1
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Chuang WC, Yang CN, Wang HW, Lin SK, Yu CC, Syu JH, Chiang CP, Shiao YJ, Chen YW. The mechanisms of Porphyromonas gingivalis-derived outer membrane vesicles-induced neurotoxicity and microglia activation. J Dent Sci 2024; 19:1434-1442. [PMID: 39035337 PMCID: PMC11259672 DOI: 10.1016/j.jds.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Periodontitis is associated with various systemic diseases, potentially facilitated by the passage of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs). Several recent studies have suggested a connection between Pg-OMVs and neuroinflammation and neurodegeneration, but the precise causal relationship remains unclear. This study aimed to investigate the mechanisms underlying these associations using in vitro models. Materials and methods Isolated Pg-OMVs were characterized by morphology, size, and gingipain activity. We exposed SH-SY5Y neuroblastoma cells and BV-2 microglial cells to various concentrations of Pg-OMVs. Cell morphology, a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, an enzyme-linked immunosorbent assay, and Western blot analysis were used to evaluate the cellular mechanism underlying Pg-OMV-induced neurotoxicity in neuronal cells and inflammatory responses in microglial cells. Results Exposure to Pg-OMVs induced neurotoxicity in SH-SY5Y cells, as evidenced by cellular shrinkage, reduced viability, activation of apoptotic pathways, and diminished neuronal differentiation markers. Gingipain inhibition mitigated these effects, suggesting that gingipain mediates Pg-OMVs-induced neurotoxicity in SH-SY5Y cells. Our research on neuroinflammation suggests that upon endocytosis of Pg-OMVs by BV-2 cells, lipopolysaccharide (LPS) can modulate the production of inducible nitric oxide synthase and tumor necrosis factor-alpha by activating pathways that involve phosphorylated AKT and the phosphorylated JNK pathway. Conclusion Our study demonstrated that following the endocytosis of Pg-OMVs, gingipain can induce neurotoxicity in SH-SY5Y cells. Furthermore, the Pg-OMVs-associated LPS can trigger neuroinflammation via AKT and JNK signaling pathways in BV-2 cells.
Collapse
Affiliation(s)
- Wei-Chun Chuang
- Department of Dentistry, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chu Yu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jhe-Hao Syu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
4
|
Battaglia S, Avenanti A, Vécsei L, Tanaka M. Neural Correlates and Molecular Mechanisms of Memory and Learning. Int J Mol Sci 2024; 25:2724. [PMID: 38473973 DOI: 10.3390/ijms25052724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Memory and learning are essential cognitive processes that enable us to obtain, retain, and recall information [...].
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int J Mol Sci 2023; 24:15739. [PMID: 37958722 PMCID: PMC10649796 DOI: 10.3390/ijms242115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Revealing the underlying pathomechanisms of neurological and psychiatric disorders, searching for new biomarkers, and developing novel therapeutics all require translational research [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Fu XX, Wei B, Cao HM, Duan R, Deng Y, Lian HW, Zhang YD, Jiang T. Telmisartan Alleviates Alzheimer's Disease-Related Neuropathologies and Cognitive Impairments. J Alzheimers Dis 2023:JAD230133. [PMID: 37355897 DOI: 10.3233/jad-230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of neurodegenerative disorder. There are few effective medications for halting the progression of AD. Telmisartan (TEL) is a widely used anti-hypertensive drug approved by FDA. Aside from treating hypertension, TEL has been revealed to provide protection against AD. However, the underlying mechanisms remain unclear. OBJECTIVE To investigate the mechanisms underlying the beneficial effects of TEL against AD. METHODS Eight-month-old APP/PS1 mice were administered with 5 mg/kg TEL once per day for 4 successive months. Nesting test, Y-maze test, and Morris water maze test were employed to assess the cognitive and executive functions. Neuronal and synaptic markers, Aβ pathology, neuroinflammation, and oxidative stress in the brains were measured. Specifically, components involved in amyloid-β (Aβ) production and degradation pathway were analyzed to explore the mechanisms underlying the therapeutic effect of TEL against Aβ pathology. The primary microglia were used to uncover the mechanisms underlying the anti-inflammatory effects of TEL in AD. Additionally, the preventive effect of TEL against AD were investigated using 4-month-old APP/PS1 mice. RESULTS TEL treatment ameliorated cognitive and executive impairments, neuronal and synaptic injury, Aβ pathology, neuroinflammation, and oxidative stress in APP/PS1 mice. The favorable effects of TEL on Aβ pathology were achieved by inhibiting enzymatic Aβ production and facilitating enzymatic and autophagic Aβ degradation. Meanwhile, the anti-inflammatory effects of TEL were accomplished via microglial PPARγ/NLRP3 pathway. The administration of TEL prior to symptom onset prevented AD-related cognitive decline and neuropathologies. CONCLUSION TEL represents a promising agent for AD prevention and treatment.
Collapse
Affiliation(s)
- Xin-Xin Fu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Hai-Ming Cao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| | - Yang Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| | - Hui-Wen Lian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
7
|
Hsieh YY, Lee KC, Cheng KC, Lee KF, Yang YL, Chu HT, Lin TW, Chen CC, Hsieh MC, Huang CY, Kuo HC, Teng CC. Antrodin C Isolated from Antrodia Cinnamomea Induced Apoptosis through ROS/AKT/ERK/P38 Signaling Pathway and Epigenetic Histone Acetylation of TNFα in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030764. [PMID: 36979011 PMCID: PMC10045953 DOI: 10.3390/antiox12030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Antrodin C, a maleimide derivative compound isolated from the ethanol extract of the mycelium of Antrodia cinnamomea, is an endemic fungus of Taiwan and a potential chemoprotective agent. However, the molecular mechanisms underlying the mode of action of antrodin C on cancer cells, especially in human colorectal cancer (CRC), remain unclear. METHODS The cell death and ROS of the antrodin-C-treated HCT-116 cells were measured by annexin V-FITC/propidium iodide staining, DCFDA, and Fluo-3 fluorescence staining assays. Moreover, signaling molecules regulating TNFα cell death pathways and ROS/AKT/ERK/P38 pathways were also detected in cells treated with antrodin C by Western blotting and chromatin immunoprecipitation. The effects of antrodin C were determined in HCT-116 cell xenograft animal models in terms of tumor volumes and histopathological evaluation. RESULTS Treatment with antrodin C triggered the activation of extrinsic apoptosis pathways (TNFα, Bax, caspase-3, and -9), and also suppressed the expression of anti-apoptotic molecules Bcl-2 in HCT-116 cells in a time-dependent manner. Antrodin C also decreased cell proliferation and growth through the inactivation of cyclin D1/cyclin for the arrest of the cell cycle at the G1 phase. The activation of the ROS/AKT/ERK/P38 pathways was involved in antrodin-C-induced transcriptional activation, which implicates the role of the histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFα promoters. Immunohistochemical analyses revealed that antrodin C treatment significantly induced TNFα levels, whereas it decreased the levels of PCNA, cyclin D1, cyclin E, and MMP-9 in an in vivo xenograft mouse model. Thus, antrodin C induces cell apoptosis via the activation of the ROS/AKT/ERK/P38 signaling modules, indicating a new mechanism for antrodin C to treat CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Kung-Chuan Cheng
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
8
|
Li HX, Wang JJ, Lu CL, Gao YJ, Gao L, Yang ZQ. Review of Bioactivity, Isolation, and Identification of Active Compounds from Antrodia cinnamomea. Bioengineering (Basel) 2022; 9:494. [PMID: 36290462 PMCID: PMC9598228 DOI: 10.3390/bioengineering9100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2023] Open
Abstract
Antrodia cinnamomea is a precious and popular edible and medicinal mushroom. It has attracted increasing attention due to its various and excellent bioactivities, such as hepatoprotection, hypoglycemic, antioxidant, antitumor, anticancer, anti-inflammatory, immunomodulation, and gut microbiota regulation properties. To elucidate its bioactivities and develop novel functional foods or medicines, numerous studies have focused on the isolation and identification of the bioactive compounds of A. cinnamomea. In this review, the recent advances in bioactivity, isolation, purification, and identification methods of active compounds from A. cinnamomea were summarized. The present work is beneficial to the further isolation and discovery of new active compounds from A. cinnamomea.
Collapse
Affiliation(s)
- Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Juan-Juan Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chun-Lei Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Near-Infrared Photothermally Enhanced Photo-Oxygenation for Inhibition of Amyloid-β Aggregation Based on RVG-Conjugated Porphyrinic Metal-Organic Framework and Indocyanine Green Nanoplatform. Int J Mol Sci 2022; 23:ijms231810885. [PMID: 36142796 PMCID: PMC9505608 DOI: 10.3390/ijms231810885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregation is associated with many neurodegenerative diseases such as Alzheimer's disease (AD). The current technologies using phototherapy for amyloid inhibition are usually photodynamic approaches based on evidence that reactive oxygen species can inhibit Aβ aggregation. Herein, we report a novel combinational photothermally assisted photo-oxygenation treatment based on a nano-platform of the brain-targeting peptide RVG conjugated with the 2D porphyrinic PCN-222 metal-organic framework and indocyanine green (PCN-222@ICG@RVG) with enhanced photo-inhibition in Alzheimer's Aβ aggregation. A photothermally assisted photo-oxygenation treatment based on PCN@ICG could largely enhance the photo-inhibition effect on Aβ42 aggregation and lead to much lower neurotoxicity upon near-infrared (NIR) irradiation at 808 nm compared with a single modality of photo-treatment in both cell-free and in vitro experiments. Generally, local photothermal heat increases the instability of Aβ aggregates and keeps Aβ in the status of monomers, which facilitates the photo-oxygenation process of generating oxidized Aβ monomers with low aggregation capability. In addition, combined with the brain-targeting peptide RVG, the PCN-222@ICG@RVG nanoprobe shows high permeability of the human blood-brain barrier (BBB) on a human brain-on-a-chip platform. The ex vivo study also demonstrates that NIR-activated PCN-222@ICG@RVG could efficiently dissemble Aβ plaques. Our work suggests that the combination of photothermal treatment with photo-oxygenation can synergistically enhance the inhibition of Aβ aggregation, which may boost NIR-based combinational phototherapy of AD in the future.
Collapse
|
10
|
Roles of Fatty Acids in Microglial Polarization: Evidence from In Vitro and In Vivo Studies on Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23137300. [PMID: 35806302 PMCID: PMC9266841 DOI: 10.3390/ijms23137300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Microglial polarization to the M1 phenotype (classically activated) or the M2 phenotype (alternatively activated) is critical in determining the fate of immune responses in neurodegenerative diseases (NDs). M1 macrophages contribute to neurotoxicity, neuronal and synaptic damage, and oxidative stress and are the first line of defense, and M2 macrophages elicit an anti-inflammatory response to regulate neuroinflammation, clear cell debris, and promote neuroregeneration. Various studies have focused on the ability of natural compounds to promote microglial polarization from the M1 phenotype to the M2 phenotype in several diseases, including NDs. However, studies on the roles of fatty acids in microglial polarization and their implications in NDs are a rare find. Most of the studies support the role of polyunsaturated fatty acids (PUFAs) in microglial polarization using cell and animal models. Thus, we aimed to collect data and provide a narrative account of microglial types, markers, and studies pertaining to fatty acids, particularly PUFAs, on microglial polarization and their neuroprotective effects. The involvement of only PUFAs in the chosen topic necessitates more in-depth research into the role of unexplored fatty acids in microglial polarization and their mechanistic implications. The review also highlights limitations and future challenges.
Collapse
|
11
|
Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents-in celebration of 80th birthday of Professor Peter Riederer. J Neural Transm (Vienna) 2022; 129:627-642. [PMID: 35624406 DOI: 10.1007/s00702-022-02513-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Eleonóra Spekker
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary. .,Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.
| |
Collapse
|
12
|
Kuo HC, Lee KF, Chen SL, Chiu SC, Lee LY, Chen WP, Chen CC, Chu CH. Neuron–Microglia Contacts Govern the PGE2 Tolerance through TLR4-Mediated de Novo Protein Synthesis. Biomedicines 2022; 10:biomedicines10020419. [PMID: 35203628 PMCID: PMC8962342 DOI: 10.3390/biomedicines10020419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Cellular and molecular mechanisms of the peripheral immune system (e.g., macrophage and monocyte) in programming endotoxin tolerance (ET) have been well studied. However, regulatory mechanism in development of brain immune tolerance remains unclear. The inducible COX-2/PGE2 axis in microglia, the primary innate immune cells of the brain, is a pivotal feature in causing inflammation and neuronal injury, both in acute excitotoxic insults and chronic neurodegenerative diseases. This present study investigated the regulatory mechanism of PGE2 tolerance in microglia. Multiple reconstituted primary brain cells cultures, including neuron–glial (NG), mixed glial (MG), neuron-enriched, and microglia-enriched cultures, were performed and consequently applied to a treatment regimen for ET induction. Our results revealed that the levels of COX-2 mRNA and supernatant PGE2 in NG cultures, but not in microglia-enriched and MG cultures, were drastically reduced in response to the ET challenge, suggesting that the presence of neurons, rather than astroglia, is required for PGE2 tolerance in microglia. Furthermore, our data showed that neural contact, instead of its soluble factors, is sufficient for developing microglial PGE2 tolerance. Simultaneously, this finding determined how neurons regulated microglial PGE2 tolerance. Moreover, by inhibiting TLR4 activation and de novo protein synthesis by LPS-binding protein (LBP) manipulation and cycloheximide, our data showed that the TLR4 signal and de novo protein synthesis are necessary for microglia to develop PGE2 tolerance in NG cells under the ET challenge. Altogether, our findings demonstrated that neuron–microglia contacts are indispensable in emerging PGE2 tolerance through the regulation of TLR4-mediated de novo protein synthesis.
Collapse
Affiliation(s)
- Hsing-Chun Kuo
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan;
- Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan;
| | - Shu-Chen Chiu
- National Laboratory Animal Center (NLAC), NARLabs, Tainan 74147, Taiwan;
| | - Li-Ya Lee
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taoyuan 32542, Taiwan; (L.-Y.L.); (W.-P.C.); (C.-C.C.)
| | - Wan-Ping Chen
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taoyuan 32542, Taiwan; (L.-Y.L.); (W.-P.C.); (C.-C.C.)
| | - Chin-Chu Chen
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taoyuan 32542, Taiwan; (L.-Y.L.); (W.-P.C.); (C.-C.C.)
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Correspondence: or ; Tel.: +886-6-235-3535 (ext. 3592); Fax: +886-6-209-5845
| |
Collapse
|
13
|
Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2021; 10:76. [PMID: 35052756 PMCID: PMC8773152 DOI: 10.3390/biomedicines10010076] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Migraine is a primary headache disorder characterized by a unilateral, throbbing, pulsing headache, which lasts for hours to days, and the pain can interfere with daily activities. It exhibits various symptoms, such as nausea, vomiting, sensitivity to light, sound, and odors, and physical activity consistently contributes to worsening pain. Despite the intensive research, little is still known about the pathomechanism of migraine. It is widely accepted that migraine involves activation and sensitization of the trigeminovascular system. It leads to the release of several pro-inflammatory neuropeptides and neurotransmitters and causes a cascade of inflammatory tissue responses, including vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Convincing evidence obtained in rodent models suggests that neurogenic inflammation is assumed to contribute to the development of a migraine attack. Chemical stimulation of the dura mater triggers activation and sensitization of the trigeminal system and causes numerous molecular and behavioral changes; therefore, this is a relevant animal model of acute migraine. This narrative review discusses the emerging evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology of migraine, presenting the most recent advances in preclinical research and the novel therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
| | - Masaru Tanaka
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| | - László Vécsei
- Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), H-6725 Szeged, Hungary; (E.S.); (M.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|