeneration in a mouse model of Dravet syndrome. Epilepsia Open 2024; 9:300-313. [PMID: 38018342 PMCID: PMC10839300 DOI: 10.1002/epi4.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE In patients with Dravet syndrome (DS), fenfluramine reduced convulsive seizure frequency and provided clinical benefit in nonseizure endpoints (e.g., executive function, survival). In zebrafish mutant scn1 DS models, chronic fenfluramine treatment preserved neuronal cytoarchitecture prior to seizure onset and prevented gliosis; here, we extend these findings to a mammalian model of DS (Scn1a+/- mice) by evaluating the effects of fenfluramine on neuroinflammation (degenerated myelin, activated microglia) and survival. METHODS Scn1a+/- DS mice were treated subcutaneously once daily with fenfluramine (15 mg/kg) or vehicle from postnatal day (PND) 7 until 35-37. Sagittal brain sections were processed for immunohistochemistry using antibodies to degraded myelin basic protein (D-MBP) for degenerated myelin, or CD11b for activated (inflammatory) microglia; sections were scored semi-quantitatively. Apoptotic nuclei were quantified by TUNEL assay. Statistical significance was evaluated by 1-way ANOVA with post-hoc Dunnett's test (D-MBP, CD11b, and TUNEL) or Logrank Mantel-Cox (survival). RESULTS Quantitation of D-MBP immunostaining per 0.1 mm2 unit area of the parietal cortex and hippocampus CA3 yielded significantly higher spheroidal and punctate myelin debris counts in vehicle-treated DS mice than in wild-type mice. Fenfluramine treatment in DS mice significantly reduced these counts. Activated CD11b + microglia were more abundant in DS mouse corpus callosum and hippocampus than in wild-type controls. Fenfluramine treatment of DS mice resulted in significantly fewer activated CD11b + microglia than vehicle-treated DS mice in these brain regions. TUNEL staining in corpus callosum was increased in DS mice relative to wild-type controls. Fenfluramine treatment in DS mice lowered TUNEL staining relative to vehicle-treated DS mice. By PND 35-37, 55% of control DS mice had died, compared with 24% of DS mice receiving fenfluramine treatment (P = 0.0291). SIGNIFICANCE This is the first report of anti-neuroinflammation and pro-survival after fenfluramine treatment in a mammalian DS model. These results corroborate prior data in humans and animal models and suggest important pharmacological activities for fenfluramine beyond seizure reduction. PLAIN LANGUAGE SUMMARY Dravet syndrome is a severe epilepsy disorder that impairs learning and causes premature death. Clinical studies in patients with Dravet syndrome show that fenfluramine reduces convulsive seizures. Additional studies suggest that fenfluramine may have benefits beyond seizures, including promoting survival and improving control over emotions and behavior. Our study is the first to use a Dravet mouse model to investigate nonseizure outcomes of fenfluramine. Results showed that fenfluramine treatment of Dravet mice reduced neuroinflammation significantly more than saline treatment. Fenfluramine-treated Dravet mice also lived longer than saline-treated mice. These results support clinical observations that fenfluramine may have benefits beyond seizures.
Collapse
Affiliation(s)
- John Cha
- University of California San FranciscoSan FranciscoCaliforniaUSA
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
| | - Gregory Filatov
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
- Crosshair Therapeutics, Inc.SunnyvaleCaliforniaUSA
| | - Steven J. Smith
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
- WuXi AppTec, Inc.San FranciscoCaliforniaUSA
| | | | | | - Thadd Reeder
- Zogenix, Inc. (now a part of UCB)EmeryvilleCaliforniaUSA
| |
Collapse
|
6
|
Lersch R, Jannadi R, Grosse L, Wagner M, Schneider MF, von Stülpnagel C, Heinen F, Potschka H, Borggraefe I. Targeted Molecular Strategies for Genetic Neurodevelopmental Disorders: Emerging Lessons from Dravet Syndrome. Neuroscientist 2023; 29:732-750. [PMID: 35414300 PMCID: PMC10623613 DOI: 10.1177/10738584221088244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy mostly caused by heterozygous mutation of the SCN1A gene encoding the voltage-gated sodium channel α subunit Nav1.1. Multiple seizure types, cognitive deterioration, behavioral disturbances, ataxia, and sudden unexpected death associated with epilepsy are a hallmark of the disease. Recently approved antiseizure medications such as fenfluramine and cannabidiol have been shown to reduce seizure burden. However, patients with Dravet syndrome are still medically refractory in the majority of cases, and there is a high demand for new therapies aiming to improve behavioral and cognitive outcome. Drug-repurposing approaches for SCN1A-related Dravet syndrome are currently under investigation (i.e., lorcaserin, clemizole, and ataluren). New therapeutic concepts also arise from the field of precision medicine by upregulating functional SCN1A or by activating Nav1.1. These include antisense nucleotides directed against the nonproductive transcript of SCN1A with the poison exon 20N and against an inhibitory noncoding antisense RNA of SCN1A. Gene therapy approaches such as adeno-associated virus-based upregulation of SCN1A using a transcriptional activator (ETX101) or CRISPR/dCas technologies show promising results in preclinical studies. Although these new treatment concepts still need further clinical research, they offer great potential for precise and disease modifying treatment of Dravet syndrome.
Collapse
Affiliation(s)
- Robert Lersch
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Rawan Jannadi
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Leonie Grosse
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Matias Wagner
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Centre Munich, German Research Center for Health and Environment (GmbH), Munich, Germany
| | - Marius Frederik Schneider
- Metabolic Biochemistry, Biomedical Center Munich, Medical Faculty, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Celina von Stülpnagel
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical Private University (PMU), Salzburg, Austria
| | - Florian Heinen
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
7
|
Zhang K, Chen L, Yang J, Liu J, Li J, Liu Y, Li X, Chen L, Hsu C, Zeng J, Xie X, Wang Q. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm Sin B 2023; 13:4801-4822. [PMID: 38045052 PMCID: PMC10692394 DOI: 10.1016/j.apsb.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Methamphetamine (Meth) abuse can cause serious mental disorders, including anxiety and depression. The gut microbiota is a crucial contributor to maintaining host mental health. Here, we aim to investigate if microbiota participate in Meth-induced mental disorders, and the potential mechanisms involved. Here, 15 mg/kg Meth resulted in anxiety- and depression-like behaviors of mice successfully and suppressed the Sigma-1 receptor (SIGMAR1)/BDNF/TRKB pathway in the hippocampus. Meanwhile, Meth impaired gut homeostasis by arousing the Toll-like receptor 4 (TLR4)-related colonic inflammation, disturbing the gut microbiome and reducing the microbiota-derived short-chain fatty acids (SCFAs). Moreover, fecal microbiota from Meth-administrated mice mediated the colonic inflammation and reproduced anxiety- and depression-like behaviors in recipients. Further, SCFAs supplementation optimized Meth-induced microbial dysbiosis, ameliorated colonic inflammation, and repressed anxiety- and depression-like behaviors. Finally, Sigmar1 knockout (Sigmar1-/-) repressed the BDNF/TRKB pathway and produced similar behavioral phenotypes with Meth exposure, and eliminated the anti-anxiety and -depression effects of SCFAs. The activation of SIGMAR1 with fluvoxamine attenuated Meth-induced anxiety- and depression-like behaviors. Our findings indicated that gut microbiota-derived SCFAs could optimize gut homeostasis, and ameliorate Meth-induced mental disorders in a SIGMAR1-dependent manner. This study confirms the crucial role of microbiota in Meth-related mental disorders and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Tyagi R, Saraf TS, Canal CE. The Psychedelic N, N-Dipropyltryptamine Prevents Seizures in a Mouse Model of Fragile X Syndrome via a Mechanism that Appears Independent of Serotonin and Sigma1 Receptors. ACS Pharmacol Transl Sci 2023; 6:1480-1491. [PMID: 37854624 PMCID: PMC10580393 DOI: 10.1021/acsptsci.3c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 10/20/2023]
Abstract
The serotonergic psychedelic psilocybin shows efficacy in treating neuropsychiatric disorders, though the mechanism(s) underlying its therapeutic effects remain unclear. We show that a similar psychedelic tryptamine, N,N-dipropyltryptamine (DPT), completely prevents audiogenic seizures (AGS) in an Fmr1 knockout mouse model of fragile X syndrome at a 10 mg/kg dose but not at lower doses (3 or 5.6 mg/kg). Despite showing in vitro that DPT is a serotonin 5-HT2A, 5-HT1B, and 5-HT1A receptor agonist (with that rank order of functional potency, determined with TRUPATH Gα/βγ biosensors), pretreatment with selective inhibitors of 5-HT2A/2C, 5-HT1B, or 5-HT1A receptors did not block DPT's antiepileptic effects; a pan-serotonin receptor antagonist was also ineffective. Because 5-HT1A receptor activation blocks AGS in Fmr1 knockout mice, we performed a dose-response experiment to evaluate DPT's engagement of 5-HT1A receptors in vivo. DPT elicited 5-HT1A-dependent effects only at doses greater than 10 mg/kg, further supporting that DPT's antiepileptic effects were not 5-HT1A-mediated. We also observed that the selective sigma1 receptor antagonist, NE-100, did not impact DPT's antiepileptic effects, suggesting DPT engagement of sigma1 receptors was not a crucial mechanism. Separately, we observed that DPT and NE-100 at high doses caused convulsions on their own that were qualitatively distinct from AGS. In conclusion, DPT dose-dependently blocked AGS in Fmr1 knockout mice, but neither serotonin nor sigma1 receptor antagonists prevented this action. Thus, DPT might have neurotherapeutic effects independent of its serotonergic psychedelic properties. However, DPT also caused seizures at high doses, showing that DPT has complex dose-dependent in vivo polypharmacology.
Collapse
Affiliation(s)
- Richa Tyagi
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Tanishka S. Saraf
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Clinton E. Canal
- Department of Pharmaceutical
Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
9
|
Lattanzi S, Trinka E, Russo E, Del Giovane C, Matricardi S, Meletti S, Striano P, Damavandi PT, Silvestrini M, Brigo F. Pharmacotherapy for Dravet Syndrome: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Drugs 2023; 83:1409-1424. [PMID: 37695433 PMCID: PMC10582139 DOI: 10.1007/s40265-023-01936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy characterized by drug-resistant, lifelong seizures. The management of seizures in DS has changed in recent years with the approval of new antiseizure medications (ASMs). OBJECTIVE The aim of this study was to estimate the comparative efficacy and tolerability of the ASMs for the treatment of seizures associated with DS using a network meta-analysis (NMA). METHODS Studies were identified by conducting a systematic search (week 4, January 2023) of the MEDLINE (accessed by PubMed), EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), and US National Institutes of Health Clinical Trials Registry ( http://www. CLINICALTRIALS gov ) databases. Any randomized, controlled, double- or single-blinded, parallel-group study comparing at least one ASM therapy against placebo, another ASM, or a different dose of the same ASM in participants with a diagnosis of DS was identified. The efficacy outcomes were the proportions of participants with ≥ 50% (seizure response) and 100% reduction (seizure freedom) in baseline convulsive seizure frequency during the maintenance period. The tolerability outcomes included the proportions of patients who withdrew from treatment for any reason and who experienced at least one adverse event (AE). Effect sizes were estimated by network meta-analyses within a frequentist framework. RESULTS Eight placebo-controlled trials were included, and the active add-on treatments were stiripentol (n = 2), pharmaceutical-grade cannabidiol (n = 3), fenfluramine hydrochloride (n = 2), and soticlestat (n = 1). The studies recruited 680 participants, of whom 409 were randomized to active treatments (stiripentol = 33, pharmaceutical-grade cannabidiol = 228, fenfluramine hydrochloride = 122, and soticlestat = 26) and 271 to placebo. Pharmaceutical-grade cannabidiol was associated with a lower rate of seizure response than fenfluramine hydrochloride (odds ratio [OR] 0.20, 95% confidence interval [CI] 0.07-0.54), and stiripentol was associated with a higher seizure response rate than pharmaceutical-grade cannabidiol (OR 14.07, 95% CI 2.57-76.87). No statistically significant differences emerged across the different ASMs for the seizure freedom outcome. Stiripentol was associated with a lower probability of drug discontinuation for any reason than pharmaceutical-grade cannabidiol (OR 0.45, 95% CI 0.04-5.69), and pharmaceutical-grade cannabidiol was associated with a lower proportion of participants experiencing any AE than fenfluramine hydrochloride (OR 0.22, 95% CI 0.06-0.78). Stiripentol had a higher risk of AE occurrence than pharmaceutical-grade cannabidiol (OR 75.72, 95% CI 3.59-1598.58). The study found high-quality evidence of efficacy and tolerability of the four ASMs in the treatment of convulsive seizures in DS. CONCLUSIONS There exists first-class evidence that documents the efficacy and tolerability of stiripentol, pharmaceutical-grade cannabidiol, fenfluramine hydrochloride, and soticlestat for the treatment of seizures associated with DS, and allows discussion about the expected outcomes regarding seizure frequency reduction and tolerability profiles.
Collapse
Affiliation(s)
- Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy.
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Center for Cognitive Neuroscience, Salzburg, Austria
- Public Health, Health Services Research and HTA, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Cinzia Del Giovane
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Payam Tabaee Damavandi
- Department of Neurology, Fondazione IRCCS San Gerardo, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Mauro Silvestrini
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Francesco Brigo
- Division of Neurology, "Franz Tappeiner" Hospital, Merano, BZ, Italy
| |
Collapse
|
10
|
Dini G, Di Cara G, Ferrara P, Striano P, Verrotti A. Reintroducing Fenfluramine as a Treatment for Seizures: Current Knowledge, Recommendations and Gaps in Understanding. Neuropsychiatr Dis Treat 2023; 19:2013-2025. [PMID: 37790801 PMCID: PMC10543412 DOI: 10.2147/ndt.s417676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Despite the introduction of new anti-seizure medications in recent years, approximately one-third of the epileptic population continues to experience seizures. Recently, the anti-obesity medication fenfluramine (FFA) has been successfully repurposed, and it has received approval from various regulatory agencies for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome. The potential antiseizure effects of FFA were initially observed in patients with photosensitive epilepsy in the 1980s but it was not rigorously explored as a treatment option until 30 years later. This narrative review aims to provide an overview of the historical progression of FFA's use, starting from initial clinical observations to preclinical studies and, ultimately, successful clinical trials in the field of epilepsy.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Pietro Ferrara
- Department of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “G. Gaslini”, Genoa, Italy
| | | |
Collapse
|
11
|
Sills GJ. Pharmacological diversity amongst approved and emerging antiseizure medications for the treatment of developmental and epileptic encephalopathies. Ther Adv Neurol Disord 2023; 16:17562864231191000. [PMID: 37655228 PMCID: PMC10467199 DOI: 10.1177/17562864231191000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are rare neurodevelopmental disorders characterised by early-onset and often intractable seizures and developmental delay/regression, and include Dravet syndrome and Lennox-Gastaut syndrome (LGS). Rufinamide, fenfluramine, stiripentol, cannabidiol and ganaxolone are antiseizure medications (ASMs) with diverse mechanisms of action that have been approved for treating specific DEEs. Rufinamide is thought to suppress neuronal hyperexcitability by preventing the functional recycling of voltage-gated sodium channels from the inactivated to resting state. It is licensed for adjunctive treatment of seizures associated with LGS. Fenfluramine increases extracellular serotonin levels and may reduce seizures via activation of specific serotonin receptors and positive modulation of the sigma-1 receptor. Fenfluramine is licensed for adjunctive treatment of seizures associated with Dravet syndrome and LGS. Stiripentol is a positive allosteric modulator of type-A gamma-aminobutyric acid (GABAA) receptors. As a broad-spectrum inhibitor of cytochrome P450 enzymes, its antiseizure effects may additionally arise through pharmacokinetic interactions with co-administered ASMs. Stiripentol is licensed for treating seizures associated with Dravet syndrome in patients taking clobazam and/or valproate. The mechanism(s) of action of cannabidiol remains largely unclear although multiple targets have been proposed, including transient receptor potential vanilloid 1, G protein-coupled receptor 55 and equilibrative nucleoside transporter 1. Cannabidiol is licensed as adjunctive treatment in conjunction with clobazam for seizures associated with Dravet syndrome and LGS, and as adjunctive treatment of seizures associated with tuberous sclerosis complex. Like stiripentol, ganaxolone is a positive allosteric modulator at GABAA receptors. It has recently been licensed in the USA for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder. Greater understanding of the causes of DEEs has driven research into the potential use of other novel and repurposed agents. Putative ASMs currently in clinical development for use in DEEs include soticlestat, carisbamate, verapamil, radiprodil, clemizole and lorcaserin.
Collapse
Affiliation(s)
- Graeme J. Sills
- School of Life Sciences, University of Glasgow, Room 341, Sir James Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
12
|
Abstract
Fenfluramine (Fintepla®) is an oral anti-seizure medication (ASM) with a novel mechanism of action consisting of activity in the serotonergic system coupled with positive allosteric modulation effects at sigma-1 receptors. Originally approved for use at high doses as an appetite suppressant, it was subsequently withdrawn after being linked to valvular heart disease (VHD) and pulmonary arterial hypertension (PAH), before being investigated for use at low doses as an adjunctive ASM in patients with developmental epileptic encephalopathies, including Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS) who have pharmacoresistant seizures. In clinical trials, treatment with adjunctive fenfluramine markedly reduced convulsive seizure frequency in patients with DS that were sustained for up to 3 years, and reduced drop seizure frequency in patients with LGS that were sustained for up to 1 year. Notably, fenfluramine was also associated with clinically meaningful improvements in aspects of everyday executive functioning (EF) not entirely explainable by seizure reduction alone. Furthermore, it was generally well tolerated with, importantly, no reports of VHD or PAH. Thus, adjunctive fenfluramine is a novel and effective treatment for pharmacoresistant seizures associated with DS and LGS that may also improve aspects of everyday EF in some patients.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
13
|
Voronin MV, Shangin SV, Litvinova SA, Abramova EV, Kurbanov RD, Rybina IV, Vakhitova YV, Seredenin SB. Pharmacological Analysis of GABA A Receptor and Sigma1R Chaperone Interaction: Research Report I-Investigation of the Anxiolytic, Anticonvulsant and Hypnotic Effects of Allosteric GABA A Receptors' Ligands. Int J Mol Sci 2023; 24:9580. [PMID: 37298532 PMCID: PMC10253922 DOI: 10.3390/ijms24119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulia V. Vakhitova
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (M.V.V.); (S.V.S.); (S.A.L.); (E.V.A.); (R.D.K.)
| | - Sergei B. Seredenin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (M.V.V.); (S.V.S.); (S.A.L.); (E.V.A.); (R.D.K.)
| |
Collapse
|
14
|
Sourbron J, Lagae L. Fenfluramine: a plethora of mechanisms? Front Pharmacol 2023; 14:1192022. [PMID: 37251322 PMCID: PMC10213522 DOI: 10.3389/fphar.2023.1192022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Developmental and epileptic encephalopathies are rare, treatment-resistant epilepsies with high seizure burden and non-seizure comorbidities. The antiseizure medication (ASM) fenfluramine is an effective treatment for reducing seizure frequency, ameliorating comorbidities, and potentially reducing risk of sudden unexpected death in epilepsy (SUDEP) in patients with Dravet syndrome and Lennox-Gastaut syndrome, among other rare epilepsies. Fenfluramine has a unique mechanism of action (MOA) among ASMs. Its primary MOA is currently described as dual-action sigma-1 receptor and serotonergic activity; however, other mechanisms may be involved. Here, we conduct an extensive review of the literature to identify all previously described mechanisms for fenfluramine. We also consider how these mechanisms may play a role in the reports of clinical benefit in non-seizure outcomes, including SUDEP and everyday executive function. Our review highlights the importance of serotonin and sigma-1 receptor mechanisms in maintaining a balance between excitatory (glutamatergic) and inhibitory (γ-aminobutyric acid [GABA]-ergic) neural networks, and suggests that these mechanisms may represent primary pharmacological MOAs in seizures, non-seizure comorbidities, and SUDEP. We also describe ancillary roles for GABA neurotransmission, noradrenergic neurotransmission, and the endocrine system (especially such progesterone derivatives as neuroactive steroids). Dopaminergic activity underlies appetite reduction, a common side effect with fenfluramine treatment, but any involvement in seizure reduction remains speculative. Further research is underway to evaluate promising new biological pathways for fenfluramine. A better understanding of the pharmacological mechanisms for fenfluramine in reducing seizure burden and non-seizure comorbidities may allow for rational drug design and/or improved clinical decision-making when prescribing multi-ASM regimens.
Collapse
|
15
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
17
|
Efficacy and Safety of Fenfluramine in Epilepsy: A Systematic Review and Meta-analysis. Neurol Ther 2023; 12:669-686. [PMID: 36853503 PMCID: PMC10043095 DOI: 10.1007/s40120-023-00452-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
INTRODUCTION Fenfluramine (FFA) is an amphetamine derivative that promotes the release and blocks the neuronal reuptake of serotonin. Initially introduced as an appetite suppressant, FFA also showed antiseizure properties. This systematic review aimed to assess the efficacy and safety of FFA for the treatment of seizures in patients with epilepsy. METHODS We systematically searched (in week 3 of June 2022) MEDLINE, the Cochrane Central Register of Controlled Trials, and the US National Institutes of Health Clinical Trials Registry. Randomized, double- or single-blinded, placebo-controlled studies of FFA in patients with epilepsy and uncontrolled seizures were identified. Efficacy outcomes included the proportions of patients with ≥ 50% and 100% reductions in baseline seizure frequency during the treatment period. Tolerability outcomes included the proportions of patients who withdrew from treatment for any reason and suffered adverse events (AEs). The risk of bias in the included studies was assessed according to the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions. The risk ratio (RR) along with the 95% confidence interval (CI) were estimated for each outcome. RESULTS Three trials were identified and a total of 469 Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS) subjects were randomized. All three trials were judged to be at low risk of biases. In patients with DS, the RRs for ≥ 50% and 100% reductions in convulsive seizure frequency for the FFA group compared to placebo were 5.61 (95% CI 2.73-11.54) and 4.71 (95% CI 0.57-39.30), respectively. In patients with LGS, the corresponding RRs for ≥ 50% and 100% reductions in drop seizure frequency were 2.58 (95% CI 1.33-5.02) and 0.50 (95% CI 0.031-7.81), respectively. The drug was withdrawn for any reason in 10.1% and 5.8% of patients receiving FFA and placebo, respectively (RR 1.79, 95% CI 0.89-3.59). Treatment discontinuation due to AEs occurred in 5.4% and 1.2% of FFA- and placebo-treated patients, respectively (RR 3.63, 95% CI 0.93-14.16). Decreased appetite, diarrhoea, fatigue, and weight loss were AEs associated with FFA treatment. CONCLUSION Fenfluramine reduces the frequency of seizures in patients with DS and LGS. Decreased appetite, diarrhoea, fatigue, and weight loss are non-cardiovascular AEs associated with FFA.
Collapse
|
18
|
Mazur G, Pańczyk-Straszak K, Rapacz A, Kiszela J, Smolik M, Gawlik M, Walczak M, Czekajewska J, Poloczek C, Karczewska E, Żesławska E, Nitek W, Niedbał A, Leśniak J, Ciapala K, Pawlik K, Mika J, Waszkielewicz AM. Promising anticonvulsant and/or analgesic compounds among 5-chloro-2- or 5-chloro-4-methyl derivatives of xanthone coupled to aminoalkanol moieties-Design, synthesis and pharmacological evaluation. Chem Biol Drug Des 2023; 101:278-325. [PMID: 35713377 DOI: 10.1111/cbdd.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
A series of 10 aminoalkanol derivatives of 5-chloro-2- or 5-chloro-4-methylxanthone was synthetized and evaluated for anticonvulsant properties (MES test, mice, intraperitoneal) and compared with neurotoxicity rotarod test (NT, mice, i.p.). The best results both in terms of anticonvulsant activity and protective index value were obtained for 3: 5-chloro-2-([4-hydroxypiperidin-1-yl]methyl)-9H-xanthen-9-one hydrochloride. Compounds: 1-3, 7 and 10 revealed ED50 values in MES test: 42.78, 31.64, 25.76, 46.19 and 52.50 mg/kg b.w., respectively. 3 showed 70% and 72% of inhibition control specific binding of sigma-1 (σ1) and sigma-2 (σ2) receptor, respectively. 3 exhibited also antinociceptive activity at dose 2 mg/kg b.w. after chronic constriction injury in mice. 1, 3, 7 and 10 were evaluated on gastrointestinal flora and proved safe. In genotoxicity test (UMU-Chromotest) compounds 1, 7 and 10 proved safe at dose 150-300 μg/ml. The pharmacokinetic analysis showed rapid absorption of all studied molecules from the digestive tract (tmax = 5-30 min). The bioavailability of the compounds ranged from 6.6% (1) to 16% (10). All studied compounds penetrate the blood-brain barrier with brain to plasma ratios varied from 4.15 (3) to 7.6 (compound 7), after i.v. administration, and from 1 (7) to 5.72 (3) after i.g. administration.
Collapse
Affiliation(s)
- Gabriela Mazur
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Pańczyk-Straszak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Kiszela
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Gawlik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Czekajewska
- Department of Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Celina Poloczek
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Karczewska
- Department of Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | - Wojciech Nitek
- Department of Crystallochemistry and Crystallophysics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Anna Niedbał
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Leśniak
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Ciapala
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
19
|
Bishop KI, Isquith PK, Gioia GA, Knupp KG, Scheffer IE, Nabbout R, Specchio N, Sullivan J, Auvin S, Helen Cross J, Guerrini R, Farfel G, Galer BS, Gammaitoni AR. Fenfluramine treatment is associated with improvement in everyday executive function in preschool-aged children (<5 years) with Dravet syndrome: A critical period for early neurodevelopment. Epilepsy Behav 2023; 138:108994. [PMID: 36463826 DOI: 10.1016/j.yebeh.2022.108994] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To evaluate whether fenfluramine (FFA) is associated with improvement in everyday executive function (EF)-self-regulation-in preschool-aged children with Dravet syndrome (DS). METHODS Children with DS received placebo or FFA in one of two phase III studies (first study: placebo, FFA 0.2 mg/kg/day, or FFA 0.7 mg/kg/day added to stiripentol-free standard-of-care regimens; second study: placebo or FFA 0.4 mg/kg/day added to stiripentol-inclusive regimens). Everyday EF was evaluated at baseline and Week 14-15 for children aged 2-4 years with parent ratings on the Behavior Rating Inventory of Executive Function®-Preschool (BRIEF®-P); raw scores were transformed to T-scores and summarized in Inhibitory Self-Control Index (ISCI), Flexibility Index (FI), Emergent Metacognition Index (EMI), and Global Executive Composite (GEC). Clinically meaningful improvement and worsening were defined using RCI ≥ 90% and RCI ≥ 80% certainty, respectively. The associations between placebo vs FFA combined (0.2, 0.4, and 0.7 mg/kg/day) or individual treatment groups and the likelihood of clinically meaningful change in BRIEF®-P indexes/composite T-scores were evaluated using Somers'd; pairwise comparisons were calculated by 2-sided Fisher's Exact tests (p ≤ 0.05) and Cramér's V. RESULTS Data were analyzed for 61 evaluable children of median age 3 years (placebo, n = 22; FFA 0.2 mg/kg/day, n = 15; 0.4 mg/kg/day [with stiripentol], n = 10; 0.7 mg/kg/day, n = 14 [total FFA, n = 39]). Elevated or problematic T-scores (T ≥ 65) were reported in 55% to 86% of patients at baseline for ISCI, EMI, and GEC, and in ∼33% for FI. Seventeen of the 61 children (28%) showed reliable, clinically meaningful improvement (RCI ≥ 90% certainty) in at least one BRIEF®-P index/composite, including a majority of the children in the FFA 0.7 mg/kg/day group (9/14, 64%). Only 53% of these children (9/17) also experienced clinically meaningful reduction (≥50%) in monthly convulsive seizure frequency, including 6/14 patients in the FFA 0.7 mg/kg/day group. Overall, there were positive associations between the four individual treatment groups and the likelihood of reliable, clinically meaningful improvement in all BRIEF®-P indexes/composite (ISCI, p = 0.001; FI, p = 0.005; EMI, p = 0.040; GEC, p = 0.002). The FFA 0.7 mg/kg/day group showed a greater likelihood of reliable, clinically meaningful improvement than placebo in ISCI (50% vs 5%; p = 0.003), FI (36% vs 0%; p = 0.005), and GEC (36% vs 0%; p = 0.005). For EMI, the FFA 0.7 mg/kg/day group showed a greater likelihood of reliable, clinically meaningful improvement than the FFA 0.2 mg/kg/day group (29% vs 0%; p = 0.040), but did not meet the significance threshold compared with placebo (29% vs 5%; p = 0.064). There were no significant associations between treatment and the likelihood of reliable, clinically meaningful worsening (p > 0.05). SIGNIFICANCE In this preschool-aged DS population with high baseline everyday EF impairment, FFA treatment for 14-15 weeks was associated with dose-dependent, clinically meaningful improvements in regulating behavior, emotion, cognition, and overall everyday EF. These clinically meaningful improvements in everyday EF were not entirely due to seizure frequency reduction, suggesting that FFA may have direct effects on everyday EF during the early formative years of neurodevelopment.
Collapse
Affiliation(s)
| | - Peter K Isquith
- Global Pharma Consultancy, LLC, Muncy, PA, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard A Gioia
- Global Pharma Consultancy, LLC, Muncy, PA, USA; Children's National Health System, Rockville, MD, USA
| | | | - Ingrid E Scheffer
- University of Melbourne, Austin and Royal Children's Hospitals, Florey Institute and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Hôpital Universitaire Necker-Enfants Malades, APHP, Member of EPICARE, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Joseph Sullivan
- University of California San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - Stéphane Auvin
- Robert Debré Children's Hospital, APHP, Université de Paris, Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - Renzo Guerrini
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Gail Farfel
- Formerly Zogenix, Inc., now a part of UCB, Emeryville, CA, USA
| | - Bradley S Galer
- Formerly Zogenix, Inc., now a part of UCB, Emeryville, CA, USA
| | | |
Collapse
|
20
|
Knupp KG, Scheffer IE, Ceulemans B, Sullivan J, Nickels KC, Lagae L, Guerrini R, Zuberi SM, Nabbout R, Riney K, Agarwal A, Lock M, Dai D, Farfel GM, Galer BS, Gammaitoni AR, Polega S, Davis R, Gil‐Nagel A. Fenfluramine provides clinically meaningful reduction in frequency of drop seizures in patients with Lennox-Gastaut syndrome: Interim analysis of an open-label extension study. Epilepsia 2023; 64:139-151. [PMID: 36196777 PMCID: PMC10099582 DOI: 10.1111/epi.17431] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study was undertaken to evaluate the long-term safety and effectiveness of fenfluramine in patients with Lennox-Gastaut syndrome (LGS). METHODS Eligible patients with LGS who completed a 14-week phase 3 randomized clinical trial enrolled in an open-label extension (OLE; NCT03355209). All patients were initially started on .2 mg/kg/day fenfluramine and after 1 month were titrated by effectiveness and tolerability, which were assessed at 3-month intervals. The protocol-specified treatment duration was 12 months, but COVID-19-related delays resulted in 142 patients completing their final visit after 12 months. RESULTS As of October 19, 2020, 247 patients were enrolled in the OLE. Mean age was 14.3 ± 7.6 years (79 [32%] adults) and median fenfluramine treatment duration was 364 days; 88.3% of patients received 2-4 concomitant antiseizure medications. Median percentage change in monthly drop seizure frequency was -28.6% over the entire OLE (n = 241) and -50.5% at Month 15 (n = 142, p < .0001); 75 of 241 patients (31.1%) experienced ≥50% reduction in drop seizure frequency. Median percentage change in nondrop seizure frequency was -45.9% (n = 192, p = .0038). Generalized tonic-clonic seizures (GTCS) and tonic seizures were most responsive to treatment, with median reductions over the entire OLE of 48.8% (p < .0001, n = 106) and 35.8% (p < .0001, n = 186), respectively. A total of 37.6% (95% confidence interval [CI] = 31.4%-44.1%, n = 237) of investigators and 35.2% of caregivers (95% CI = 29.1%-41.8%, n = 230) rated patients as Much Improved/Very Much Improved on the Clinical Global Impression of Improvement scale. The most frequent treatment-emergent adverse events were decreased appetite (16.2%) and fatigue (13.4%). No cases of valvular heart disease (VHD) or pulmonary arterial hypertension (PAH) were observed. SIGNIFICANCE Patients with LGS experienced sustained reductions in drop seizure frequency on fenfluramine treatment, with a particularly robust reduction in frequency of GTCS, the key risk factor for sudden unexpected death in epilepsy. Fenfluramine was generally well tolerated; VHD or PAH was not observed long-term. Fenfluramine may provide an important long-term treatment option for LGS.
Collapse
Affiliation(s)
- Kelly G. Knupp
- University of Colorado, Children's Hospital ColoradoAuroraColoradoUSA
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Hospital and Royal Children's HospitalMelbourneVictoriaAustralia
| | - Berten Ceulemans
- Department of Pediatric NeurologyAntwerp University HospitalAntwerpBelgium
| | - Joseph Sullivan
- University of California, San Francisco Weill Institute for Neurosciences, Benioff Children's HospitalSan FranciscoCaliforniaUSA
| | | | - Lieven Lagae
- Member of the European Reference Network EpiCARE, Department of Pediatric NeurologyUniversity of LeuvenLeuvenBelgium
| | - Renzo Guerrini
- Pediatric Neurology and Neurogenetics UnitAnna Meyer Children's Hospital, University of FlorenceFlorenceItaly
- Stella Maris Foundation, Scientific Institute for Research and Health CarePisaItaly
| | - Sameer M. Zuberi
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
| | - Rima Nabbout
- Reference Center for Rare EpilepsiesNecker–Sick Children University Hospital, Public Hospital Network of Paris, member of EpiCARE, Imagine Institute, Paris Cité UniversityParisFrance
| | - Kate Riney
- Neuroscience UnitQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
- School of Clinical MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Michael Lock
- Independent Consultant, Zogenix (now a part of UCB)HaikuHawaiiUSA
| | - David Dai
- Syneos HealthMorrisvilleNorth CarolinaUSA
| | | | | | | | | | - Ronald Davis
- Neurology and Epilepsy Research CenterOrlandoFloridaUSA
| | | |
Collapse
|
21
|
Strzelczyk A, Schubert-Bast S. Psychobehavioural and Cognitive Adverse Events of Anti-Seizure Medications for the Treatment of Developmental and Epileptic Encephalopathies. CNS Drugs 2022; 36:1079-1111. [PMID: 36194365 PMCID: PMC9531646 DOI: 10.1007/s40263-022-00955-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
The developmental and epileptic encephalopathies encompass a group of rare syndromes characterised by severe drug-resistant epilepsy with onset in childhood and significant neurodevelopmental comorbidities. The latter include intellectual disability, developmental delay, behavioural problems including attention-deficit hyperactivity disorder and autism spectrum disorder, psychiatric problems including anxiety and depression, speech impairment and sleep problems. Classical examples of developmental and epileptic encephalopathies include Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. The mainstay of treatment is with multiple anti-seizure medications (ASMs); however, the ASMs themselves can be associated with psychobehavioural adverse events, and effects (negative or positive) on cognition and sleep. We have performed a targeted literature review of ASMs commonly used in the treatment of developmental and epileptic encephalopathies to discuss the latest evidence on their effects on behaviour, mood, cognition, sedation and sleep. The ASMs include valproate (VPA), clobazam, topiramate (TPM), cannabidiol (CBD), fenfluramine (FFA), levetiracetam (LEV), brivaracetam (BRV), zonisamide (ZNS), perampanel (PER), ethosuximide, stiripentol, lamotrigine (LTG), rufinamide, vigabatrin, lacosamide (LCM) and everolimus. Bromide, felbamate and other sodium channel ASMs are discussed briefly. Overall, the current evidence suggest that LEV, PER and to a lesser extent BRV are associated with psychobehavioural adverse events including aggressiveness and irritability; TPM and to a lesser extent ZNS are associated with language impairment and cognitive dulling/memory problems. Patients with a history of behavioural and psychiatric comorbidities may be more at risk of developing psychobehavioural adverse events. Topiramate and ZNS may be associated with negative effects in some aspects of cognition; CBD, FFA, LEV, BRV and LTG may have some positive effects, while the remaining ASMs do not appear to have a detrimental effect. All the ASMs are associated with sedation to a certain extent, which is pronounced during uptitration. Cannabidiol, PER and pregabalin may be associated with improvements in sleep, LTG is associated with insomnia, while VPA, TPM, LEV, ZNS and LCM do not appear to have detrimental effects. There was variability in the extent of evidence for each ASM: for many first-generation and some second-generation ASMs, there is scant documented evidence; however, their extensive use suggests favourable tolerability and safety (e.g. VPA); second-generation and some third-generation ASMs tend to have the most robust evidence documented over several years of use (TPM, LEV, PER, ZNS, BRV), while evidence is still being generated for newer ASMs such as CBD and FFA. Finally, we discuss how a variety of factors can affect mood, behaviour and cognition, and untangling the associations between the effects of the underlying syndrome and those of the ASMs can be challenging. In particular, there is enormous heterogeneity in cognitive, behavioural and developmental impairments that is complex and can change naturally over time; there is a lack of standardised instruments for evaluating these outcomes in developmental and epileptic encephalopathies, with a reliance on subjective evaluations by proxy (caregivers); and treatment regimes are complex involving multiple ASMs as well as other drugs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Samanta D. Fenfluramine: A Review of Pharmacology, Clinical Efficacy, and Safety in Epilepsy. CHILDREN 2022; 9:children9081159. [PMID: 36010049 PMCID: PMC9406381 DOI: 10.3390/children9081159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Despite the availability of more than 30 antiseizure medications (ASMs), the proportion of patients who remain refractory to ASMs remains static. Refractory seizures are almost universal in patients with epileptic encephalopathies. Since many of these patients are not candidates for curative surgery, there is always a need for newer ASMs with better efficacy and safety profile. Recently, the anti-obesity medication fenfluramine (FFA) has been successfully repurposed, and various regulatory agencies approved it for seizures associated with Dravet and Lennox–Gastaut syndromes. However, there is a limited in-depth critical review of FFA to facilitate its optimal use in a clinical context. This narrative review discusses and summarizes the antiseizure mechanism of action of FFA, clinical pharmacology, and clinical studies related to epilepsy, focusing on efficacy and adverse effects.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, 1 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
23
|
Aledo-Serrano Á, Cabal-Paz B, Gardella E, Gómez-Porro P, Martínez-Múgica O, Beltrán-Corbellini A, Toledano R, García-Morales I, Gil-Nagel A. Effect of Fenfluramine on Seizures and Comorbidities in SCN8A-Developmental and Epileptic Encephalopathy: A Case Series. Epilepsia Open 2022; 7:525-531. [PMID: 35802036 PMCID: PMC9436303 DOI: 10.1002/epi4.12623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/02/2022] [Indexed: 11/06/2022] Open
Abstract
SCN8A-developmental and epileptic encephalopathy is caused by mutations in the SCN8A gene encoding the Nav 1.6 sodium channel, and is characterized by intractable multivariate seizures and developmental regression. Fenfluramine is a repurposed drug with proven antiseizure efficacy in Dravet syndrome and Lennox-Gastaut syndrome. The effect of fenfluramine treatment was assessed in a retrospective series of three patients with intractable SCN8A epilepsy and severe neurodevelopmental comorbidity (n=2 females; age 2.8-13 years; 8-16 prior failed antiseizure medications (ASM); treatment duration: 0.75-4.2 years). In the 6 months prior to receiving fenfluramine, patients experienced multiple seizure types, including generalized tonic-clonic, focal and myoclonic seizures, and status epilepticus. Overall seizure reduction was 60%-90% in the last 3, 6, and 12 months of fenfluramine treatment. Clinically meaningful improvement was noted in ≥1 non-seizure comorbidity per patient after fenfluramine, as assessed by physician-ratings of ≥"Much Improved" on the Clinical Global Impression of Improvement scale. Improvements included ambulation in a previously non-ambulant patient and better attention, sleep, and language. One patient showed mild irritability which resolved; no other treatment-related adverse events were reported. There were no reports of valvular heart disease or pulmonary arterial hypertension. Fenfluramine may be a promising ASM for randomized clinical trials in SCN8A-related disorders.
Collapse
Affiliation(s)
- Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain
| | - Borja Cabal-Paz
- Epilepsy Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain.,Neurology Department, Puerta de Hierro University Hospital, Madrid, Spain
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark
| | - Pablo Gómez-Porro
- Epilepsy Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain.,Neurology Department, Puerta de Hierro University Hospital, Madrid, Spain
| | - Otilia Martínez-Múgica
- Pediatric Neurology Section, Pediatrics Department, Donostia University Hospital, San Sebastian, Spain
| | | | - Rafael Toledano
- Epilepsy Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain.,Epilepsy Unit, Neurology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - Irene García-Morales
- Epilepsy Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain.,Epilepsy Unit, Neurology Department, Clínico San Carlos University Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Program, Neurology Department, Ruber Internacional Hospital, Madrid, Spain
| |
Collapse
|
24
|
Dini G, Tulli E, Dell’Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Improving Therapy of Pharmacoresistant Epilepsies: The Role of Fenfluramine. Front Pharmacol 2022; 13:832929. [PMID: 35668937 PMCID: PMC9164301 DOI: 10.3389/fphar.2022.832929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is among the most common neurological chronic disorders, with a prevalence of 0.5-1%. Despite the introduction of new antiepileptic drugs during recent years, about one third of the epileptic population remain drug-resistant. Hence, especially in the pediatric population limited by different pharmacokinetics and pharmacodynamics and by ethical and regulatory issues it is needed to identify new therapeutic resources. New molecules initially used with other therapeutic indications, such as fenfluramine, are being considered for the treatment of pharmacoresistant epilepsies, including Dravet Syndrome (DS) and Lennox-Gastaut Syndrome (LGS). Drug-refractory seizures are a hallmark of both these conditions and their treatment remains a major challenge. Fenfluramine is an amphetamine derivative that was previously approved as a weight loss drug and later withdrawn when major cardiac adverse events were reported. However, a new role of fenfluramine has emerged in recent years. Indeed, fenfluramine has proved to be a promising antiepileptic drug with a favorable risk-benefit profile for the treatment of DS, LGS and possibly other drug-resistant epileptic syndromes. The mechanism by which fenfluramine provide an antiepileptic action is not fully understood but it seems to go beyond its pro-serotoninergic activity. This review aims to provide a comprehensive analysis of the literature, including ongoing trials, regarding the efficacy and safety of fenfluramine as adjunctive treatment of pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Genoa, Italy,*Correspondence: Gianluca Dini,
| | - Eleonora Tulli
- Department of Pediatrics, University of Perugia, Genoa, Italy
| | | | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genoa, Italy,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
25
|
Knupp KG, Scheffer IE, Ceulemans B, Sullivan JE, Nickels KC, Lagae L, Guerrini R, Zuberi SM, Nabbout R, Riney K, Shore S, Agarwal A, Lock M, Farfel GM, Galer BS, Gammaitoni AR, Davis R, Gil-Nagel A. Efficacy and Safety of Fenfluramine for the Treatment of Seizures Associated With Lennox-Gastaut Syndrome: A Randomized Clinical Trial. JAMA Neurol 2022; 79:554-564. [PMID: 35499850 PMCID: PMC9062770 DOI: 10.1001/jamaneurol.2022.0829] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Question Is adjunctive fenfluramine effective in patients with Lennox-Gastaut syndrome (LGS)? Findings In this randomized clinical trial of 263 patients with LGS, use of 0.7-mg/kg/d fenfluramine resulted in a greater reduction in drop seizures than with placebo, more patients achieving a 50% or greater reduction in drop seizure frequency, and greater reduction in generalized tonic-clonic seizure frequency. Treatment-emergent adverse events included decreased appetite, but no patient developed valvular heart disease or pulmonary hypertension. Meaning Findings from this trial suggest that fenfluramine may be a safe and effective treatment option for patients with LGS. Importance New treatment options are needed for patients with Lennox-Gastaut syndrome (LGS), a profoundly impairing, treatment-resistant, developmental and epileptic encephalopathy. Objective To evaluate the efficacy and safety of fenfluramine in patients with LGS. Design, Setting, and Participants This multicenter, double-blind, placebo-controlled, parallel-group randomized clinical trial was conducted from November 27, 2017, to October 25, 2019, and had a 20-week trial duration. Patients were enrolled at 65 study sites in North America, Europe, and Australia. Included patients were aged 2 to 35 years with confirmed diagnosis of LGS and experienced 2 or more drop seizures per week during the 4-week baseline. Using a modified intent-to-treat method, data analysis was performed from November 27, 2017, to October 25, 2019. The database lock date was January 30, 2020, and the date of final report was September 11, 2021. Interventions Patients were randomized to receive either a 0.7-mg/kg/d or 0.2-mg/kg/d (maximum 26 mg/d) dose of fenfluramine or placebo. After titration (2-week period), patients were taking their randomized dose for 12 additional weeks. Main Outcomes and Measures Primary efficacy end point was percentage change from baseline in drop seizure frequency in patients who received 0.7 mg/kg/d of fenfluramine vs placebo. Results A total of 263 patients (median [range] age, 13 [2-35] years; 146 male patients [56%]) were randomized to the 0.7-mg/kg/d fenfluramine group (n = 87), 0.2-mg/kg/d fenfluramine group (n = 89), or placebo group (n = 87). The median percentage reduction in frequency of drop seizures was 26.5 percentage points in the 0.7-mg/kg/d fenfluramine group, 14.2 percentage points in the 0.2-mg/kg/d fenfluramine group, and 7.6 percentage points in the placebo group. The trial met its primary efficacy end point: patients in the 0.7-mg/kg/d fenfluramine group achieved a −19.9 percentage points (95% CI, −31.0 to −8.7 percentage points; P = .001) estimated median difference in drop seizures from baseline vs placebo. More patients in the 0.7-mg/kg/d fenfluramine group achieved a 50% or greater response (22 of 87 [25%]; P = .02) vs placebo (9 of 87 [10%]). Site investigators and caregivers gave a much improved or very much improved rating on the Clinical Global Impression of Improvement scale to more patients in the 0.7-mg/kg/d fenfluramine group than patients in the placebo group (21 [26%] vs 5 [6%]; P = .001). The seizure subtype that appeared most responsive to fenfluramine was generalized tonic-clonic seizure (120 of 263 [46%]), with a decrease in frequency of 45.7% in the 0.7-mg/kg/d fenfluramine group and 58.2% in the 0.2-mg/kg/d fenfluramine group compared with an increase of 3.7% in the placebo group. Most common treatment-emergent adverse events included decreased appetite (59 [22%]), somnolence (33 [13%]), and fatigue (33 [13%]). No cases of valvular heart disease or pulmonary arterial hypertension were observed. Conclusions and Relevance Results of this trial showed that, in patients with LGS, fenfluramine compared with placebo provided a significantly greater reduction in drop seizures and may be a particularly advantageous choice in patients who experience generalized tonic-clonic seizures. Trial Registration ClinicalTrials.gov Identifier: NCT03355209
Collapse
Affiliation(s)
- Kelly G Knupp
- Department of Neurology, Children's Hospital Colorado, Aurora
| | - Ingrid E Scheffer
- Austin Hospital and Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Berten Ceulemans
- Department of Paediatric Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Joseph E Sullivan
- Weill Institute for Neurosciences, Benioff Children's Hospital, University of California San Francisco, San Francisco
| | | | - Lieven Lagae
- Steering Committee, European Reference Network EpiCARE, Lyon, France.,Department of Paediatric Neurology, KU Leuven, Leuven, Belgium
| | - Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit, Anna Meyer Children's Hospital, University of Florence, Florence, Italy.,Neurobiologia e Neurogenetica dei Disturbi del Neurosviluppo, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, United Kingdom
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, University Paris Descartes, Paris, France
| | - Kate Riney
- Neuroscience Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,School of Clinical Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Svetlana Shore
- Zogenix Inc, Emeryville, California.,Now with Neurocrine Biosciences, San Diego, California
| | | | - Michael Lock
- Zogenix Inc, Emeryville, California.,Now with Zogenix Inc, Haiku, Hawaii
| | | | | | | | - Ronald Davis
- Neurology and Epilepsy Research Center, Orlando, Florida
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
26
|
Pong AW, Ross J, Tyrlikova I, Giermek AJ, Kohli MP, Khan YA, Salgado RD, Klein P. Epilepsy: expert opinion on emerging drugs in phase 2/3 clinical trials. Expert Opin Emerg Drugs 2022; 27:75-90. [PMID: 35341431 DOI: 10.1080/14728214.2022.2059464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite the existence of over 30 anti-seizure medications (ASM), including 20 over the last 30 years, a third of patients with epilepsy remain refractory to treatment, with no disease-modifying or preventive therapies until very recently. The development of new ASMs with new mechanisms of action is therefore critical. Recent clinical trials of new treatments have shifted focus from traditional common epilepsies to rare, genetic epilepsies with known mechanistic targets for treatment and disease-specific animal models. AREAS COVERED ASMs in phase 2a/b-3 clinical trials target cholesterol, serotonin, sigma-1 receptors, potassium channels and metabotropic glutamate receptors. Neuroinflammation, protein misfolding, abnormal thalamocortical firing, and molecular deficiencies are among the targeted pathways. Clinically, the current phase 2a/b-3 agents hold promise for variety of epilepsy conditions, from developmental epileptic encephalopathies (Dravet Syndrome, Lennox-Gastaut syndrome, CDKL5 and PCDH19, Rett's Syndrome), infantile spasms, tuberous sclerosis as well as focal and idiopathic generalized epilepsies and acute rescue therapy for cluster seizures. EXPERT OPINION New delivery mechanisms increase potency and site-specificity of existing drugs. Novel mechanisms of action involve cholesterol degradation, mitochondrial pathways, anti-inflammation, and neuro-regeneration. Earlier identification of genetic conditions through genetic testing will allow for earlier use of disease specific and disease-modifying therapies.
Collapse
Affiliation(s)
- Amanda W Pong
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Jonathan Ross
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Ivana Tyrlikova
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Alexander J Giermek
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Maya P Kohli
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Yousef A Khan
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Roger D Salgado
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| |
Collapse
|
27
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|