1
|
Ghahremani PT, BaniArdalan S, Alehossein P, Parveen A, Jorjani M, Brown CM, Geldenhuys WJ, Huber JD, Ishrat T, Nasoohi S. Poststroke hyperglycemia dysregulates cap-dependent translation in neural cells. Life Sci 2025; 361:123336. [PMID: 39719167 DOI: 10.1016/j.lfs.2024.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke. METHODS Rat primary cortical neurons (PCNs) were exposed to oxygen glucose deprivation (OGD) followed by increasing glucose concentration (0, 5, 10, 25 mM) at reoxygenation. In vivo, adult rats were subjected to two hours transient distal middle cerebral artery occlusion (t-dMCAO) and hyperglycemic reperfusion. KEY FINDINGS In PCN cultures, high glucose levels impaired normal neurite growth at 24 h I/R where it drastically depressed S6 ribosomal protein phosphorylation at serine 235/236 residues in 40S ribosomal subunit. This concurred with substantial hypoxia inducible factor-1α (HIF-1α) destabilization and sustained vascular endothelial growth factor (VEGF). Our immunoblotting findings indicated HIF-1α stabilization and AMPK activation rely on glucose availability. Incremental glucose concentrations above the physiological levels, induced a shift towards 4E-BP1, eIF-4E hypo-phosphorylated forms leading to reduced eIF-4E availability and efficacy, as the key to recruit the 40S ribosomal subunit to the 5' end of mRNA. In vivo, immunostaining of t-dMCAO rat brains showed remarkable decrease in phosphorylated 4E-BP1 and particularly s6 ribosomal protein in the marginal cortical tissue of hyperglycemic compared to normoglycemic animals. SIGNIFICANCE These findings suggest a remarkable association between hyperglycemic I/R injury with dysregulated cap-dependent translation poststroke. Further loss/gain of function experiment may elucidate the potential therapeutic targets in regulation of HIF-1α/translation in hyperglycemic I/R injury.
Collapse
Affiliation(s)
| | - Soha BaniArdalan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshi Parveen
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Masoumeh Jorjani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
2
|
Zhang H, Tian Y, Ma S, Ji Y, Wang Z, Xiao P, Xu Y. Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials. Mol Neurobiol 2024; 61:10671-10683. [PMID: 38775879 DOI: 10.1007/s12035-024-04230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
Collapse
Affiliation(s)
- Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Li Z, Miao L, Zhang T, Thomas AM, Li S. Causal relationship of inflammatory cytokines and serum metabolites in cerebral small vessel disease: a two-step Mendelian randomization study. Eur J Neurol 2024; 31:e16443. [PMID: 39150083 PMCID: PMC11555141 DOI: 10.1111/ene.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate the causal relationships of inflammatory cytokines and serum metabolites in cerebral small vessel disease (CSVD). METHODS Bidirectional Mendelian randomization was first conducted to screen inflammatory cytokines and serum metabolites that were associated with imaging features of CSVD, including white matter hyperintensities, recent small subcortical infarcts, cortical cerebral microinfarcts, cerebral microbleeds, lacunes and enlarged perivascular spaces. Sensitivity analyses were performed to evaluate the robustness and pleiotropy of these results. Subsequently, inflammatory cytokines and serum metabolites that were associated with CSVD were subjected to functional enrichment. Finally, mediation analysis was employed to investigate whether inflammatory cytokines or serum metabolites acted as an intermediary for the other in their causal relationship with CSVD. RESULTS Of the inflammatory cytokines, five were risk factors (e.g., tumour-necrosis-factor-related apoptosis-inducing ligand) and five (e.g., fibroblast growth factor 19) were protective factors for CSVD. Eleven serum metabolites that increased CSVD risk and 13 metabolites that decreased CSVD risk were also identified. The majority of these markers of CSVD susceptibility were lipid metabolites. Natural killer cell receptor sub-type 2B4 was determined to act as a mediating factor of an unidentified metabolite for the enlargement of perivascular spaces. CONCLUSION Several inflammatory cytokines and serum metabolites had causal relationships with imaging features of CSVD. A natural killer cell receptor mediated in part the promotional effect of a metabolite on perivascular space enlargement.
Collapse
Affiliation(s)
- Zidong Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Lu Miao
- Shanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Tianyi Zhang
- School of Basic Medical SciencesShandong UniversityJinanChina
| | - Aline M. Thomas
- Russell H. Morgan Department of Radiology and Radiological SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Martínez-Alonso E, Escobar-Peso A, Guerra-Pérez N, Roca M, Masjuan J, Alcázar A. Dihydropyrimidinase-Related Protein 2 Is a New Partner in the Binding between 4E-BP2 and eIF4E Related to Neuronal Death after Cerebral Ischemia. Int J Mol Sci 2023; 24:ijms24098246. [PMID: 37175950 PMCID: PMC10179276 DOI: 10.3390/ijms24098246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Transient cerebral ischemia induces neuronal degeneration, followed in time by secondary delayed neuronal death that is strongly correlated with a permanent inhibition of protein synthesis in vulnerable brain regions, while protein translational rates are recovered in resistant areas. In the translation-regulation initiation step, the eukaryotic initiation factor (eIF) 4E is a key player regulated by its association with eIF4E-binding proteins (4E-BPs), mostly 4E-BP2 in brain tissue. In a previous work, we identified dihydropyrimidinase-related protein 2 (DRP2) as a 4E-BP2-interacting protein. Here, using a proteomic approach in a model of transient cerebral ischemia, a detailed study of DRP2 was performed in order to address the challenge of translation restoration in vulnerable regions. In this report, several DRP2 isoforms that have a specific interaction with both 4E-BP2 and eIF4E were identified, showing significant and opposite differences in this association, and being differentially detected in resistant and vulnerable regions in response to ischemia reperfusion. Our results provide the first evidence of DRP2 isoforms as potential regulators of the 4E-BP2-eIF4E association that would have consequences in the delayed neuronal death under ischemic-reperfusion stress. The new knowledge reported here identifies DRP2 as a new target to promote neuronal survival after cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marcel Roca
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| |
Collapse
|
5
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
6
|
Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia. Int J Mol Sci 2022; 23:ijms23031830. [PMID: 35163752 PMCID: PMC8836865 DOI: 10.3390/ijms23031830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic strokes are caused by a reduction in cerebral blood flow and both the ischemic period and subsequent reperfusion induce brain injury, with different tissue damage depending on the severity of the ischemic insult, its duration, and the particular areas of the brain affected. In those areas vulnerable to cerebral ischemia, the inhibition of protein translation is an essential process of the cellular response leading to delayed neuronal death. In particular, translation initiation is rate-limiting for protein synthesis and the eukaryotic initiation factor (eIF) 4F complex is indispensable for cap-dependent protein translation. In the eIF4F complex, eIF4G is a scaffolding protein that provides docking sites for the assembly of eIF4A and eIF4E, binding to the cap structure of the mRNA and stabilizing all proteins of the complex. The eIF4F complex constituents, eIF4A, eIF4E, and eIF4G, participate in translation regulation by their phosphorylation at specific sites under cellular stress conditions, modulating the activity of the cap-binding complex and protein translation. This work investigates the phosphorylation of eIF4G1 involved in the eIF4E/eIF4G1 association complex, and their regulation in ischemia-reperfusion (IR) as a stress-inducing condition. IR was induced in an animal model of transient cerebral ischemia and the results were studied in the resistant cortical region and in the vulnerable hippocampal CA1 region. The presented data demonstrate the phosphorylation of eIF4G1 at Ser1147, Ser1185, and Ser1231 in both brain regions and in control and ischemic conditions, being the phosphorylation of eIF4G1 at Ser1147 the only one found in the eIF4E/eIF4G association complex from the cap-containing matrix (m7GTP-Sepharose). In addition, our work reveals the specific modulation of the phosphorylation of eIF4G1 at Ser1147 in the vulnerable region, with increased levels and colocalization with eIF4E in response to IR. These findings contribute to elucidate the molecular mechanism of protein translation regulation that underlies in the balance of cell survival/death during pathophysiological stress, such as cerebral ischemia.
Collapse
|