1
|
Zhang M, Liu S, Chen Y, Chen Y, He J, Xia Y, Yang Y. Matrix Gla protein suppresses osteoblast senescence and promotes osteogenic differentiation by the PI3K-AKT signaling pathway. Exp Cell Res 2025; 444:114329. [PMID: 39536932 DOI: 10.1016/j.yexcr.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age-related bone loss in mice is associated with senescent cell accumulation and reduced bone formation by osteoblasts. Matrix Gla protein (MGP), secreted by osteoblasts, is pivotal in regulating the bone extracellular matrix mineralization. Previous research has demonstrated that Mgp null mice exhibit osteopenia and fractures, and ultimately die prematurely. To elucidate the mechanisms underlying MGP's role of MGP in bone metabolism, we generated osteoblast-specific Mgp knockout (Mgp cKO) mice by crossing Mgpfl/fl mice with Bglap-Cre mice. The study revealed that in 3-month-old Mgp cKO male mice, trabecular bone volume decreased, and the senescence marker protein p21 increased. Primary osteoblasts from Mgp cKO mice exhibited markers of DNA damage and senescence, such as increased γH2AX foci, p21, and senescence-associated β-galactosidase staining, as well as attenuated cellular proliferation and osteogenic differentiation abilities. In addition, bone marrow stromal cells' colony formation and spontaneous osteogenic ability were impaired in Mgp cKO mice, whereas osteoclastogenesis was enhanced. In vitro treatment with recombinant human MGP promotes osteogenesis in osteoblasts derived from Mgp cKO mice via the PI3K-AKT signaling pathway. Thus, our results suggest that MGP is protective by suppressing osteoblast senescence, offering new insights into potential therapeutic strategies for age-related osteoporosis.
Collapse
Affiliation(s)
- Min Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Sha Liu
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, 518000, Shenzhen, China
| | - Yulin Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Yifa Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Jiaojiao He
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Yuting Xia
- Department of General Practice, Jingzhou Central Hospital, 434000, Jingzhou, Hubei, China
| | - Ya Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
2
|
Hijjawi N, Tout FS, Azaizeh B, Aljaafreh B. The role of vitamins D, B12, C, and K in modulating inflammation and disease management in rheumatoid arthritis: a comprehensive review. Clin Rheumatol 2024:10.1007/s10067-024-07285-9. [PMID: 39722107 DOI: 10.1007/s10067-024-07285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by joint inflammation and destruction. Recent studies emphasize the importance of vitamins D, B12, C, and K in managing RA and enhancing patient health. Vitamin D deficiency is common in RA patients and correlates with increased disease severity, indicating its potential to modulate immune responses and reduce inflammation. Supplementation has shown promise in improving disease activity scores and lowering inflammatory markers. Vitamin B12 is vital for energy and neurological function; its deficiency can worsen fatigue in RA sufferers. Vitamin C, with its antioxidant properties, aids collagen synthesis and may reduce joint inflammation. Vitamin K, particularly through Matrix Gla-Protein (MGP), is essential for bone health and may help prevent joint calcification and osteoporosis. Collectively, these vitamins play critical roles in immune modulation, inflammation reduction, and bone health in RA management, warranting further research on optimal dosages and combinations for effective treatment strategies.
Collapse
Affiliation(s)
- Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Faten S Tout
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Baraah Azaizeh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Baraah Aljaafreh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
3
|
Chen LL, Xu KW, Cao RX, Shen GH, Liu JR, Zhou F, Li Z, Tang AJ, Liu PN. Vitamin K2 deficiency and its association with short stature in children: A cross-sectional study. Nutrition 2024; 131:112660. [PMID: 39740283 DOI: 10.1016/j.nut.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVES This study examines the relationship between vitamin K2 (VK2) status and the occurrence of short stature in children. METHODS A cross-sectional analysis was conducted between January 2021 and August 2022, involving 235 children with a clinical diagnosis of short stature at the Second Affiliated Hospital of Wenzhou Medical University (short stature group) and 454 children with average height (±1 SD) from the same period (healthy group). Serum VK2 levels were compared between the two groups. Multivariate logistic regression analysis was used to identify factors associated with short stature, and spearman correlation analysis was used to examine the relationship between VK2 status and age. RESULTS Children in the short stature group exhibited lower VK2 levels (P = 0.019) and a significantly higher prevalence of VK2 deficiency (P = 0.011) compared to the healthy group. VK2 deficiency was identified as an independent risk factor for short stature (OR = 1.535, 95% CI = 1.061-2.222, P = 0.023) through multivariate logistic regression analysis. Furthermore, an inverse correlation was observed between serum VK2 levels and age in children aged 2 to 15 years (ρ = -0.133, P < 0.001). CONCLUSIONS VK2 deficiency may be associated with an increased risk of short stature in children.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke-Wen Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui-Xue Cao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Shen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jin-Rong Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ai-Jie Tang
- Department of Maternal and Child Health, Wenzhou Maternal and Child Health Counselling Centre, Wenzhou, China
| | - Pei-Ning Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Guo J, Zhou Z, Gong J, Hu W, Liu Y. Vitamin K intake levels are associated with bone health in people aged over 50 years: a NHANES-based survey. Front Med (Lausanne) 2024; 11:1485095. [PMID: 39655236 PMCID: PMC11625553 DOI: 10.3389/fmed.2024.1485095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Background Bone health is important for older adults, and vitamin K (VK) is central to regulating bone formation and promoting bone health. However, whether VK can reduce the risk of osteoporosis and bone loss is unclear. This study hypothesized that different levels of VK intake exert varying effects on bone health in people aged over 50 years. Methods Individuals aged above 50 years were recruited from the National Health and Nutrition Examination Survey. VK intake, based on 24-h dietary recall, was divided into three groups, namely the high, medium, and low groups, by sex and tertile. Weighted multiple logistic regression was used to investigate the effects of VK intake on the risk of osteoporosis and bone loss at the femoral neck, trochanter, intertrochanter, total femur, lumbar spine, and overall. Results This study included 5,075 individuals. Of them, 1,001 (18%) had osteoporosis (808 women, 83%) and 2,226 (46%) had osteopenia (1,076 women, 54%). Overall, a medium level of VK intake was associated with a reduced risk of bone loss. In women, medium- [odds ratio, OR (95% confidence interval, CI): 0.66(0.47, 0.93)] and high-level [OR (95% CI): 0.71(0.52, 0.98)] VK intake were associated with a decreased risk of osteoporosis. In contrast, only medium-level VK intake was associated with a reduced risk of bone loss [OR (95% CI): 0.58(0.41, 0.81)]. Similar results were obtained for the trochanter, intertrochanter, total femur, and lumbar spine. In men, only medium-level VK intake was associated with a reduced risk of bone loss at the femoral neck [OR (95% CI): 0.66(0.48, 0.90)], whereas high-level VK intake corresponded to a reduced risk of bone loss to the lumbar spine [OR (95% CI): 0.68(0.47, 0.99)]. Nonetheless, VK intake levels did not affect the risk of osteoporosis. Conclusion This study demonstrates sex- and bone-site-specific variations in the associations between VK intake levels and bone health in individuals aged over 50 years. Further large-scale cohort studies or randomized controlled trials are warranted to explore the effects of different VK intake levels on bone health in people regardless of their sex and bone site.
Collapse
Affiliation(s)
- Jiankui Guo
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Zhou
- Department of Clinical Nutrition, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Jie Gong
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Hu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Kurtulus B, Atilgan N, Yilmaz M, Dokuyucu R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. J Clin Med 2024; 13:5159. [PMID: 39274372 PMCID: PMC11396581 DOI: 10.3390/jcm13175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: The pathophysiology of osteoarthritis is mainly unknown. Matrix Gla protein (MGP) and Gla-rich protein (GRP) are both vitamin-K-dependent mineralization inhibitors. In this study, we aimed to compare the levels of MGP and GRP in the synovial fluid of osteoarthritic (OA) and non-osteoarthritic (non-OA) knee joints. Materials and Methods: Two groups were formed, with one consisting of patients with OA and the other non-OA, serving as a control group. The non-OA group included individuals who had arthroscopic surgery for non-cartilage-related issues. In the OA group, all participants had undergone total knee arthroplasty because of grade 4 primary degenerative osteoarthritis. During the operation, at least 1 mL of knee synovial fluid was collected. The GRP and MGP levels in the synovial fluid were measured using an ELISA kit. Results: The mean age in the OA group (62.03 ± 11.53 years) was significantly higher than that in the non-OA group (47.70 ± 14.49 years; p = 0.0001). GRP levels were significantly higher in the OA group (419.61 ± 70.14 ng/mL) compared to the non-OA group (382.18 ± 62.34 ng/mL; p = 0.037). MGP levels were significantly higher in the OA group (67.76 ± 11.36 ng/mL) compared to the non-OA group (53.49 ± 18.28 ng/mL; p = 0.001). Calcium levels (Ca++) were also significantly higher in the OA group (12.89 ± 3.43 mg/dL) compared to the non-OA group (9.51 ± 2.15 mg/dL; p = 0.0001). There was a significantly positive correlation between MGP levels and age (p = 0.011, R = +0.335). Linear regression analysis was performed to determine the effect of age on MGP levels (p = 0.011, R-Square = 0.112). The dependent variable in this analysis was MGP (ng/mL), and age was the predictor. Conclusions: In conclusion, both GRP and MGP are potentially usable biomarkers in osteoarthritis. However, GRP seems to be more valuable because it is not associated with age. In the future, both proteins could provide important contributions to the diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Burhan Kurtulus
- Department of Orthopedics and Traumatology, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara 06110, Turkey
| | - Numan Atilgan
- Department of Hand Surgery, Private Clinic, Gaziantep 27000, Turkey
| | - Mehmet Yilmaz
- Department of Orthopedic Surgery, Gaziantep City Hospital, Gaziantep 27060, Turkey
| | - Recep Dokuyucu
- Department of Physiology, Medical Specialization Training Center (TUSMER), Ankara 06420, Turkey
- Physioclinic Private Clinic, Gaziantep 27090, Turkey
| |
Collapse
|
6
|
Gajewska J, Chełchowska M, Szamotulska K, Klemarczyk W, Strucińska M, Ambroszkiewicz J. Differences in Bone Metabolism between Children with Prader-Willi Syndrome during Growth Hormone Treatment and Healthy Subjects: A Pilot Study. Int J Mol Sci 2024; 25:9159. [PMID: 39273107 PMCID: PMC11394978 DOI: 10.3390/ijms25179159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Despite therapy with growth hormone (GH) in children with Prader-Willi syndrome (PWS), low bone mineral density and various orthopedic deformities have been observed often. Therefore, this study aimed to analyze bone markers, with an emphasis on vitamin K-dependent proteins (VKDPs), in normal-weight children with PWS undergoing GH therapy and a low-energy dietary intervention. Twenty-four children with PWS and 30 healthy children of the same age were included. Serum concentrations of bone alkaline phosphatase (BALP), osteocalcin (OC), carboxylated-OC (Gla-OC), undercarboxylated-OC (Glu-OC), periostin, osteopontin, osteoprotegerin (OPG), sclerostin, C-terminal telopeptide of type I collagen (CTX-I), and insulin-like growth factor-I (IGF-I) were determined using immunoenzymatic methods. OC levels and the OC/CTX-I ratios were lower in children with PWS than in healthy children (p = 0.011, p = 0.006, respectively). Glu-OC concentrations were lower (p = 0.002), but Gla-OC and periostin concentrations were higher in patients with PWS compared with the controls (p = 0.005, p < 0.001, respectively). The relationships between IGF-I and OC (p = 0.013), Gla-OC (p = 0.042), and the OC/CTX-I ratio (p = 0.017) were significant after adjusting for age in children with PWS. Bone turnover disorders in children with PWS may result from impaired bone formation due to the lower concentrations of OC and the OC/CTX-I ratio. The altered profile of OC forms with elevated periostin concentrations may indicate more intensive carboxylation processes of VKDPs in these patients. The detailed relationships between the GH/IGF-I axis and bone metabolism markers, particularly VKDPs, in children with PWS requires further research.
Collapse
Affiliation(s)
- Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Witold Klemarczyk
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Małgorzata Strucińska
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| |
Collapse
|
7
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
8
|
Zhang M, Du P, Wan J, Chen Y, Chen X, Zhang Y. Effects of sodium dehydroacetate on broiler chicken bones. Poult Sci 2024; 103:103834. [PMID: 38805999 PMCID: PMC11150974 DOI: 10.1016/j.psj.2024.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Sodium dehydroacetate (DHA-Na) is a fungicidal preservative widely used in food and animal feed. DHA-Na can induce coagulation disorders in rats and poultry by inhibiting carboxylation of vitamin K-dependent proteins; it can also impair bone development in zebrafish. However, the effects of DHA-Na on broiler chicken bones remain unknown. Here, we assessed whether DHA-Na impairs bone development in broiler chickens. We administered Suji yellow chickens with 200 to 800 mg/kg DHA-Na, 2 mg/kg vitamin K, or both for 2 mo. Bone metabolite-related serum indicators, tissue micromorphology, and relevant protein expression were monitored during the treatment period. We also assessed primary chicken osteoblast activity, differentiation, and bone metabolite-related proteins after treatment with DHA-Na, vitamin K, or both. The results demonstrated that DHA-Na reduced bone index values and serum and bone osteoblast differentiation marker levels but blocked bone vitamin K cycle. DHA-Na also increased serum osteoclast differentiation marker levels, as well as the bone ratio of receptor activator of nuclear factor kappa-Β ligand to osteoprotegerin ratio. Moreover, DHA-Na reduced bone trabecular number, thickness, and area and increased trabecular separation considerably. In general, compared with the control group, the DHA-Na group demonstrated impairments in osteoblast activity and differentiation, as well as in the vitamin K cycle. By contrast, vitamin K supplementation led to considerable attenuation of the DHA-Na-induced decrease in osteogenic marker levels, along with a considerable increase in serum bone absorption marker levels and restoration of DHA-Na-induced bone microstructure damage. Vitamin K also attenuated DHA-Na-induced impairment in osteoclasts. In conclusion, the results indicated that in broiler chickens, DHA-Na supplementation can damage bones by inhibiting osteoblast function and increasing osteoclast activity; this damage can be prevented through vitamin K supplementation.
Collapse
Affiliation(s)
- Meng Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Pengfei Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Wan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yimeng Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yumei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
9
|
Staudinger JL, Mahroke A, Patel G, Dattel C, Reddy S. Pregnane X Receptor Signaling Pathway and Vitamin K: Molecular Mechanisms and Clinical Relevance in Human Health. Cells 2024; 13:681. [PMID: 38667296 PMCID: PMC11049418 DOI: 10.3390/cells13080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This review explores the likely clinical impact of Pregnane X Receptor (PXR) activation by vitamin K on human health. PXR, initially recognized as a master regulator of xenobiotic metabolism in liver, emerges as a key regulator influencing intestinal homeostasis, inflammation, oxidative stress, and autophagy. The activation of PXR by vitamin K highlights its role as a potent endogenous and local agonist with diverse clinical implications. Recent research suggests that the vitamin K-mediated activation of PXR highlights this vitamin's potential in addressing pathophysiological conditions by promoting hepatic detoxification, fortifying gut barrier integrity, and controlling pro-inflammatory and apoptotic pathways. PXR activation by vitamin K provides an intricate association with cancer cell survival, particularly in colorectal and liver cancers, to provide new insights into potential novel therapeutic strategies. Understanding the clinical implications of PXR activation by vitamin K bridges molecular mechanisms with health outcomes, further offering personalized therapeutic approaches for complex diseases.
Collapse
Affiliation(s)
- Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin Campus, 2901 St Johns Blvd, Joplin, MO 64804, USA (C.D.); (S.R.)
| | | | | | | | | |
Collapse
|
10
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
11
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
12
|
Zhang Y, Xie J, Wen S, Cao P, Xiao W, Zhu J, Li S, Wang Z, Cen H, Zhu Z, Ding C, Ruan G. Evaluating the causal effect of circulating proteome on the risk of osteoarthritis-related traits. Ann Rheum Dis 2023; 82:1606-1617. [PMID: 37595989 DOI: 10.1136/ard-2023-224459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVES This study aims to identify circulating proteins that are causally associated with osteoarthritis (OA)-related traits through Mendelian randomisation (MR)-based analytical framework. METHODS Large-scale two-sample MR was employed to estimate the effects of thousands of plasma proteins on 12 OA-related traits. Additional analyses including Bayesian colocalisation, Steiger filtering analysis, assessment of protein-altering variants and mapping expression quantitative trait loci to protein quantitative trait loci were performed to investigate the reliability of the MR findings; protein-protein interaction, pathway enrichment analysis and evaluation of drug targets were conducted to deepen the understanding and identify potential therapeutic targets of OA. RESULTS Dozens of circulating proteins were identified to have putatively causal effects on OA-related traits, and a majority of these proteins were either drug targets or considered druggable. CONCLUSIONS Through MR analysis, we have identified numerous plasma proteins associated with OA-related traits, shedding light on protein-mediated mechanisms and offering promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyu Xie
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Simin Wen
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wende Xiao
- Department of orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianwei Zhu
- Department of orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengfa Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Han Cen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
15
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
16
|
Kemp JA, Alvarenga L, Cardozo LFMF, Dai L, Stenvinkel P, Shiels PG, Hackeng TM, Schurgers LJ, Mafra D. Dysbiosis in Patients with Chronic Kidney Disease: Let Us Talk About Vitamin K. Curr Nutr Rep 2022; 11:765-779. [PMID: 36138326 DOI: 10.1007/s13668-022-00438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This narrative review aimed to summarize the current evidence on the connection between dysbiosis and vitamin K deficiency in patients with chronic kidney disease (CKD). The presence of dysbiosis (perturbations in the composition of the microbiota) has been described in several non-communicable diseases, including chronic kidney disease, and it has been hypothesized that dysbiosis may cause vitamin K deficiency. Patients with CKD present both vitamin K deficiency and gut dysbiosis; however, the relationship between gut dysbiosis and vitamin K deficiency remains to be addressed. RECENT FINDINGS Recently, few studies in animals have demonstrated that a dysbiotic environment is associated with low production of vitamin K by the gut microbiota. Vitamin K plays a vital role in blood coagulation as well as in the cardiovascular and bone systems. It serves as a cofactor for γ-glutamyl carboxylases and thus is essential for the post-translational modification and activation of vitamin K-dependent calcification regulators, such as osteocalcin, matrix Gla protein, Gla-rich protein, and proteins C and S. Additionally, vitamin K executes essential antioxidant and anti-inflammatory functions. Dietary intake is the main source of vitamin K; however, it also can be produced by gut microbiota. This review discusses the effects of uremia on the imbalance in gut microbiota, vitamin K-producing bacteria, and vitamin K deficiency in CKD patients, leading to a better understanding and raising hypothesis for future clinical studies.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil.
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Unidade de Pesquisa Clínica, Rua Marquês Do Paraná, Niterói, RJ, 30324033-900, Brazil.
| |
Collapse
|
17
|
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int 2022; 33:2495-2506. [PMID: 36169678 DOI: 10.1007/s00198-022-06557-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Osteoporosis is the prevalent metabolic bone disease characterized by a decrease in bone quantity and/or quality and an increase in skeletal fragility, which increases susceptibility to fractures. Osteoporotic fractures severely affect the patients' quality of life and mortality. A plethora of evidences have suggested that the alterations in gut microbiome are associated with the changes in bone mass and microstructure. We summarized pre-clinical and clinical studies to elucidate the underlying mechanism of gut microbiota in osteoporosis. Probiotics, prebiotics, and traditional Chinese medicine may reverse the gut microbiota dysbiosis and consequently improve bone metabolism. However, the causality of gut microbiota on bone metabolism need to be investigated more in depth. In the present review, we focused on the potential mechanism of the microbiota-gut-bone axis and the positive therapeutic effect of probiotics, prebiotics, and traditional Chinese medicine on osteoporosis. Overall, the current scientific literatures support that the gut microbiota may be a novel therapeutic target in treatment of osteoporosis and fracture prevention.
Collapse
Affiliation(s)
- Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
18
|
Development of a cyclic-inverso AHSG/Fetuin A-based peptide for inhibition of calcification in osteoarthritis. Osteoarthritis Cartilage 2022; 31:727-740. [PMID: 36414226 DOI: 10.1016/j.joca.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Ectopic calcification is an important contributor to chronic diseases, such as osteoarthritis. Currently, no effective therapies exist to counteract calcification. We developed peptides derived from the calcium binding domain of human Alpha-2-HS-Glycoprotein (AHSG/Fetuin A) to counteract calcification. METHODS A library of seven 30 amino acid (AA) long peptides, spanning the 118 AA Cystatin 1 domain of AHSG, were synthesized and evaluated in an in vitro calcium phosphate precipitation assay. The best performing peptide was modified (cyclic, retro-inverso and combinations thereof) and evaluated in cellular calcification models and the rat Medial Collateral Ligament Transection + Medial Meniscal Tear (MCLT + MMT) osteoarthritis model. RESULTS A cyclic peptide spanning AA 1-30 of mature AHSG showed clear inhibition of calcium phosphate precipitation in the nM-pM range that far exceeded the biological activity of the linear peptide variant or bovine Fetuin. Biochemical and electron microscopy analyses of calcium phosphate particles revealed a similar, but distinct, mode of action in comparison with bFetuin. A cyclic-inverso variant of the AHSG 1-30 peptide inhibited calcification of human articular chondrocytes, vascular smooth muscle cells and during osteogenic differentiation of bone marrow derived stromal cells. Lastly, we evaluated the effect of intra-articular injection of the cyclic-inverso AHSG 1-30 peptide in a rat osteoarthritis model. A significant improvement was found in histopathological osteoarthritis score and animal mobility. Serum levels of IFNγ were found to be lower in AHSG 1-30 peptide treated animals. CONCLUSIONS The cyclic-inverso AHSG 1-30 peptide directly inhibits the calcification process and holds the potential for future application in osteoarthritis.
Collapse
|
19
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
20
|
Muir AB, Ackerman SJ, Pan Z, Benitez A, Burger C, Spergel JM, Furuta GT, Rothman J, Wilkins BJ, Arnold MA, Dolinsky L, Grozdanovic M, Menard-Katcher C. Esophageal remodeling in eosinophilic esophagitis: Relationships to luminal captured biomarkers of inflammation and periostin. J Allergy Clin Immunol 2022; 150:649-656.e5. [PMID: 35405206 PMCID: PMC10367933 DOI: 10.1016/j.jaci.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Esophageal remodeling is a factor in disease progression and symptom severity for patients with eosinophilic esophagitis (EoE). Remodeling can begin early in children, resulting in stricture and food impaction. Detection of esophageal remodeling often depends on endoscopy and is appreciated only in its later stages. OBJECTIVE We sought to determine whether luminal eosinophil-associated and remodeling proteins captured by the esophageal string test (EST) correlate with measures of esophageal remodeling and biomarkers of the epithelial-mesenchymal transition (EMT). METHODS Patients with EoE (7-18 years old) were enrolled from 2 pediatric hospitals. Participants performed the EST and underwent endoscopy. Histology, distensibility measured by endoluminal functional lumen imaging probe, and symptoms were assessed. Protein quantitation by ELISA was performed on mucosal biopsy and EST samples. Tissue sections were evaluated for EMT. Outcome measures were summarized, and Spearman ρ was used to assess bivariate correlations. RESULTS Forty patients (68% male) were enrolled (mean age, 12.5 years). Twenty-four (60%) had active disease (≥15 eosinophils per high-power field). EST-captured eotaxin-3, major basic protein 1, EDN, eosinophil peroxidase, and Charcot-Leyden crystal protein/galectin-10 showed significant correlations with peak eosinophils per high-power field (ρ 0.53-0.68, P < .001). Luminal proteins positively correlated with endoscopic features and markers of EMT, and negatively with esophageal distensibility. Periostin was captured by the EST and correlated with eosinophil density, basal zone hyperplasia, endoscopic appearance, and markers of EMT. CONCLUSION Luminal markers of esophageal remodeling in addition to biomarkers of eosinophilic inflammation correlate with epithelial and functional remodeling in EoE.
Collapse
Affiliation(s)
- Amanda B Muir
- Division of Gastroenterology, Hepatology, and Nutrition, the Children's Hospital of Philadelphia, and the Department of Pediatrics, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pa.
| | - Steven J Ackerman
- Departments of Biochemistry and Molecular Genetics, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Zhaoxing Pan
- Research Institute, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Alain Benitez
- Division of Gastroenterology, Hepatology, and Nutrition, the Children's Hospital of Philadelphia, and the Department of Pediatrics, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Cassandra Burger
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition, Gastrointestinal Eosinophilic Diseases Program, and the Digestive Health Institute; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Jonathan M Spergel
- Division of Allergy and Immunology and Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Glenn T Furuta
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition, Gastrointestinal Eosinophilic Diseases Program, and the Digestive Health Institute; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Joshua Rothman
- Division of Gastroenterology, Hepatology, and Nutrition, the Children's Hospital of Philadelphia, and the Department of Pediatrics, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Benjamin J Wilkins
- Department of Pathology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Michael A Arnold
- Department of Pathology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Lauren Dolinsky
- Division of Gastroenterology, Hepatology, and Nutrition, the Children's Hospital of Philadelphia, and the Department of Pediatrics, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Milica Grozdanovic
- Departments of Biochemistry and Molecular Genetics, and Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Calies Menard-Katcher
- Research Institute, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
21
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
22
|
Lu J, Hu D, Ma C, Shuai B. Advances in Our Understanding of the Mechanism of Action of Drugs (including Traditional Chinese Medicines) for the Intervention and Treatment of Osteoporosis. Front Pharmacol 2022; 13:938447. [PMID: 35774616 PMCID: PMC9237325 DOI: 10.3389/fphar.2022.938447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is known as a silent disease in which the loss of bone mass and bone density does not cause obvious symptoms, resulting in insufficient treatment and preventive measures. The losses of bone mass and bone density become more severe over time and an only small percentage of patients are diagnosed when OP-related fractures occur. The high disability and mortality rates of OP-related fractures cause great psychological and physical damage and impose a heavy economic burden on individuals and society. Therefore, early intervention and treatment must be emphasized to achieve the overall goal of reducing the fracture risk. Anti-OP drugs are currently divided into three classes: antiresorptive agents, anabolic agents, and drugs with other mechanisms. In this review, research progress related to common anti-OP drugs in these three classes as well as targeted therapies is summarized to help researchers and clinicians understand their mechanisms of action and to promote pharmacological research and novel drug development.
Collapse
|
23
|
Role of Vitamin K in Chronic Kidney Disease: A Focus on Bone and Cardiovascular Health. Int J Mol Sci 2022; 23:ijms23095282. [PMID: 35563672 PMCID: PMC9099759 DOI: 10.3390/ijms23095282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is commonly associated with vitamin K deficiency. Some of the serious complications of CKD are represented by cardiovascular disease (CVD) and skeletal fragility with an increased risk of morbidity and mortality. A complex pathogenetic link between hormonal and ionic disturbances, bone tissue and metabolism alterations, and vascular calcification (VC) exists and has been defined as chronic kidney disease–mineral and bone disorder (CKD-MBD). Poor vitamin K status seems to have a key role in the progression of CKD, but also in the onset and advance of both bone and cardiovascular complications. Three forms of vitamin K are currently known: vitamin K1 (phylloquinone), vitamin K2 (menaquinone), and vitamin K3 (menadione). Vitamin K plays different roles, including in activating vitamin K-dependent proteins (VKDPs) and in modulating bone metabolism and contributing to the inhibition of VC. This review focuses on the biochemical and functional characteristics of vitamin K vitamers, suggesting this nutrient as a possible marker of kidney, CV, and bone damage in the CKD population and exploring its potential use for promoting health in this clinical setting. Treatment strategies for CKD-associated osteoporosis and CV disease should include vitamin K supplementation. However, further randomized clinical studies are needed to assess the safety and the adequate dosage to prevent these CKD complications.
Collapse
|
24
|
Chen YC, Hsu BG, Lin WC, Lee MC. Inverse association of serum osteocalcin and bone mineral density in renal transplant recipients. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_55_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|