1
|
Wu W, Li Q. Mechanisms of hydrocephalus after intraventricular haemorrhage: a review. Childs Nerv Syst 2024; 41:49. [PMID: 39674974 DOI: 10.1007/s00381-024-06711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Intraventricular haemorrhage (IVH) is bleeding within the ventricular system, which in adults is usually mainly secondary to cerebral haemorrhage and subarachnoid haemorrhage. Hydrocephalus is one of the most common complications of intraventricular haemorrhage, which is characterised by an increase in intracranial pressure due to an increased accumulation of cerebrospinal fluid within the ventricular system, and is closely related to the patient's prognosis. Surgical methods such as shunt surgery have been used to treat secondary hydrocephalus in recent years and have been effective in improving the survival and prognosis of patients with hydrocephalus. However, complications such as shunt blockage and intracranial infection are often faced after surgery. Moreover, little is known about the mechanism of hydrocephalus secondary to intraventricular haemorrhage. This review discusses the mechanisms regarding the occurrence of secondary hydrocephalus after intraventricular haemorrhage in adults in terms of blood clot obstruction, altered cerebrospinal fluid dynamics, inflammation, and blood composition.
Collapse
Affiliation(s)
- Wenchao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China
| | - Qingsong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China.
| |
Collapse
|
2
|
Lim J, Choi YH, Shim SY. Detection and analysis of plasma lncRNA, miRNA and mRNA profile in preterm birth with intraventricular hemorrhage. Transl Clin Pharmacol 2024; 32:18-29. [PMID: 38586123 PMCID: PMC10990729 DOI: 10.12793/tcp.2024.32.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Intraventricular hemorrhage (IVH) is a cause of morbidity and mortality in preterm infants and is strongly associated with adverse neurological outcomes. The incidence of severe IVH (grade 3 or 4) has persisted despite the overall decline in IVH. IVH has been attributed to changes in cerebral blood flow to the immature germinal matrix microvasculature. The cascade of adverse events following IVH includes inflammation, white matter injury, and delayed oligodendrial maturation. In this study, we aimed to identify long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression in the peripheral blood of preterm infants with IVH compared to normal controls, resulting in the finding of novel biomarkers for IVH. We conducted transcriptome sequencing and small RNA sequencing for identifying differential expression of RNA in preterm infants with IVH. We identified differentially expressed 47 lncRNAs, 95 miRNAs, and 1,370 mRNAs in preterm infants with IVH compared to normal control. Particularly, lncRNA H19 exhibited significantly high expression in preterm infants with IVH. The functional analysis revealed that differentially expressed RNAs in preterm infants with IVH were associated with ferroptosis, heme metabolism, and immune response such as lymphocyte activation and interferon response. In conclusion, these results demonstrate the potential of lncRNA, miRNA, mRNA as possible diagnostic and prognostic biomarkers for IVH.
Collapse
Affiliation(s)
- Jiwoo Lim
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Youn-Hee Choi
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - So-Yeon Shim
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
3
|
Gu T, Pan J, Chen L, Li K, Wang L, Zou Z, Shi Q. Association of inflammatory cytokines expression in cerebrospinal fluid with the severity and prognosis of spontaneous intracerebral hemorrhage. BMC Neurol 2024; 24:7. [PMID: 38167007 PMCID: PMC10759732 DOI: 10.1186/s12883-023-03487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE To investigate the potential diagnostic and prognostic implications of inflammatory cytokine levels in the cerebrospinal fluid (CSF) of patients with spontaneous intracerebral hemorrhage (SICH) upon their initial hospital admission. METHODS Our cohort included 100 patients diagnosed with acute SICH, presenting to the Department of Neurosurgery. Additionally, we recruited 50 individuals without central nervous system (CNS) pathology, treated concurrently at our facility, as controls. CSF samples, collected upon hospital entry, were quantitatively assessed for 10 inflammatory cytokines using the Mesoscale Discovery Platform (MSD, Rockville, MD, USA) electrochemiluminescence technology, followed by validation through enzyme-linked immunosorbent assay (ELISA). RESULTS We observed a marked elevation of IL-6, IL-8, IL-10, and TNF-α in the CSF of the SICH subgroup compared to controls. Higher Glasgow Coma Scale (GCS) scores in SICH patients corresponded with lower CSF concentrations of IL-6, IL-8, IL-10, and TNF-α, indicating an inverse relationship. Notably, CSF inflammatory cytokine levels were consistently higher in SICH patients with hydrocephalus than in those without. Increases in IL-6, IL-8, IL-10, and TNF-α in the CSF were notably more pronounced in the poor prognosis group (Glasgow Outcome Scale, GOS 1-3) compared to those with a favorable prognosis (GOS 4-5). The AUC values for these cytokines in predicting SICH prognosis were 0.750, 0.728, 0.717, and 0.743, respectively. CONCLUSIONS Initial CSF levels of IL-6, IL-8, IL-10, and TNF-α upon admission provide significant insights into the severity of neural damage and are robust indicators for prognosis in SICH patients.
Collapse
Affiliation(s)
- Tianyan Gu
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Jingyu Pan
- Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Ling Chen
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Kai Li
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Zhihao Zou
- Department of Neurosurgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China.
| | - Qinghai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
4
|
Ben-Shoshan SD, Lolansen SD, Mathiesen TI, MacAulay N. CSF hypersecretion versus impaired CSF absorption in posthemorrhagic hydrocephalus: a systematic review. Acta Neurochir (Wien) 2023; 165:3271-3287. [PMID: 37642688 DOI: 10.1007/s00701-023-05746-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The molecular mechanisms underlying development of posthemorrhagic hydrocephalus (PHH) remain elusive. The aim of this systematic review was to evaluate existing literature on increased CSF secretion and impaired CSF absorption as pathogenic contributors to CSF accumulation in neonatal and adult PHH. METHODS The systematic review was conducted in accordance with the PRISMA guidelines. Relevant studies published before March 11th, 2023, were identified from PubMed and reference lists. Studies were screened for eligibility using predefined inclusion and exclusion criteria. Data from eligible studies were extracted and potential sources of bias were evaluated. RESULTS Nineteen studies quantified CSF production rates and/or CSF absorption capacity in human patients with PHH or animals with experimentally induced PHH. Increased CSF production was reported as early as 24 h and as late as 28 days post ictus in six out of eight studies quantifying CSF production rates in animals with experimentally induced PHH. Impaired CSF absorption was reported in all four studies quantifying CSF absorption capacity in human patients with PHH and in seven out of nine studies quantifying CSF absorption capacity in animals with experimentally induced PHH. Impaired CSF absorption was reported as early as 30 min and as late as 10 months post ictus. CONCLUSIONS The pathological CSF accumulation in PHH likely arises from a combination of increased CSF secretion and impaired CSF absorption, which may manifest at different time scales following a hemorrhagic event. Emergent evidence on increased CSF secretion by the choroid plexus may herald a paradigm shift in our understanding of PHH.
Collapse
Affiliation(s)
- Shai David Ben-Shoshan
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Department of Neurosurgery, University Hospital of Copenhagen - Rigshospitalet, Copenhagen, Denmark
| | - Tiit Illimar Mathiesen
- Department of Neurosurgery, University Hospital of Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Li Q, Huang L, Ding Y, Sherchan P, Peng W, Zhang JH. Recombinant Slit2 suppresses neuroinflammation and Cdc42-mediated brain infiltration of peripheral immune cells via Robo1-srGAP1 pathway in a rat model of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:249. [PMID: 37899442 PMCID: PMC10613398 DOI: 10.1186/s12974-023-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a devastating neonatal stroke, in which neuroinflammation is a critical pathological contributor. Slit2, a secreted extracellular matrix protein, plays a repulsive role in axon guidance and leukocyte chemotaxis via the roundabout1 (Robo1) receptor. This study aimed to explore effects of recombinant Slit2 on neuroinflammation and the underlying mechanism in a rat model of GMH. METHODS GMH was induced by stereotactically infusing 0.3 U of bacterial collagenase into the germinal matrix of 7-day-old Sprague Dawley rats. Recombinant Slit2 or its vehicle was administered intranasally at 1 h after GMH and daily for 3 consecutive days. A decoy receptor recombinant Robo1 was co-administered with recombinant Slit2 after GMH. Slit2 siRNA, srGAP1 siRNA or the scrambled sequences were administered intracerebroventricularly 24 h before GMH. Neurobehavior, brain water content, Western blotting, immunofluorescence staining and Cdc42 activity assays were performed. RESULTS The endogenous brain Slit2 and Robo1 expressions were increased after GMH. Robo1 was expressed on neuron, astrocytes and infiltrated peripheral immune cells in the brain. Endogenous Slit2 knockdown by Slit2 siRNA exacerbated brain edema and neurological deficits following GMH. Recombinant Slit2 (rSlit2) reduced neurological deficits, proinflammatory cytokines, intercellular adhesion molecules, peripheral immune cell markers, neuronal apoptosis and Cdc42 activity in the brain tissue after GMH. The anti-neuroinflammation effects were reversed by recombinant Robo1 co-administration or srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 reduced neuroinflammation and neuron apoptosis after GMH. Its anti-neuroinflammation effects by suppressing onCdc42-mediated brain peripheral immune cells infiltration was at least in part via Robo1-srGAP1 pathway. These results imply that recombinant Slit2 may have potentials as a therapeutic option for neonatal brain injuries.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
- Women and Children's Hospital of Chongqing Medical University, 120 Longshan Access Rd, Yubei District, Chongqing, 400010, China
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Häusler S, Robertson NJ, Golhen K, van den Anker J, Tucker K, Felder TK. Melatonin as a Therapy for Preterm Brain Injury: What Is the Evidence? Antioxidants (Basel) 2023; 12:1630. [PMID: 37627625 PMCID: PMC10451719 DOI: 10.3390/antiox12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Despite significant improvements in survival following preterm birth in recent years, the neurodevelopmental burden of prematurity, with its long-term cognitive and behavioral consequences, remains a significant challenge in neonatology. Neuroprotective treatment options to improve neurodevelopmental outcomes in preterm infants are therefore urgently needed. Alleviating inflammatory and oxidative stress (OS), melatonin might modify important triggers of preterm brain injury, a complex combination of destructive and developmental abnormalities termed encephalopathy of prematurity (EoP). Preliminary data also suggests that melatonin has a direct neurotrophic impact, emphasizing its therapeutic potential with a favorable safety profile in the preterm setting. The current review outlines the most important pathomechanisms underlying preterm brain injury and correlates them with melatonin's neuroprotective potential, while underlining significant pharmacokinetic/pharmacodynamic uncertainties that need to be addressed in future studies.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Nicola J. Robertson
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Klervi Golhen
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC 20001, USA
| | - Katie Tucker
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| |
Collapse
|
7
|
Lolansen SD, Rostgaard N, Capion T, Norager NH, Olsen MH, Juhler M, Mathiesen TI, MacAulay N. Posthemorrhagic Hydrocephalus in Patients with Subarachnoid Hemorrhage Occurs Independently of CSF Osmolality. Int J Mol Sci 2023; 24:11476. [PMID: 37511234 PMCID: PMC10380704 DOI: 10.3390/ijms241411476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The molecular mechanisms underlying the development of posthemorrhagic hydrocephalus (PHH) remain incompletely understood. As the disease pathogenesis often cannot be attributed to visible cerebrospinal fluid (CSF) drainage obstructions, we here aimed to elucidate whether elevated CSF osmolality following subarachnoid hemorrhage (SAH) could potentiate the formation of ventricular fluid, and thereby contribute to the pathological CSF accumulation observed in PHH. The CSF osmolality was determined in 32 patients with acute SAH after external ventricular drainage (EVD) placement and again upon EVD removal and compared with the CSF osmolality from 14 healthy control subjects undergoing vascular clipping of an unruptured aneurism. However, we found no evidence of elevated CSF osmolality or electrolyte concentration in patients with SAH when compared to that of healthy control subjects. We detected no difference in CSF osmolality and electrolyte content in patients with successful EVD weaning versus those that were shunted due to PHH. Taken together, elevated CSF osmolality does not appear to underlie the development of PHH following SAH. The pathological CSF accumulation observed in this patient group must thus instead be attributed to other pathological alterations associated with the abnormal presence of blood within the CSF compartments following SAH.
Collapse
Affiliation(s)
- Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, University Hospital of Copenhagen—Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, University Hospital of Copenhagen—Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Nicolas H. Norager
- Department of Neurosurgery, University Hospital of Copenhagen—Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, University Hospital of Copenhagen—Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, University Hospital of Copenhagen—Rigshospitalet, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Tiit Illimar Mathiesen
- Department of Neurosurgery, University Hospital of Copenhagen—Rigshospitalet, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Systemic Cytokines in Retinopathy of Prematurity. J Pers Med 2023; 13:jpm13020291. [PMID: 36836525 PMCID: PMC9966226 DOI: 10.3390/jpm13020291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Retinopathy of prematurity (ROP), a vasoproliferative vitreoretinal disorder, is the leading cause of childhood blindness worldwide. Although angiogenic pathways have been the main focus, cytokine-mediated inflammation is also involved in ROP etiology. Herein, we illustrate the characteristics and actions of all cytokines involved in ROP pathogenesis. The two-phase (vaso-obliteration followed by vasoproliferation) theory outlines the evaluation of cytokines in a time-dependent manner. Levels of cytokines may even differ between the blood and the vitreous. Data from animal models of oxygen-induced retinopathy are also valuable. Although conventional cryotherapy and laser photocoagulation are well established and anti-vascular endothelial growth factor agents are available, less destructive novel therapeutics that can precisely target the signaling pathways are required. Linking the cytokines involved in ROP to other maternal and neonatal diseases and conditions provides insights into the management of ROP. Suppressing disordered retinal angiogenesis via the modulation of hypoxia-inducible factor, supplementation of insulin-like growth factor (IGF)-1/IGF-binding protein 3 complex, erythropoietin, and its derivatives, polyunsaturated fatty acids, and inhibition of secretogranin III have attracted the attention of researchers. Recently, gut microbiota modulation, non-coding RNAs, and gene therapies have shown promise in regulating ROP. These emerging therapeutics can be used to treat preterm infants with ROP.
Collapse
|
9
|
Abstract
Posthemorrhagic hydrocephalus of prematurity (PHHP) remains a vexing problem for patients, their families, and the healthcare system. The complexity of the pathogenesis of PHHP also presents a unique challenge within the fields of neonatology, neurology and neurosurgery. Here we focus on pathogenesis of PHHP and its impact on the development of CSF dynamics including choroid plexus, ependymal motile cilia and glymphatic system. PHHP is contrasted with infantile hydrocephalus from other etiologies, and with other types of posthemorrhagic hydrocephalus that occur later in life. The important concept that distinguishing ventricular volume from brain health and function is highlighted. The influence of the pathogenesis of PHHP on current interventions is reviewed, with particular emphasis on how the unique pathogenesis of PHHP contributes to the high rate of failure of current existing interventions. Finally, we discuss emerging interventions. A thorough understanding of the pathogenesis of PHHP is essential to developing effective non-surgical therapeutics to prevent the transformation from severe IVH to PHHP.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Neonatal Intensive Care Nursery, John's Hopkins Children's Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Division of Pediatric Neurosurgery, Departments of Neurosurgery, Neurology and Pediatrics, Johns Hopkins University School of Medicine, Maryland, United States.
| | - Lauren L Jantzie
- Neonatal Intensive Care Nursery, John's Hopkins Children's Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Division of Neonatology, Departments of Pediatrics, Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Maryland, United States; Kennedy Krieger Institute, Maryland, United States
| |
Collapse
|
10
|
Feher A, Pócsi M, Papp F, Szanto TG, Csoti A, Fejes Z, Nagy B, Nemes B, Varga Z. Functional Voltage-Gated Sodium Channels Are Present in the Human B Cell Membrane. Cells 2022; 11:1225. [PMID: 35406789 PMCID: PMC8998058 DOI: 10.3390/cells11071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
B cells express various ion channels, but the presence of voltage-gated sodium (NaV) channels has not been confirmed in the plasma membrane yet. In this study, we have identified several NaV channels, which are expressed in the human B cell membrane, by electrophysiological and molecular biology methods. The sensitivity of the detected sodium current to tetrodotoxin was between the values published for TTX-sensitive and TTX-insensitive channels, which suggests the co-existence of multiple NaV1 subtypes in the B cell membrane. This was confirmed by RT-qPCR results, which showed high expression of TTX-sensitive channels along with the lower expression of TTX-insensitive NaV1 channels. The biophysical characteristics of the currents also supported the expression of multiple NaV channels. In addition, we investigated the potential functional role of NaV channels by membrane potential measurements. Removal of Na+ from the extracellular solution caused a reversible hyperpolarization, supporting the role of NaV channels in shaping and maintaining the resting membrane potential. As this study was mainly limited to electrophysiological properties, we cannot exclude the possible non-canonical functions of these channels. This work concludes that the presence of voltage-gated sodium channels in the plasma membrane of human B cells should be recognized and accounted for in the future.
Collapse
Affiliation(s)
- Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.P.); (Z.F.); (B.N.J.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.P.); (Z.F.); (B.N.J.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.P.); (Z.F.); (B.N.J.)
| | - Balázs Nemes
- Department of Organ Transplantation, Faculty of Medicine, Institute of Surgery, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.F.); (F.P.); (T.G.S.); (A.C.)
| |
Collapse
|
11
|
Holste KG, Xia F, Ye F, Keep RF, Xi G. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids Barriers CNS 2022; 19:28. [PMID: 35365172 PMCID: PMC8973639 DOI: 10.1186/s12987-022-00324-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a significant cause of morbidity and mortality in both neonatal and adult populations. IVH not only causes immediate damage to surrounding structures by way of mass effect and elevated intracranial pressure; the subsequent inflammation causes additional brain injury and edema. Of those neonates who experience severe IVH, 25-30% will go on to develop post-hemorrhagic hydrocephalus (PHH). PHH places neonates and adults at risk for white matter injury, seizures, and death. Unfortunately, the molecular determinants of PHH are not well understood. Within the past decade an emphasis has been placed on neuroinflammation in IVH and PHH. More information has come to light regarding inflammation-induced fibrosis and cerebrospinal fluid hypersecretion in response to IVH. The aim of this review is to discuss the role of neuroinflammation involving clot-derived neuroinflammatory factors including hemoglobin/iron, peroxiredoxin-2 and thrombin, as well as macrophages/microglia, cytokines and complement in the development of PHH. Understanding the mechanisms of neuroinflammation after IVH may highlight potential novel therapeutic targets for PHH.
Collapse
Affiliation(s)
- Katherine G Holste
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
- , 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
12
|
Expression Profiles of Exosomal MicroRNAs Derived from Cerebrospinal Fluid in Patients with Congenital Hydrocephalus Determined by MicroRNA Sequencing. DISEASE MARKERS 2022; 2022:5344508. [PMID: 35371347 PMCID: PMC8966745 DOI: 10.1155/2022/5344508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Purpose. Congenital hydrocephalus is one of the most common birth defects worldwide. Exosomal microRNAs (miRNAs) in body fluids have been implicated in many diseases. However, their involvement in cerebrospinal fluid from congenital hydrocephalus is not well understood. This study is aimed at investigating the role of dysregulated exosomal miRNAs in congenital hydrocephalus. Methods. We collected cerebrospinal fluid samples from 15 congenital hydrocephalus patients and 21 control subjects. We used miRNA sequencing to generate exosomal miRNA expression profiles in three pairs of samples. We identified 31 differentially expressed exosomal miRNAs in congenital hydrocephalus and predicted their target mRNAs. Results. Three microRNAs (hsa-miR-130b-3p, hsa-miR-501-5p, and hsa-miR-2113) were selected according to their fold changes and the function of their target mRNAs, and only hsa-miR-130b-3p and hsa-miR-501-5p were confirmed their expression levels in all samples. Moreover, upregulated hsa-miR-130b-3p might mediate the downregulation of the phosphatase and tensin homolog gene (PTEN), which has been associated with hydrocephalus, via binding to its 3
-untranslated region by dual-luciferase reporter assay. Conclusion. This study implicates that abnormally expressed exosomal miRNAs in cerebrospinal fluid may be involved in the pathomechanism of congenital hydrocephalus.
Collapse
|