1
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
2
|
Wang X, Ma X, Chen S, Fan M, Jin C, Chen Y, Wang S, Wang Z, Meng F, Zhang C, Yang L. Harnessing m1A modification: a new frontier in cancer immunotherapy. Front Immunol 2024; 15:1517604. [PMID: 39687616 PMCID: PMC11647001 DOI: 10.3389/fimmu.2024.1517604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
N1-methyladenosine (m1A) modification is an epigenetic change that occurs on RNA molecules, regulated by a suite of enzymes including methyltransferases (writers), demethylases (erasers), and m1A-recognizing proteins (readers). This modification significantly impacts the function of RNA and various biological processes by affecting the structure, stability, translation, metabolism, and gene expression of RNA. Thereby, m1A modification is closely associated with the occurrence and progression of cancer. This review aims to explore the role of m1A modification in tumor immunity. m1A affects tumor immune responses by directly regulating immune cells and indirectly modulating tumor microenvironment. Besides, we also discuss the implications of m1A-mediated metabolic reprogramming and its nexus with immune checkpoint inhibitors, unveiling promising avenues for immunotherapeutic intervention. Additionally, the m1AScore, established based on the expression patterns of m1A modification, can be used to predict tumor prognosis and guide personalized therapy. Our review underscores the significance of m1A modification as a burgeoning frontier in cancer biology and immuno-oncology, with the potential to revolutionize cancer treatment strategies.
Collapse
Affiliation(s)
- Xinru Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoqing Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Minyan Fan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chenying Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yushi Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaodong Wang
- Affiliated Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiying Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Fei Meng
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengwan Zhang
- Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Cheng L, Wang C, Zhao D, Wu S. Narrative review of research progress of RNA m 5C methylation in head and neck malignancies. Transl Cancer Res 2024; 13:5112-5122. [PMID: 39430837 PMCID: PMC11483327 DOI: 10.21037/tcr-24-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/11/2024] [Indexed: 10/22/2024]
Abstract
Background and Objective Head and neck malignancies encompass a spectrum of malignant tumors occurring in the head and neck region, characterized by rapid progression, high recurrence rates, and dismal prognoses. Despite significant advancements in comprehensive surgery-based therapies, the 5-year survival rate for patients has not shown substantial improvement. There is an urgent need to investigate novel targeted therapies. With the advancements in epigenetics, RNA 5-methylcytosine (m5C) methylation, a prevalent form of RNA modification, has been identified by numerous studies as playing a pivotal role in the pathological processes of tumorigenesis and development. However, a comprehensive review within the realm of head and neck malignancies is currently lacking. This study aims to comprehensively review the biological implications of RNA m5C methylation regulators in the pathogenesis and progression of various systemic malignant tumors, with a specific focus on exploring the potential impact of RNA m5C methylation on head and neck malignancies. Methods A literature search on RNA m5C methylation and head and neck malignancies was conducted using PubMed, resulting in the inclusion of 46 relevant articles. The Cancer Genome Atlas (TCGA) database was utilized to analyze the correlation between m5C regulatory factors and clinicopathological features in patients with head and neck squamous cell carcinoma (HNSCC). Key Content and Findings Aberrant expression of RNA m5C methylation regulators is observed in head and neck malignancies, displaying a correlation with the clinicopathological grading of tumors. Conclusions RNA m5C methylation may contribute to the progression of head and neck malignancies and could be associated with an unfavorable prognosis for patients. These findings offer valuable insights for the development of targeted treatments for head and neck malignancies.
Collapse
Affiliation(s)
- Lang Cheng
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Chengtao Wang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dan Zhao
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Shuangjiang Wu
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| |
Collapse
|
4
|
Ma C, Gu Z, Yang Y. Development of m6A/m5C/m1A regulated lncRNA signature for prognostic prediction, personalized immune intervention and drug selection in LUAD. J Cell Mol Med 2024; 28:e18282. [PMID: 38647237 PMCID: PMC11034373 DOI: 10.1111/jcmm.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Research indicates that there are links between m6A, m5C and m1A modifications and the development of different types of tumours. However, it is not yet clear if these modifications are involved in the prognosis of LUAD. The TCGA-LUAD dataset was used as for signature training, while the validation cohort was created by amalgamating publicly accessible GEO datasets including GSE29013, GSE30219, GSE31210, GSE37745 and GSE50081. The study focused on 33 genes that are regulated by m6A, m5C or m1A (mRG), which were used to form mRGs clusters and clusters of mRG differentially expressed genes clusters (mRG-DEG clusters). Our subsequent LASSO regression analysis trained the signature of m6A/m5C/m1A-related lncRNA (mRLncSig) using lncRNAs that exhibited differential expression among mRG-DEG clusters and had prognostic value. The model's accuracy underwent validation via Kaplan-Meier analysis, Cox regression, ROC analysis, tAUC evaluation, PCA examination and nomogram predictor validation. In evaluating the immunotherapeutic potential of the signature, we employed multiple bioinformatics algorithms and concepts through various analyses. These included seven newly developed immunoinformatic algorithms, as well as evaluations of TMB, TIDE and immune checkpoints. Additionally, we identified and validated promising agents that target the high-risk mRLncSig in LUAD. To validate the real-world expression pattern of mRLncSig, real-time PCR was carried out on human LUAD tissues. The signature's ability to perform in pan-cancer settings was also evaluated. The study created a 10-lncRNA signature, mRLncSig, which was validated to have prognostic power in the validation cohort. Real-time PCR was applied to verify the actual manifestation of each gene in the signature in the real world. Our immunotherapy analysis revealed an association between mRLncSig and immune status. mRLncSig was found to be closely linked to several checkpoints, such as IL10, IL2, CD40LG, SELP, BTLA and CD28, which could be appropriate immunotherapy targets for LUAD. Among the high-risk patients, our study identified 12 candidate drugs and verified gemcitabine as the most significant one that could target our signature and be effective in treating LUAD. Additionally, we discovered that some of the lncRNAs in mRLncSig could play a crucial role in certain cancer types, and thus, may require further attention in future studies. According to the findings of this study, the use of mRLncSig has the potential to aid in forecasting the prognosis of LUAD and could serve as a potential target for immunotherapy. Moreover, our signature may assist in identifying targets and therapeutic agents more effectively.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic SurgeryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhuoyu Gu
- Department of Thoracic SurgeryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Yang
- Department of Thoracic SurgeryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Gu X, Zhuang A, Yu J, Yang L, Ge S, Ruan J, Jia R, Fan X, Chai P. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res 2024; 52:2273-2289. [PMID: 38118002 PMCID: PMC10954454 DOI: 10.1093/nar/gkad1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Albeit N1-Methyladenosine (m1A) RNA modification represents an important regulator of RNA metabolism, the role of m1A modification in carcinogenesis remains enigmatic. Herein, we found that histone lactylation enhances ALKBH3 expression and simultaneously attenuates the formation of tumor-suppressive promyelocytic leukemia protein (PML) condensates by removing the m1A methylation of SP100A, promoting the malignant transformation of cancers. First, ALKBH3 is specifically upregulated in high-risk ocular melanoma due to excessive histone lactylation levels, referring to m1A hypomethylation status. Moreover, the multiomics analysis subsequently identified that SP100A, a core component for PML bodies, serves as a downstream candidate target for ALKBH3. Therapeutically, the silencing of ALKBH3 exhibits efficient therapeutic efficacy in melanoma both in vitro and in vivo, which could be reversed by the depletion of SP100A. Mechanistically, we found that YTHDF1 is responsible for recognition of the m1A methylated SP100A transcript, which increases its RNA stability and translational efficacy. Conclusively, we initially demonstrated that m1A modification is necessary for tumor suppressor gene expression, expanding the current understandings of dynamic m1A function during tumor progression. In addition, our results indicate that lactylation-driven ALKBH3 is essential for the formation of PML nuclear condensates, which bridges our knowledge of m1A modification, metabolic reprogramming, and phase-separation events.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
6
|
Wu X, Tang J, Cheng B. Oral squamous cell carcinoma gene patterns connected with RNA methylation for prognostic prediction. Oral Dis 2024; 30:408-421. [PMID: 35934835 DOI: 10.1111/odi.14341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To determine whether m6A/m1A/m5C/m7G/m6Am/Ψ-related genes influence the prognosis of a patient with oral squamous cell carcinoma. MATERIALS AND METHODS We investigated the changes in regulatory genes using publicly available data from The Cancer Genome Atlas. Consensus clustering by RNA methylation-related regulators was used to describe oral squamous cell carcinomas (OSCCs). Then, we developed the prediction model. The tumor microenvironment was investigated using ESTIMATE. Gene set enrichment analysis was used to determine whether pathways or cell types were enriched in different groups. The association between the model and immune-related risk scores was investigated using correlation analysis. RESULTS We found 22 gene signatures in this analysis and then developed a predictive model that reveals the genes that are highly connected to the overall survival of OSCC patients. The survival and death rates were substantially different in the two groups (high and low risk) classified by the risk scores. The validation cohort verified the phenotypic diversity and prognostic effects of these genes. CONCLUSION Our data reveal that immune cell infiltration, genetic mutation, and survival potential in OSCC patients are linked to m6A/m1A/m5C/m7G/m6Am/Ψ-related genes, and we constructed a dependable prognostic model for OSCC patients.
Collapse
Affiliation(s)
- Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiezhang Tang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
He X, Chen X, Yang C, Wang W, Sun H, Wang J, Fu J, Dong H. Prognostic value of RNA methylation-related genes in gastric adenocarcinoma based on bioinformatics. PeerJ 2024; 12:e16951. [PMID: 38436027 PMCID: PMC10909369 DOI: 10.7717/peerj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa and has a poor prognosis. Stomach adenocarcinoma (STAD) covers 95% of total gastric cancer. This study aimed to identify the prognostic value of RNA methylation-related genes in gastric cancer. Methods In this study, The Cancer Genome Atlas (TCGA)-STAD and GSE84426 cohorts were downloaded from public databases. Patients were classified by consistent cluster analysis based on prognosis-related differentially expressed RNA methylation genes Prognostic genes were obtained by differential expression, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. The prognostic model was established and validated in the training set, test set and validation set respectively. Independent prognostic analysis was implemented. Finally, the expression of prognostic genes was affirmed by reverse transcription quantitative PCR (RT-qPCR). Results In total, four prognostic genes (ACTA2, SAPCD2, PDK4 and APOD) related to RNA methylation were identified and enrolled into the risk signature. The STAD patients were divided into high- and low-risk groups based on the medium value of the risk score, and patients in the high-risk group had a poor prognosis. In addition, the RNA methylation-relevant risk signature was validated in the test and validation sets, and was authenticated as a reliable independent prognostic predictor. The nomogram was constructed based on the independent predictors to predict the 1/3/5-year survival probability of STAD patients. The gene set enrichment analysis (GSEA) result suggested that the poor prognosis in the high-risk subgroup may be related to immune-related pathways. Finally, the experimental results indicated that the expression trends of RNA methylation-relevant prognostic genes in gastric cancer cells were in agreement with the result of bioinformatics. Conclusion Our study established a novel RNA methylation-related risk signature for STAD, which was of considerable significance for improving prognosis of STAD patients and offering theoretical support for clinical therapy.
Collapse
Affiliation(s)
- Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Junjie Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Jincheng Fu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| |
Collapse
|
8
|
Zhou L, Zhou W, Li Y, Hua R. m1A Regulatory gene signatures are associated with certain immune cell compositions of the tumor microenvironment and predict survival in kidney renal clear cell carcinoma. Eur J Med Res 2023; 28:321. [PMID: 37679761 PMCID: PMC10483733 DOI: 10.1186/s40001-023-01292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine N1 methylation (m1A) of RNA, a type of post-transcriptional modification, has been shown to play a significant role in the progression of cancer. The objective of the current research was to analyze the genetic alteration and prognostic significance of m1A regulators in kidney renal clear cell carcinoma (KIRC). Genomic and clinicopathological characteristics were obtained from 558 KIRC patients in the Cancer Genome Atlas (TCGA) and Gene Omnibus Expression (GEO) databases. Alterations in the gene expression of ten m1A-regulators were analyzed and survival analysis was performed using the Cox regression method. We also identified three clusters of patients based on their distinct m1A alteration patterns, using integrated analysis of the ten m1A-related regulators, which were significantly related to overall survival (OS), disease-free survival (DFS) and tumor microenvironment (TME) immune cell infiltration cells in KIRC. Our findings showed that m1A alteration patterns have critical roles in determining TME complexity and its immune cell composition. Furthermore, different m1A expression patterns were significantly associated with DFS and OS rates in KIRC patients. In conclusion, the identified m1A RNA modification patterns offer a potentially effective way to classify KIRC patients based on their TME immune cell infiltration, enabling the development of more personalized and successful treatment strategies for these patients.
Collapse
Affiliation(s)
- Linjun Zhou
- Department of Nephrology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Weidong Zhou
- Department of Emergency, Zhanggongqu Hospital Of Traditional Chinese Medicine, Ganzhou, China
| | - Yuan Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA.
| | - Ruifang Hua
- Department of Nephrology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, China.
| |
Collapse
|
9
|
Li L, Tan H, Zhou J, Hu F. Predicting response of immunotherapy and targeted therapy and prognosis characteristics for renal clear cell carcinoma based on m1A methylation regulators. Sci Rep 2023; 13:12645. [PMID: 37542141 PMCID: PMC10403615 DOI: 10.1038/s41598-023-39935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
In recent years, RNA methylation modification has been found to be related to a variety of tumor mechanisms, such as rectal cancer. Clear cell renal cell carcinoma (ccRCC) is most common in renal cell carcinoma. In this study, we get the RNA profiles of ccRCC patients from ArrayExpress and TCGA databases. The prognosis model of ccRCC was developed by the least absolute shrinkage and selection operator (LASSO) regression analysis, and the samples were stratified into low-high risk groups. In addition, our prognostic model was validated through the receiver operating characteristic curve (ROC). "pRRophetic" package screened five potential small molecule drugs. Protein interaction networks explore tumor driving factors and drug targeting factors. Finally, polymerase chain reaction (PCR) was used to verify the expression of the model in the ccRCC cell line. The mRNA matrix in ArrayExpress and TCGA databases was used to establish a prognostic model for ccRCC through LASSO regression analysis. Kaplan Meier analysis showed that the overall survival rate (OS) of the high-risk group was poor. ROC verifies the reliability of our model. Functional enrichment analysis showed that there was a obviously difference in immune status between the high-low risk groups. "pRRophetic" package screened five potential small molecule drugs (A.443654, A.770041, ABT.888, AG.014699, AMG.706). Protein interaction network shows that epidermal growth factor receptor [EGRF] and estrogen receptor 1 [ESR1] are tumor drivers and drug targeting factors. To further analyze the differential expression and pathway correlation of the prognosis risk model species. Finally, polymerase chain reaction (PCR) showed the expression of YTHN6-Methyladenosine RNA Binding Protein 1[YTHDF1], TRNA Methyltransferase 61B [TRMT61B], TRNA Methyltransferase 10C [TRMT10C] and AlkB Homolog 1[ALKBH1] in ccRCC cell lines. To sum up, the prognosis risk model we created not only has good predictive value, but also can provide guidance for accurately predicting the prognosis of ccRCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongwei Tan
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Jiexue Zhou
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China.
| | - Fengming Hu
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
11
|
Kong Y, Yu J, Ge S, Fan X. Novel insight into RNA modifications in tumor immunity: Promising targets to prevent tumor immune escape. Innovation (N Y) 2023; 4:100452. [PMID: 37485079 PMCID: PMC10362524 DOI: 10.1016/j.xinn.2023.100452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
An immunosuppressive state is a typical feature of the tumor microenvironment. Despite the dramatic success of immune checkpoint inhibitor (ICI) therapy in preventing tumor cell escape from immune surveillance, primary and acquired resistance have limited its clinical use. Notably, recent clinical trials have shown that epigenetic drugs can significantly improve the outcome of ICI therapy in various cancers, indicating the importance of epigenetic modifications in immune regulation of tumors. Recently, RNA modifications (N6-methyladenosine [m6A], N1-methyladenosine [m1A], 5-methylcytosine [m5C], etc.), novel hotspot areas of epigenetic research, have been shown to play crucial roles in protumor and antitumor immunity. In this review, we provide a comprehensive understanding of how m6A, m1A, and m5C function in tumor immunity by directly regulating different immune cells as well as indirectly regulating tumor cells through different mechanisms, including modulating the expression of immune checkpoints, inducing metabolic reprogramming, and affecting the secretion of immune-related factors. Finally, we discuss the current status of strategies targeting RNA modifications to prevent tumor immune escape, highlighting their potential.
Collapse
Affiliation(s)
- Yuxin Kong
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
12
|
Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:210. [PMID: 37217462 DOI: 10.1038/s41392-023-01480-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Over decades, researchers have focused on the epigenetic control of DNA-templated processes. Histone modification, DNA methylation, chromatin remodeling, RNA modification, and noncoding RNAs modulate many biological processes that are crucial to the development of cancers. Dysregulation of the epigenome drives aberrant transcriptional programs. A growing body of evidence suggests that the mechanisms of epigenetic modification are dysregulated in human cancers and might be excellent targets for tumor treatment. Epigenetics has also been shown to influence tumor immunogenicity and immune cells involved in antitumor responses. Thus, the development and application of epigenetic therapy and cancer immunotherapy and their combinations may have important implications for cancer treatment. Here, we present an up-to-date and thorough description of how epigenetic modifications in tumor cells influence immune cell responses in the tumor microenvironment (TME) and how epigenetics influence immune cells internally to modify the TME. Additionally, we highlight the therapeutic potential of targeting epigenetic regulators for cancer immunotherapy. Harnessing the complex interplay between epigenetics and cancer immunology to develop therapeutics that combine thereof is challenging but could yield significant benefits. The purpose of this review is to assist researchers in understanding how epigenetics impact immune responses in the TME, so that better cancer immunotherapies can be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Liu T, Sun L, Li ZZ, Yang K, Chen JM, Han XY, Qi LM, Zhou XG, Wang P. The m6A/m5C/m1A regulator genes signature reveals the prognosis and is related with immune microenvironment for hepatocellular carcinoma. BMC Gastroenterol 2023; 23:147. [PMID: 37170222 PMCID: PMC10173529 DOI: 10.1186/s12876-023-02776-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND RNA methylation is a crucial in many biological functions, and its aberrant regulation is associated with cancer progression. N6-Methyladenosine (m6A), 5-Methylcytosine (m5C), N1-methyladenosine (m1A) are common modifications of RNA methylation. However, the effect of methylation of m6A/m5C/m1A in hepatocellular carcinoma (HCC) remains unclear. METHOD The transcriptome datasets, clinic information, and mutational data of 48 m6A/m5C/m1A regulator genes were acquired from the TCGA database, and the prognostic hazard model was established by univariate and Least absolute shrinkage and selection operator (Lasso) regression. The multivariate regression was performed to determine whether the risk score was an independent prognostic indicator. Kaplan-Meier survival analysis and ROC curve analysis were used to evaluate the predictive ability of the risk model. Decision curve analysis(DCA)analysis was conducted to estimate the clinical utility of the risk model. We further analyzed the association between risk score and functional enrichment, tumor immune microenvironment, and somatic mutation. RESULT The four-gene (YTHDF1, YBX1, TRMT10C, TRMT61A) risk signature was constructed. The high-risk group had shorter overall survival (OS) than the low-risk group. Univariate and multivariate regression analysis indicated that risk score was an independent prognostic indicator. Risk scores in male group, T3 + T4 group and Stage III + IV group were higher in female group, T1 + T2 group and stage I + II group. The AUC values for 1-, 2-, and 3-year OS in the TCGA dataset were 0.764, 0.693, and 0.689, respectively. DCA analysis showed that the risk score had a higher clinical net benefit in 1- and 2-year OS than other clinical features.The risk score was positively related to some immune cell infiltration and most immune checkpoints. CONCLUSION We developed a novel m6A/m5C/m1A regulator genes' prognostic model, which could be applied as a latent prognostic tool for HCC and might guide the choice of immunotherapies.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Zhi-Zhao Li
- Department of Cardiovascular, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Jia-Min Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Xiao-Yi Han
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Li-Ming Qi
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Xin-Gang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China.
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, People's Republic of China.
| |
Collapse
|
14
|
Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 2023; 39:74-88. [PMID: 36379743 DOI: 10.1016/j.tig.2022.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.
Collapse
Affiliation(s)
- Ines Orsolic
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Arnaud Carrier
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
N1-methyladenosine modification in cancer biology: current status and future perspectives. Comput Struct Biotechnol J 2022; 20:6578-6585. [PMID: 36467585 PMCID: PMC9712505 DOI: 10.1016/j.csbj.2022.11.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Post-transcriptional modifications in RNAs regulate their biological behaviors and functions. N1-methyladenosine (m1A), which is dynamically regulated by writers, erasers and readers, has been found as a reversible modification in tRNA, mRNA, rRNA and long non-coding RNA (lncRNA). m1A modification has impacts on the RNA processing, structure and functions of targets. Increasing studies reveal the critical roles of m1A modification and its regulators in tumorigenesis. Due to the positive relevance between m1A and cancer development, targeting m1A modification and m1A-related regulators has been of attention. In this review, we summarized the current understanding of m1A in RNAs, covering the modulation of m1A modification in cancer biology, as well as the possibility of targeting m1A modification as a potential target for cancer diagnosis and therapy.
Collapse
|
16
|
Liu H, Wang D, Yang Z, Li S, Wu H, Xiang J, Kan S, Hao M, Liu W. Regulation of epigenetic modifications in the head and neck tumour microenvironment. Front Immunol 2022; 13:1050982. [DOI: 10.3389/fimmu.2022.1050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck tumours are common malignancies that are associated with high mortality. The low rate of early diagnosis and the high rates of local recurrence and distant metastasis are the main reasons for treatment failure. Recent studies have established that the tumour microenvironment (TME) can affect the proliferation and metastasis of head and neck tumours via several mechanisms, including altered expressions of certain genes and cytokines. Increasing evidence has shown that epigenetic modifications, such as DNA methylation, histone modification, RNA modification, and non-coding RNAs, can regulate the head and neck TME and thereby influence tumour development. Epigenetic modifications can regulate the expression of different genes and subsequently alter the TME to affect the progression of head and neck tumours. In addition, the cell components in the TME are regulated by epigenetic modifications, which, in turn, affect the behaviour of head and neck tumour cells. In this review, we have discussed the functions of epigenetic modifications in the head and neck TME. We have further examined the roles of such modifications in the malignancy and metastasis of head and neck tumours.
Collapse
|
17
|
Yan X, Qu Y, Huang W, Zhang H, Zhu L, Zhang L. Identification and construction of a prognostic risk model based on multi-RNA methylation regulators in cervical cancer. J Obstet Gynaecol Res 2022; 48:3199-3208. [PMID: 36101016 DOI: 10.1111/jog.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
AIM Cervical cancer is one of the most aggressive female cancers. RNA methylation is a necessary epigenetic modification in biological process. This study aimed to construct an RNA methylation regulator-based risk model for predicting the prognosis of cervical cancer patients. METHODS The transcriptome profiles of cervical cancer data were obtained from The Cancer Genome Atlas (TCGA) and GSE44001. An RNA methylation-related risk model was constructed and assessed by the Least absolute shrinkage and selection operator (Lasso)-penalized Cox regression model and receiver operating characteristic (ROC). Kaplan-Meier and Cox regression analyses were used to evaluate the prognostic effect of the risk model and calculated scores. The immune infiltration difference was further analyzed between the subgroups with a single-sample gene set enrichment analysis (ssGSEA). RESULTS A total of 63 methylation modulators were included in this study, and 618 cervical cancer patients were identified from TCGA and GSE44001. Differential expression genes profiling RNA methylation regulators between normal and tumor samples were distinct. A four-gene signature panel was constructed to predict the prognostic risk. The predictive ability was satisfactory. Cervical cancer patients were classified into high- or low-risk subgroups according to the median risk score. Moreover, the immune infiltration patterns between them differed. CONCLUSIONS A risk model including four RNA methylation regulators was constructed, which will provide new perspectives for further investigation of the relationship between RNA methylation and cervical cancer.
Collapse
Affiliation(s)
- Xiaoling Yan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Qu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Hao Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Lei Zhu
- Department of Pharmacy, Yizheng People's Hospital, Yangzhou, Jiangsu, China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital & Affiliated Hospital to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
18
|
Lu F, Gao J, Hou Y, Cao K, Xia Y, Chen Z, Yu H, Chang L, Li W. Construction of a Novel Prognostic Model in Lung Adenocarcinoma Based on 7-Methylguanosine-Related Gene Signatures. Front Oncol 2022; 12:876360. [PMID: 35785179 PMCID: PMC9243265 DOI: 10.3389/fonc.2022.876360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has implicated the modification of 7-methylguanosine (m7G), a type of RNA modification, in tumor progression. However, no comprehensive analysis to date has summarized the predicted role of m7G-related gene signatures in lung adenocarcinoma (LUAD). Herein, we aimed to develop a novel prognostic model in LUAD based on m7G-related gene signatures. The LUAD transcriptome profiling data and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus datasets. After screening, we first obtained 29 m7G-related genes, most of which were upregulated in tumor tissues and negatively associated with overall survival (OS). According to the expression similarity of m7G-related genes, the combined samples from the TCGA-LUAD and GSE68465 datasets were further classified as two clusters that exhibit distinct OS rates and genetic heterogeneity. Then, we constructed a novel prognostic model involving four genes by using 130 differentially expressed genes among the two clusters. The combined samples were randomly divided into a training cohort and an internal validation cohort in a 1:1 ratio, and the GSE72094 dataset was used as an external validation cohort. The samples were divided into high- and low-risk groups. We demonstrated that a higher risk score was an independent negative prognostic factor and predicted poor OS. A nomogram was further constructed to better predict the survival of LUAD patients. Functional enrichment analyses indicated that cell cycle and DNA replication-related biological processes and pathways were enriched in the high-risk group. More importantly, the low-risk group had greater infiltration and enrichment of most immune cells, as well as higher ESTIMATE, immune, and stromal scores. In addition, the high-risk group had a lower TIDE score and higher expressions of most immune checkpoint-related genes. We finally noticed that patients in the high-risk group were more sensitive to chemotherapeutic agents commonly used in LUAD. In conclusion, we herein summarized for the first time the alterations and prognostic role of m7G-related genes in LUAD and then constructed a prognostic model based on m7G-related gene signatures that could accurately and stably predict survival and guide individualized treatment decision-making in LUAD patients.
Collapse
Affiliation(s)
- Fei Lu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- Department of Oncology and Hematology, Southern Central Hospital of Yunnan Province, The First People’s Hospital of Honghe State, Mengzi, China
| | - Jingyan Gao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Ke Cao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Zhengting Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Hui Yu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- *Correspondence: Wenhui Li, ; Li Chang,
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
- *Correspondence: Wenhui Li, ; Li Chang,
| |
Collapse
|
19
|
Wu Y, Jiang D, Zhang H, Yin F, Guo P, Zhang X, Bian C, Chen C, Li S, Yin Y, Böckler D, Zhang J, Han Y. N1-Methyladenosine (m1A) Regulation Associated With the Pathogenesis of Abdominal Aortic Aneurysm Through YTHDF3 Modulating Macrophage Polarization. Front Cardiovasc Med 2022; 9:883155. [PMID: 35620523 PMCID: PMC9127271 DOI: 10.3389/fcvm.2022.883155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aimed to identify key AAA-related m1A RNA methylation regulators and their association with immune infiltration in AAA. Furthermore, we aimed to explore the mechanism that m1A regulators modulate the functions of certain immune cells as well as the downstream target genes, participating in the progression of AAA. Methods Based on the gene expression profiles of the GSE47472 and GSE98278 datasets, differential expression analysis focusing on m1A regulators was performed on the combined dataset to identify differentially expressed m1A regulatory genes (DEMRGs). Additionally, CIBERSORT tool was utilized in the analysis of the immune infiltration landscape and its correlation with DEMRGs. Moreover, we validated the expression levels of DEMRGs in human AAA tissues by real-time quantitative PCR (RT-qPCR). Immunofluorescence (IF) staining was also applied in the validation of cellular localization of YTHDF3 in AAA tissues. Furthermore, we established LPS/IFN-γ induced M1 macrophages and ythdf3 knockdown macrophages in vitro, to explore the relationship between YTHDF3 and macrophage polarization. At last, RNA immunoprecipitation-sequencing (RIP-Seq) combined with PPI network analysis was used to predict the target genes of YTHDF3 in AAA progression. Results Eight DEMRGs were identified in our study, including YTHDC1, YTHDF1-3, RRP8, TRMT61A as up-regulated genes and FTO, ALKBH1 as down-regulated genes. The immune infiltration analysis showed these DEMRGs were positively correlated with activated mast cells, plasma cells and M1 macrophages in AAA. RT-qPCR analysis also verified the up-regulated expression levels of YTHDC1, YTHDF1, and YTHDF3 in human AAA tissues. Besides, IF staining result in AAA adventitia indicated the localization of YTHDF3 in macrophages. Moreover, our in-vitro experiments found that the knockdown of ythdf3 in M0 macrophages inhibits macrophage M1 polarization but promotes macrophage M2 polarization. Eventually, 30 key AAA-related target genes of YTHDF3 were predicted, including CD44, mTOR, ITGB1, STAT3, etc. Conclusion Our study reveals that m1A regulation is significantly associated with the pathogenesis of human AAA. The m1A “reader,” YTHDF3, may participate in the modulating of macrophage polarization that promotes aortic inflammation, and influence AAA progression by regulating the expression of its target genes.
Collapse
Affiliation(s)
- Yihao Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Shuixin Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuhan Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Jian Zhang
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- Yanshuo Han ; orcid.org/0000-0002-4897-2998
| |
Collapse
|
20
|
Jingjian Q, Jiang E, Shang Z. Prognostic value of tumor-stroma ratio in oral carcinoma: role of cancer associated fibroblasts. Oral Dis 2022. [PMID: 35388593 DOI: 10.1111/odi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Tumor-stroma Ratio(TSR) is a promising parameter representing the abundance of the stroma which has been validated in many solid tumors. However, it is still not clear which part of stroma mainly contribute to the prognostic value of TSR. The aim of this study is to confirm the prognostic value of TSR in a large cohort of oral squamous cell carcinoma (OSCC) and further demonstrated that cancer associated fibroblasts (CAFs)-stroma ratio (CSR) contributed to the prognostic value of TSR. MATERIALS AND METHODS TSR was evaluated on hematoxylin and eosin-stained tissue samples from 581 patients with OSCC, which divides patients into high (>50%) and low (<50%) stroma. Then, CSR was estimated on immunohistochemical staining slides of 100 patients selected from 581patients. RESULTS In multivariate analysis, TSR was identified as an independent prognostic factor for disease-free survival (DFS) (P < 0.001) and oral cancer-specific survival (OCSS) (P < 0.001). The interaction term reached statistical significance for histological grade for DFS and OCSS separately. Furthermore, the high-stroma group had a higher CSR than the low-stroma group. CONCLUSION The prognostic value of TSR is validated in OSCC particularly in moderate and high differentiation. And CSR palys its part in the prognosis of TSR.
Collapse
Affiliation(s)
- Qiu Jingjian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine of Ministry of education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine of Ministry of education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, 430089, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine of Ministry of education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, 430089, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Gao L, Chen R, Sugimoto M, Mizuta M, Zhou L, Kishimoto Y, Huang X, Omori K. The RNA Methylation Modification 5-Methylcytosine Impacts Immunity Characteristics, Prognosis and Progression of Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Front Bioeng Biotechnol 2021; 9:760724. [PMID: 34957065 PMCID: PMC8696036 DOI: 10.3389/fbioe.2021.760724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Disorders pertaining to 5-methylcytosine (m5C) modifications are involved in the pathological process of many diseases. However, the effect of m5C on the tumorigenesis and progression of oral squamous cell carcinoma (OSCC) remains unclear. In this study, we integrated the genomic and clinical data of 558 OSCC samples to comprehensively evaluate m5C modification patterns. Based on 16 m5C methylation regulators, two m5C modification clusters were identified with distinct tumor immune microenvironment (TIME) characteristics and prognosis in OSCC. We then performed weighted gene co-expression network analysis (WGCNA) to identify m5C modification cluster-related modules. Genes in the selected module were chosen to construct the m5Cscore scoring system for evaluating m5C modification pattern in individual OSCC patients. Patients with a high m5Cscore had higher immune, stromal, and ESTIMATE scores; lower tumor purity score; lower immune activity; and higher tumor mutational burden. The overall survival rate and progression-free survival rate were markedly worse and the tumor recurrence rate was higher in OSCC patients with a high m5Cscore. Furthermore, patients with oral leukoplakia who also had a high m5Cscore had a higher risk of deterioration to OSCC. This study demonstrated that m5C modification patterns might affect the TIME in OSCC. m5Cscore may provide a new approach for predicting the prognosis and progression of OSCC.
Collapse
Affiliation(s)
- Li Gao
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ru Chen
- Department of Medicine, Matsusaka City Hospital, Matsusaka, Japan
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies Health Promotion and Preemptive Medicine, Tokyo Medical University, Tokyo, Japan
| | - Masanobu Mizuta
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Lei Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yo Kishimoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xinsheng Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|