1
|
Zhao H, Sun K, Nan X, Ding W, Ma J, Li X. Hepatocyte apoptosis is triggered by hepatic inflammation in common carp acutely exposed to microcystin-LR or chronically exposed to Microcystis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117230. [PMID: 39442250 DOI: 10.1016/j.ecoenv.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cyanobacterial blooms pose a serious threat to the survival of fish because of the hepatotoxicity of microcystins produced by toxic cyanobacteria such as Microcystis. Many studies have investigated the hepatotoxicity of microcystins in common carp, a freshwater fish distributed worldwide, but the hepatotoxicity mechanism has not been fully clarified. The present study aimed to investigate the mechanism underlying the hepatic inflammatory response and hepatocyte apoptosis induced by acute microcystin-LR exposure via intraperitoneal injection (71 μg/kg and 119 μg/kg) or gavage (357.08 μg/kg) and chronic exposure to toxic Microcystis blooms. The results of acute exposure revealed that microcystin-LR caused an increase in serum transaminase activity and increased the levels of inflammatory factors and inflammatory mediators, inducing a significant inflammatory response in the liver of common carp. Moreover, biochemical detection revealed that hepatocyte apoptosis occurred in the fish. Moreover, chronic toxic Microcystis exposure also caused hepatic inflammation and subsequent apoptosis mediated by the tumour necrosis factor-α (TNF-α) pathway and the mitochondrial pathway similar to acute exposure. Therefore, our study suggests that the inflammatory response induced by microcystin-LR exacerbates apoptosis, likely mediated by TNF-α. In summary, both acute microcystin-LR exposure and chronic toxic Microcystis exposure can cause inflammation in the liver of common carp, which subsequently triggers hepatocyte apoptosis mediated by the TNF-α pathway and the mitochondrial pathway. This study helps elucidate the mechanism of liver damage induced by cyanobacterial blooms in natural water.
Collapse
Affiliation(s)
- Haoyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Kehui Sun
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaodan Nan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Weikai Ding
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Song Y, Wang X, Lu X, Wang T. Exposure to microcystin-LR promotes the progression of colitis-associated colorectal cancer by inducing barrier disruption and gut microbiota dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116750. [PMID: 39053045 DOI: 10.1016/j.ecoenv.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Microcystins (MCs) are secondary metabolites generated by cyanobacterial blooms, among which microcystin-LR (MC-LR) stands out as the most widely distributed variant in aquatic environments. However, the effects of MC-LR on the colorectum and its role in promoting colorectal tumor progression remain unclear. Therefore, this study aims to scrutinize the impact of MC-LR on a mice model of colitis-associated colorectal cancer and elucidate the potential underlying molecular mechanisms. In this study, we used AOM/DSS mice and orally administered MC-LR at doses of 40 µg/kg or 200 µg/kg. Exposure to MC-LR increased tumor burden, promoted tumor growth, shortened colon size, and decreased goblet cell numbers and tight junction protein levels in intestinal tissues. Additionally, exposure to MC-LR induced alterations in the structure of gut microbiota in the mouse colon, characterized by an increase in the relative abundance of Escherichia_coli and Shigella_sonnei, and a decline in the relative abundance of Akkermansia_muciniphila. Transcriptomic analysis revealed that MC-LR exposure activated the IL-17 signaling pathway in mouse colorectal tissues and participated in inflammation regulation and immune response. Immunofluorescence results demonstrated an increase in T-helper 17 (Th17) cell levels in mouse colorectal tumors following MC-LR exposure. The results from RT-qPCR revealed that MC-LR induced the upregulation of IL-6, IL-1β, IL-10, IL-17A, TNF-α, CXCL1, CXCL2, CXCL5 and CCL20. The novelty of this study lies in its comprehensive approach to understanding the mechanisms by which MC-LR may contribute to CRC progression, offering new perspectives and valuable reference points for establishing guidance standards regarding MC-LR in drinking water. Our findings suggest that even at guideline value, MC-LR can have profound effects on susceptible mice, emphasizing the need for a reevaluation of guideline value and a deeper understanding of the role of environmental toxins in cancer progression.
Collapse
Affiliation(s)
- Yuechi Song
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Xiaochang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Xiaohui Lu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
| |
Collapse
|
3
|
Wang L, Chen W, Jin H, Tan Y, Guo C, Fu W, Wu Z, Cui K, Wang Y, Qiu Z, Zhang G, Liu W, Zhou Z. CXCL1/IGHG1 signaling enhances crosstalk between tumor cells and tumor-associated macrophages to promote MC-LR-induced colorectal cancer progression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124081. [PMID: 38697251 DOI: 10.1016/j.envpol.2024.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenbin Liu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Li K, Yang M, Dai Y, Huang J, Zhu P, Qiuzhen L. Microcystin-LR improves anti-tumor efficacy of oxaliplatin through induction of M1 macrophage polarization. Toxicon 2024; 243:107723. [PMID: 38663519 DOI: 10.1016/j.toxicon.2024.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
Tumor-associated macrophages within the tumor microenvironment play an immunosuppressive role by promoting tumor growth and immune evasion. Macrophages are highly plastic and can be stimulated to adopt an anti-tumor M1 phenotype. In this study, we used microcystin-LR (MC-LR), a cyclic heptapeptide produced by cyanobacteria, to induce in vitro macrophage innate immunity and transition into the anti-tumor M1 phenotype. MC-LR was also tested in vivo in a mouse model of colorectal cancer. An intraperitoneal injection of MC-LR increased the proportion of CD86⁺ M1 macrophages and triggered the maturation of CD11c⁺ dendritic cells within tumor tissues. MC-LR combined with the chemotherapeutic drug oxaliplatin significantly inhibited tumor growth in vivo. Flow cytometry analysis revealed increased infiltration of activated cytotoxic (CD8⁺, PD-1⁺) T-cells and anti-tumor cytokines (IFNγ and Granzyme B) in the tumor tissues of the combination therapy group, suggesting that this may be the primary mechanism behind the anti-tumor effect of the combination treatment. These findings indicate that MC-LR regulates the immune stimulation of macrophage polarization and dendritic cell maturation, effectively reversing tumor immunosuppression, activating an anti-tumor immune response, and enhancing tumor therapy.
Collapse
Affiliation(s)
- Keyi Li
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Minzhu Yang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Yuxin Dai
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Jinyan Huang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Peng Zhu
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China.
| | - Liu Qiuzhen
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China; Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Song Y, Wang X, Lu X, Wang T. Exposure to Microcystin-LR Promotes Colorectal Cancer Progression by Altering Gut Microbiota and Associated Metabolites in APC min/+ Mice. Toxins (Basel) 2024; 16:212. [PMID: 38787064 PMCID: PMC11125743 DOI: 10.3390/toxins16050212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Microcystins (MCs), toxins generated by cyanobacteria, feature microcystin-LR (MC-LR) as one of the most prevalent and toxic variants in aquatic environments. MC-LR not only causes environmental problems but also presents a substantial risk to human health. This study aimed to investigate the impact of MC-LR on APCmin/+ mice, considered as an ideal animal model for intestinal tumors. We administered 40 µg/kg MC-LR to mice by gavage for 8 weeks, followed by histopathological examination, microbial diversity and metabolomics analysis. The mice exposed to MC-LR exhibited a significant promotion in colorectal cancer progression and impaired intestinal barrier function in the APCmin/+ mice compared with the control. Gut microbial dysbiosis was observed in the MC-LR-exposed mice, manifesting a notable alteration in the structure of the gut microbiota. This included the enrichment of Marvinbryantia, Gordonibacter and Family_XIII_AD3011_group and reductions in Faecalibaculum and Lachnoclostridium. Metabolomics analysis revealed increased bile acid (BA) metabolites in the intestinal contents of the mice exposed to MC-LR, particularly taurocholic acid (TCA), alpha-muricholic acid (α-MCA), 3-dehydrocholic acid (3-DHCA), 7-ketodeoxycholic acid (7-KDCA) and 12-ketodeoxycholic acid (12-KDCA). Moreover, we found that Marvinbryantia and Family_XIII_AD3011_group showed the strongest positive correlation with taurocholic acid (TCA) in the mice exposed to MC-LR. These findings provide new insights into the roles and mechanisms of MC-LR in susceptible populations, providing a basis for guiding values of MC-LR in drinking water.
Collapse
Affiliation(s)
| | | | | | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.S.); (X.W.); (X.L.)
| |
Collapse
|
6
|
Zhang Y, Gao J, Cao L, Du J, Xu G, Xu P. Microcystin-LR-induced autophagy via miR-282-5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115661. [PMID: 37948941 DOI: 10.1016/j.ecoenv.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
7
|
Tan Y, Qiu Z, Zeng H, Luo J, Wang L, Wang J, Cui K, Zhang G, Zeng Y, Jin H, Chen X, Huang Y, Shu W. Microcystin-leucine-arginine impairs bone microstructure and biomechanics by activating osteoimmune response and inhibiting osteoblasts maturation in developing rats. Toxicology 2023; 494:153595. [PMID: 37467923 DOI: 10.1016/j.tox.2023.153595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Microcystin-LR (MC-LR) affects bone health in adult mice via osteo-immunomodulation. However, its effect on osteoblasts and bone development is unclear. This study investigated the effect of MC-LR on bone osteoimmune and osteoblasts in the developing period. 18 Four-week-old male Sprague Dawley rats were divided into two groups (n = 9 per group) and exposed to 0 (control) and 1 μg/kg b.w. MC-LR (exposure) by intraperitoneal injection for four weeks. The heart blood was collected for serological examination, and the femur for morphological, histopathological, and biomechanical analysis. MC-LR exposure significantly weakened bone microstructures (bone volume, bone volume/total volume, bone trabecular number, connectivity density) and biomechanics (maximum loads and maximum deflection) (P < 0.05). Besides, MC-LR decreased serum procollagen type І car-boxy-terminal propeptide, osteocalcin, bone morphogenetic protein-2, osteoprotegerin, and receptor activator of nuclear factor κB ligand, while elevating osteoclasts number, matrix metalloproteinase-9, β-catenin, Runt-related transcription factor 2, and osterix in bone, and bone alkaline phosphate, C-terminal cross-linked telopeptide of type-I collagen, tartrate-resistant acid phosphatase-5b in serum (P < 0.05). Moreover, MC-LR increased CD4+ T-cells, CD4+/CD8+, M1 and M2 macrophages, and cells apoptosis in the bone marrow, interleukin-6, interleukin-17, and tumor necrosis factor-α in serum, decreased serum interleukin-10 (P < 0.05). Overall, MC-LR can promote bone resorption by activating osteoclasts via osteoimmunology, which may involve macrophages besides lymphocytes. MC-LR may inhibit bone formation by stopping the osteoblasts at an immature stage. Thus, MC-LR weakened bone microstructure and biomechanics in developing period. Its risk on bone development needs further study.
Collapse
Affiliation(s)
- Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Cui
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guowei Zhang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huidong Jin
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoling Chen
- Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
8
|
Jiang X, Zhang H, Zhang H, Wang F, Wang X, Ding T, Zhang X, Wang T. Microcystin-LR-Induced Interaction between M2 Tumor-Associated Macrophage and Colorectal Cancer Cell Promotes Colorectal Cancer Cell Migration through Regulating the Expression of TGF-β1 and CST3. Int J Mol Sci 2023; 24:10527. [PMID: 37445705 DOI: 10.3390/ijms241310527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Microcystin-LR (MC-LR) is a toxic secondary metabolite produced by cyanobacteria that has been demonstrated to promote colorectal cancer (CRC). However, the mechanism by which MC-LR enhances CRC in the tumor microenvironment (TME) is poorly understood. To elucidate its role in TME, a co-culture system was established using CRC cells and M2 macrophages in a Transwell chamber. The study found that MC-LR promotes CRC cell migration by upregulating TGF-β1 expression and secretion in M2 macrophages and downregulating CST3 in CRC cells. Neutralizing TGF-β1 increased CST3 expression in CRC cells, while overexpressing CST3 in CRC cells suppressed TGF-β1 expression in M2 macrophages, both of which weakened MC-LR-induced cellular motility in the co-culture system. In vivo, the mice in the MC-LR/AOM/DSS group had more tumor nodules, deeper tumor invasion, and higher M2 macrophage infiltration compared to the AOM/DSS group, and the expression of TGF-β1 and CST3 in tumors was consistent with the cellular level. Overall, this study provides insights into the regulatory mechanism of MC-LR on TME, revealing that MC-LR upregulates the expression and secretion of TGF-β1 in M2 macrophages, which in turn inhibits the expression of CST3 in CRC cells to promote migration.
Collapse
Affiliation(s)
- Xinying Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Hailing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Hengshuo Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Fan Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiaochang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Tong Ding
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Xianlin Campus, Nanjing University, Nanjing 210023, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Breidenbach JD, French BW, Gordon TT, Kleinhenz AL, Khalaf FK, Willey JC, Hammersley JR, Mark Wooten R, Crawford EL, Modyanov NN, Malhotra D, Teeguarden JG, Haller ST, Kennedy DJ. Microcystin-LR aerosol induces inflammatory responses in healthy human primary airway epithelium. ENVIRONMENT INTERNATIONAL 2022; 169:107531. [PMID: 36137425 DOI: 10.1016/j.envint.2022.107531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms plague bodies of freshwater globally. These blooms are often composed of outgrowths of cyanobacteria capable of producing the heptapeptide Microcystin-LR (MC-LR) which is a well-known hepatotoxin. Recently, MC-LR has been detected in aerosols generated from lake water. However, the risk for human health effects due to MC-LR inhalation exposure have not been extensively investigated. In this study, we exposed a fully differentiated 3D human airway epithelium derived from 14 healthy donors to MC-LR-containing aerosol once a day for 3 days. Concentrations of MC-LR ranged from 100 pM to 1 µM. Although there were little to no detrimental alterations in measures of the airway epithelial function (i.e. cell survival, tissue integrity, mucociliary clearance, or cilia beating frequency), a distinct shift in the transcriptional activity was found. Genes related to inflammation were found to be upregulated such as C-C motif chemokine 5 (CCL5; log2FC = 0.57, p = 0.03) and C-C chemokine receptor type 7 (CCR7; log2FC = 0.84, p = 0.03). Functionally, conditioned media from MC-LR exposed airway epithelium was also found to have significant chemo-attractive properties for primary human neutrophils. Additionally, increases were found in the concentration of secreted chemokine proteins in the conditioned media such as CCL1 (log2FC = 5.07, p = 0.0001) and CCL5 (log2FC = 1.02, p = 0.046). These results suggest that MC-LR exposure to the human airway epithelium is capable of inducing an inflammatory response that may potentiate acute or chronic disease.
Collapse
Affiliation(s)
| | - Benjamin W French
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tamiya T Gordon
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Andrew L Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Fatimah K Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; College of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - James C Willey
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | | | - R Mark Wooten
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Erin L Crawford
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Nikolai N Modyanov
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Justin G Teeguarden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Steven T Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - David J Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
10
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|