1
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Tran KN, Kwon JH, Kim MK, Nguyen NPK, Yang IJ. Intranasal delivery of herbal medicine for disease treatment: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155484. [PMID: 38442431 DOI: 10.1016/j.phymed.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Intranasal administration has been adopted in traditional medicine to facilitate access to the bloodstream and central nervous system (CNS). In modern medicine, nasal drug delivery systems are valuable for disease treatment because of their noninvasiveness, good absorption, and fast-acting effects. OBJECTIVE This study aimed to systematically organize preclinical and clinical studies on intranasal herbal medicines to highlight their potential in drug development. METHODS A comprehensive search for literature until February 2023 was conducted on PubMed and the Web of Science. From the selected publications, we extracted key information, including the types of herbal materials, target diseases, intranasal conditions, methods of toxicity evaluation, main outcomes, and mechanisms of action, and performed quality assessments for each study. RESULTS Of the 45 studies, 13 were clinical and 32 were preclinical; 28 studies used herbal extracts, 9 used prescriptions, and 8 used natural compounds. The target diseases were rhinosinusitis, influenza, fever, stroke, migraine, insomnia, depression, memory disorders, and lung cancer. The common intranasal volumes were 8-50 µl in mice, 20-100 µl in rats, and 100-500 µl in rabbits. Peppermint oil, Ribes nigrum folium, Melia azedarach L., Elaeocarpus sylvestris, Radix Bupleuri, Da Chuan Xiong Fang, Xingnaojing microemulsion, and Ginsenoside Rb1 emerged as potential candidates for rapid intranasal therapy. The in vivo toxicity assessments were based on mortality, body weight, behavioral changes, mucociliary activity, histopathology, and blood tests. Most intranasal treatments were safe, except for Cyclamen europaeum, Jasminum sambac, Punica granatum L., and violet oil, which caused mild adverse effects. At lower doses, intranasal herbal treatments often show greater effects than oral administration. The actions of intranasal herbal medicine mainly involve regulating inflammation and neurotransmission, with the olfactory bulb and anterior cingulate cortex to be relevant brain regions. CONCLUSION Intranasal delivery of herbal materials holds promise for enhancing drug delivery efficacy and reducing treatment duration, offering a potential future perspective for developing intranasal therapies for various diseases.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Ji-Hye Kwon
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Min-Kyung Kim
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
5
|
Deng Z, Qishan S, Zhang Q, Wang J, Yue Y, Geng L, Wu N. Low molecular weight fucoidan LF2 improves the immunosuppressive tumor microenvironment and enhances the anti-pancreatic cancer activity of oxaliplatin. Biomed Pharmacother 2024; 173:116360. [PMID: 38422657 DOI: 10.1016/j.biopha.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Chemotherapy remains the cornerstone of pancreatic cancer treatment. However, the dense interstitial and immunosuppressive microenvironment frequently render the ineffective anti-tumor activity of chemotherapeutic agents. Macrophages play a key role in the tumor immunomodulation. In this study, we found that low molecular weight of fucoidan (LF2) directly regulated the differentiation of mononuclear macrophages into the CD86+ M1 phenotype. LF2 significantly upregulated the expressions of M1 macrophage-specific cytokines, including iNOS, IL-6, TNFα and IL-12. LF2 modulated macrophage phenotypic transformation through activation of TLR4-NFκB pathway. Furthermore, we observed that LF2 enhanced the pro-apoptotic activity of oxaliplatin (OXA) in vitro by converting macrophages to a tumoricidal M1 phenotype. Meanwhile, LF2 increased intratumoral M1 macrophage infiltration and ameliorated the immunosuppressed tumor microenvironment, which in turn enhanced the anti-pancreatic ductal adenocarcinoma (PDAC) activity of OXA in vivo. Taken together, our results suggested that LF2 could act as a TLR4 agonist targeting macrophages and has a synergistic effect against PDAC when combined with OXA.
Collapse
Affiliation(s)
- Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suo Qishan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine drugs and biological products, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
7
|
Li QZ, Xiong C, Wong WC, Zhou LW. Medium composition optimization and characterization of polysaccharides extracted from Ganoderma boninense along with antioxidant activity. Int J Biol Macromol 2024; 260:129528. [PMID: 38246471 DOI: 10.1016/j.ijbiomac.2024.129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Ganoderma is a well-known medicinal macrofungal genus, of which several species have been thoroughly studied from the medicinal perspective, but most species are rarely involved in. In this study, we focus on the polysaccharides extracted from Ganoderma boninense and their antioxidant activity. Ganoderma boninense is a serious pathogen of oil palms that are cultivated commercially in Southeast Asia. Response surface methodology was conducted to optimize the liquid medium composition, and the mycelia biomass reached 7.063 g/L, that is, 1.4-fold compared with the seed medium. The crude and purified polysaccharides extracted from the fermentation broth showed well 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging abilities, and the scavenging abilities of purified polysaccharides reached 94.47 % and 99.88 %, respectively. Six fractions of polysaccharides were extracted and purified from fruiting bodies, mycelia and fermentation broth separately with the elution buffers of distilled water and 0.1 M NaCl solution. Generally, the polysaccharides from fruiting bodies showed stronger protective effect on H2O2-induced HepG2 cell oxidative damage than other fractions. A total of five to seven monosaccharides were identified in the six fractions of polysaccharides. The correlation analysis revealed that the content of fucose was significantly correlated with the antioxidant activity of polysaccharides, while xylose showed negative correlation results. In summary, the polysaccharides from G. boninense have a potential to be used as natural antioxidants.
Collapse
Affiliation(s)
- Qian-Zhu Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Xiong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Chee Wong
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya 47810, Selangor, Malaysia
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym 2024; 324:121555. [PMID: 37985117 DOI: 10.1016/j.carbpol.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
The large-scale collections, screening and discovery of biologically active and pharmacologically significant marine-derived natural products have garnered tremendous attraction. Edible brown algae are rich in fucoidan. Importantly, fucoidan has been reported to inhibit carcinogenesis and metastasis mainly through the regulation of deregulated cell signaling pathways. This review summarizes the structural features of fucoidan, including monosaccharide type, sulfate content, and main chain structure. We have set spotlight on fucoidan-mediated tumor suppressive effects in cell cultures studies and tumor-bearing rodent models. Fucoidan exerts anti-tumor effects primarily through the inhibition of tumor cell viability, proliferation and metastatic dissemination of cancer cells from primary tumor sites to distant secondary sites. Fucoidan not only promotes immunological responses in tumor microenvironment but also induces apoptotic death in cancer cells. In addition, fucoidan can be used as a dietary supplement for preventive purposes, in combination with other drugs as complementary and alternative medicine or with nanoparticle modifications will be the future of fucoidan use. Cutting-edge research related to fucoidan has catalyzed the transition of fucoidan from preclinical studies to different phases of clinical trials. Rationally designed clinical trials for the critical evaluation of fucoidan against different cancers will be valuable to reap full benefits.
Collapse
Affiliation(s)
- Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Xie J, Huang H, Li X, Ouyang L, Wang L, Liu D, Wei X, Tan P, Tu P, Hu Z. The Role of Traditional Chinese Medicine in Cancer Immunotherapy: Current Status and Future Directions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1627-1651. [PMID: 37638827 DOI: 10.1142/s0192415x2350074x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The tumor microenvironment (TME) plays an important role in the development of tumors. Immunoregulatory cells and cytokines facilitate cancer cells to avoid immune surveillance. Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 inhibits immune function and enables cancer cells to avoid clearance by the immune system. Thus, minimizing tumor immunosuppression could be an important strategy for cancer therapy. Currently, many immune checkpoint-targeted drugs, such as PD-1/PD-L1 inhibitors, have been approved for marketing and have shown unique advantages in the clinical treatment of cancers. The concept of "strengthening resistance to eliminate pathogenic factors" in traditional Chinese medicine (TCM) is consistent with the immunotherapy of cancer. According to previous studies, the role of TCM in tumor immunotherapy is mainly associated with the positive regulation of natural killer cells, CD8/CD4 T cells, dendritic cells, M2 macrophages, interleukin-2, tumor necrosis factor-[Formula: see text], and IFN-[Formula: see text], as well as with the negative regulation of Tregs, myeloid-derived suppressor cells, cancer-associated fibroblasts, PD-1/PD-L1, transforming growth factor-[Formula: see text], and tumor necrosis factor-[Formula: see text]. This paper summarizes the current research on the effect of TCM targeting the TME, and further introduces the research progress on studying the effects of TCM on immune checkpoints. Modern pharmacological studies have demonstrated that TCM can directly or indirectly affect the TME by inhibiting the overexpression of immune checkpoint molecules and enhancing the efficacy of tumor immunotherapy. TCM with immunomodulatory stimulation could be the key factor to achieve benefits from immunotherapy for patients with non-inflammatory, or "cold", tumors.
Collapse
Affiliation(s)
- Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P. R. China
| | - Lishan Ouyang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| |
Collapse
|
10
|
Pyropia yezoensis-derived porphyran attenuates acute and chronic colitis by suppressing dendritic cells. Int J Biol Macromol 2023; 231:123148. [PMID: 36639074 DOI: 10.1016/j.ijbiomac.2023.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Porphyran is known to inhibit immune cell function. Previously, porphyran was shown to prevent lipopolysaccharide-induced sepsis in mice. However, studies on the inhibitory effects of porphyran during colitis are currently lacking. In this study, we evaluated the effects of Pyropia yezoensis-derived porphyran on dextran sodium sulfate (DSS)-induced acute and chronic colitis. The oral or intraperitoneal administration of porphyran inhibited the progression of DSS-induced colitis in mice, with the former also preventing immune cell infiltration in the colon. The levels of intracellular interferon-γ and interleukin-17 in T cells decreased when porphyran was administered orally. Porphyran inhibited T cell activation by suppressing dendritic cells (DCs) and macrophages. Porphyran prevented pathogen-associated molecular pattern and damage-associated molecular pattern-dependent DC and macrophage activation. Finally, porphyran attenuated chronic colitis caused via the long-term administration of DSS. These findings indicate that the oral administration of porphyran can inhibit DSS-induced colitis by suppressing DC and macrophage activation.
Collapse
|
11
|
Galati D, Zanotta S. Dendritic Cell and Cancer Therapy. Int J Mol Sci 2023; 24:ijms24044253. [PMID: 36835665 PMCID: PMC9968100 DOI: 10.3390/ijms24044253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Dendritic cells (DCs) are acknowledged as the most potent professional antigen-presenting cells (APCs), able to induce adaptive immunity and support the innate immune response [...].
Collapse
|
12
|
Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network. Mar Drugs 2023; 21:md21020132. [PMID: 36827173 PMCID: PMC9963441 DOI: 10.3390/md21020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Epstein-Barr virus (EBV) infects 95% of the world's population and persists latently in the body. It immortalizes B-cells and is associated with lymphomas. LCLs (lymphoblastoid cell lines, EBV latency III B-cells) inhibit anti-tumoral T-cell response following PD-L1 overexpression (programmed death-ligand 1 immune checkpoint). Many cancer cells, including some DLBCLs (diffuse large B-cell lymphomas), also overexpress PD-L1. Immunotherapies are based on inhibition of PD-L1/PD-1 interactions but present some dose-dependent toxicities. We aim to find new strategies to improve their efficiency by decreasing PD-L1 expression. Fucoidan, a polysaccharide extracted from brown seaweed, exhibits immunomodulatory and anti-tumor activities depending on its polymerization degree, but data are scarce on lymphoma cells or immune checkpoints. LCLs and DLBCLs cells were treated with native fucoidan (Fucus vesiculosus) or original very-low-molecular-weight fucoidan formulas (vLMW-F). We observed cell proliferation decrease and apoptosis induction increase with vLMW-F and no toxicity on normal B- and T-cells. We highlighted a decrease in transcriptional and PD-L1 surface expression, even more efficient for vLMW than native fucoidan. This can be explained by actin network alteration, suggesting lower fusion of secretory vesicles carrying PD-L1 with the plasma membrane. We propose vLMW-F as potential adjuvants to immunotherapy due to their anti-proliferative and proapoptotic effects and ability to decrease PD-L1 membrane expression.
Collapse
|
13
|
Immunopotentiating Activity of Fucoidans and Relevance to Cancer Immunotherapy. Mar Drugs 2023; 21:md21020128. [PMID: 36827169 PMCID: PMC9961398 DOI: 10.3390/md21020128] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans were first recognized for their role in supporting the immune response and later, in the 1990s, their effects on immune potentiation began to emerge. In recent years, the understanding of the immunomodulatory effects of fucoidan has expanded significantly. The ability of fucoidan(s) to activate CTL-mediated cytotoxicity against cancer cells, strong antitumor property, and robust safety profile make fucoidans desirable for effective cancer immunotherapy. This review focusses on current progress and understanding of the immunopotentiation activity of various fucoidans, emphasizing their relevance to cancer immunotherapy. Here, we will discuss the action of fucoidans in different immune cells and review how fucoidans can be used as adjuvants in conjunction with immunotherapeutic products to improve cancer treatment and clinical outcome. Some key rationales for the possible combination of fucoidans with immunotherapy will be discussed. An update is provided on human clinical studies and available registered cancer clinical trials using fucoidans while highlighting future prospects and challenges.
Collapse
|
14
|
Farooqi AA, Rakhmetova V, Kapanova G, Mussakhanova A, Tashenova G, Tulebayeva A, Akhenbekova A, Xu B. Suppressive effects of bioactive herbal polysaccharides against different cancers: From mechanisms to translational advancements. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154624. [PMID: 36584608 DOI: 10.1016/j.phymed.2022.154624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fueled by rapidly evolving comprehension of multifaceted nature of cancers, recently emerging preclinical and clinical data have supported researchers in the resolution of knowledge gaps to deepen the understanding of the molecular mechanisms. The extra-ordinary and bewildering chemical diversity encompassed by biologically active natural products continues to be of relevance to drug discovery. Accumulating evidence has spurred a remarkable evolution of concepts related to pharmacological target of oncogenic signaling pathways by polysaccharides in different cancers. PURPOSE The objective of the current review is to provide new insights into study progress on anticancer effects of bioactive herbal polysaccharides. METHODS PubMed, Scopus, Web of Science, Embase, and other databases were searched for articles related to anticancer effects of polysaccharides. Searches were conducted to locate relevant publications published up to October 2022. RESULTS Polysaccharides have been reported to pleiotropically modulate TGF/SMAD, BMP/SMAD, TLR4, mTOR, CXCR4 and VEGF/VEGFR cascades. We have also summarized how different polysaccharides regulated apoptosis and non-coding RNAs. Additionally, this mini-review describes increasingly sophisticated understanding related to polysaccharides mediated tumor suppressive and anti-metastatic effects in tumor-bearing mice. We have also provided an overview of the clinical trials related to chemopreventive role of polysaccharides. CONCLUSION Genomic and proteomic findings from these studies will facilitate 'next-generation' clinical initiatives in the prevention/inhibition of cancer.
Collapse
Affiliation(s)
| | | | - Gulnara Kapanova
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; Scientific Center of Anti-infectious Drugs, 75 a al-Faraby Ave, Almaty 050040, Kazakhstan
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana, Kazakhstan
| | - Gulnara Tashenova
- Asfendiyarov Kazakh National Medical University, Kazakhstan; JSC "Scientific Center of Pediatrics and Pediatric Surgery", Kazakhstan
| | | | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000, Jintong Road, Tangjiawan, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
15
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kiselevskiy MV, Anisimova NY, Ustyuzhanina NE, Vinnitskiy DZ, Tokatly AI, Reshetnikova VV, Chikileva IO, Shubina IZ, Kirgizov KI, Nifantiev NE. Perspectives for the Use of Fucoidans in Clinical Oncology. Int J Mol Sci 2022; 23:11821. [PMID: 36233121 PMCID: PMC9569813 DOI: 10.3390/ijms231911821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidans are natural sulfated polysaccharides that have a wide range of biological functions and are regarded as promising antitumor agents. The activity of various fucoidans and their derivatives has been demonstrated in vitro on tumor cells of different histogenesis and in experiments on mice with grafted tumors. However, these experimental models showed low levels of antitumor activity and clinical trials did not prove that this class of compounds could serve as antitumor drugs. Nevertheless, the anti-inflammatory, antiangiogenic, immunostimulating, and anticoagulant properties of fucoidans, as well as their ability to stimulate hematopoiesis during cytostatic-based antitumor therapy, suggest that effective fucoidan-based drugs could be designed for the supportive care and symptomatic therapy of cancer patients. The use of fucoidans in cancer patients after chemotherapy and radiation therapy might promote the rapid improvement of hematopoiesis, while their anti-inflammatory, immunomodulatory, and anticoagulant effects have the potential to improve the quality of life of patients with advanced cancer.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Nadezhda E. Ustyuzhanina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Dmitry Z. Vinnitskiy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Alexandra I. Tokatly
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Vera V. Reshetnikova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina O. Chikileva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina Zh. Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Kirill I. Kirgizov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Nikolay E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| |
Collapse
|
17
|
Lee KH, Jang YJ, Hwang WS, Kwon KS, Lee WY, Kim J, Kim SP, Friedman M. Edible algae (Ecklonia cava) bioprocessed with mycelia of shiitake (Lentinula edodes) mushrooms in liquid culture and its isolated fractions protect mice against allergic asthma. BMC Complement Med Ther 2022; 22:242. [PMID: 36115955 PMCID: PMC9482293 DOI: 10.1186/s12906-022-03705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Ecklonia cava is an edible marine brown alga harvested from the ocean that is widely consumed in Asian countries as a health-promoting medicinal food The objective of the present study is to evaluate the anti-asthma mechanism of a new functional food produced by bioprocessing edible algae Ecklonia cava and shiitake Lentinula edodes mushroom mycelia and isolated fractions. METHODS We used as series of methods, including high performance liquid chromatography, gas chromatography, cell assays, and an in vivo mouse assay to evaluate the asthma-inhibitory effect of Ecklonia cava bioprocessed (fermented) with Lentinula edodes shiitake mushroom mycelium and its isolated fractions in mast cells and in orally fed mice. RESULTS The treatments inhibited the degranulation of RBL-2H3 cells and immunoglobulin E (IgE) production, suggesting anti-asthma effects in vitro. The in vitro anti-asthma effects in cells were confirmed in mice following the induction of asthma by alumina and chicken egg ovalbumin (OVA). Oral administration of the bioprocessed Ecklonia cava and purified fractions suppressed the induction of asthma and was accompanied by the inhibition of inflammation- and immune-related substances, including eotaxin; thymic stromal lymphopoietin (TSLP); OVA-specific IgE; leukotriene C4 (LTC4); prostaglandin D2 (PGD2); and vascular cell adhesion molecule-1 (VCAM-1) in bronchoalveolar lavage fluid (BALF) and other fluids and organs. Th2 cytokines were reduced and Th1 cytokines were restored in serum, suggesting the asthma-induced inhibitory effect is regulated by the balance of the Th1/Th2 immune response. Serum levels of IL-10, a regulatory T cell (Treg) cytokine, were increased, further favoring reduced inflammation. Histology of lung tissues revealed that the treatment also reversed the thickening of the airway wall and the contraction and infiltration of bronchial and blood vessels and perialveolar inflammatory cells. The bioprocessed Ecklonia cava/mushroom mycelia new functional food showed the highest inhibition as compared with commercial algae and the fractions isolated from the bioprocessed product. CONCLUSIONS The in vitro cell and in vivo mouse assays demonstrate the potential value of the new bioprocessed formulation as an anti-inflammatory and anti-allergic combination of natural compounds against allergic asthma and might also ameliorate allergic manifestations of foods, drugs, and viral infections.
Collapse
Affiliation(s)
| | - Yeo Jin Jang
- STR Biotech Co., Ltd., Chuncheon, Republic of Korea
- Present address: Herbal Medicine Research Division, National Institute of Food & Drug Safety Evaluation, Cheongju, Republic of Korea
| | | | - Ki Sun Kwon
- STR Biotech Co., Ltd., Chuncheon, Republic of Korea
| | | | - Jeanman Kim
- STR Biotech Co., Ltd., Chuncheon, Republic of Korea
| | - Sung Phil Kim
- STR Biotech Co., Ltd., Chuncheon, Republic of Korea.
| | - Mendel Friedman
- U.S. Department of Agriculture, Western Regional Research Center, Agricultural Research Services, Albany, CA, USA.
| |
Collapse
|
18
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
19
|
Huang H, Guo F, Deng X, Yan M, Wang D, Sun Z, Yuan C, Zhou Q. Modulation of T Cell Responses by Fucoidan to Inhibit Osteogenesis. Front Immunol 2022; 13:911390. [PMID: 35812368 PMCID: PMC9260855 DOI: 10.3389/fimmu.2022.911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Fucoidan has sparked considerable interest in biomedical applications because of its inherent (bio)physicochemical characteristics, particularly immunomodulatory effects on macrophages, neutrophils, and natural killer cells. However, the effect of fucoidan on T cells and the following regulatory interaction on cellular function has not been reported. In this work, the effect of sterile fucoidan on the T-cell response and the subsequent modulation of osteogenesis is investigated. The physicochemical features of fucoidan treated by high-temperature autoclave sterilization are characterized by UV–visible spectroscopy, X-ray diffraction, Fourier transform infrared and nuclear magnetic resonance analysis. It is demonstrated that high-temperature autoclave treatment resulted in fucoidan depolymerization, with no change in its key bioactive groups. Further, sterile fucoidan promotes T cells proliferation and the proportion of differentiated T cells decreases with increasing concentration of fucoidan. In addition, the supernatant of T cells co-cultured with fucoidan greatly suppresses the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with fucoidan. Therefore, our work offers new insight into the fucoidan-mediated T cell and osteoblast interplay.
Collapse
Affiliation(s)
- Hailin Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Mingzhe Yan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
20
|
An EK, Hwang J, Kim SJ, Park HB, Zhang W, Ryu JH, You S, Jin JO. Comparison of the immune activation capacities of fucoidan and laminarin extracted from Laminaria japonica. Int J Biol Macromol 2022; 208:230-242. [PMID: 35337909 DOI: 10.1016/j.ijbiomac.2022.03.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Laminaria japonica is a brown alga and is composed primarily of polysaccharides. Fucoidan and laminarin are the major polysaccharides of L. japonica and exhibit biological activities, including immune modulation and anti-coagulant and antioxidant effects in animals and humans. In this study, we evaluated the ability of fucoidan and laminarin from L. japonica to induce immune cell activation and anti-cancer immunity, which has not yet been studied. The injection of fucoidan to mice promoted the upregulation of major histocompatibility complex and surface activation molecules in splenic dendritic cell subsets, whereas laminarin showed a weaker immune activation ability. In addition, fucoidan treatment elicited inflammatory cytokine production; however, laminarin did not induce the production of these cytokines. Regarding cytotoxic cell activities, fucoidan induced the activation of lymphocytes, including natural killer and T cells, whereas laminarin did not induce cell activation. Finally, fucoidan enhanced the anticancer efficacy of anti-programmed Death-Ligand 1 (PD-L1) antibody against Lewis lung carcinoma, whereas laminarin did not promote the cancer inhibition effect of anti-PD-L1 antibody. Thus, these data suggest that fucoidan from L. japonica can be used as an immune stimulatory molecule to enhance the anticancer activities of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Juyoung Hwang
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So-Jung Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae-Bin Park
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
21
|
Park AY, Nafia I, Stringer DN, Karpiniec SS, Fitton JH. Fucoidan Independently Enhances Activity in Human Immune Cells and Has a Cytostatic Effect on Prostate Cancer Cells in the Presence of Nivolumab. Mar Drugs 2021; 20:12. [PMID: 35049864 PMCID: PMC8779234 DOI: 10.3390/md20010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.
Collapse
Affiliation(s)
- Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Imane Nafia
- Explicyte Immuno-Oncology, 33000 Bordeaux, France;
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
- RDadvisor, Hobart, TAS 7006, Australia
| |
Collapse
|