1
|
Liao HX, Mao X, Wang L, Wang N, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination. Front Immunol 2024; 15:1423069. [PMID: 39185411 PMCID: PMC11341407 DOI: 10.3389/fimmu.2024.1423069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammatory bowel disease (IBD), a condition of the digestive tract and one of the autoimmune diseases, is becoming a disease of significant global public health concern and substantial clinical burden. Various signaling pathways have been documented to modulate IBD, but the exact activation and regulatory mechanisms have not been fully clarified; thus, a need for constant exploration of the molecules and pathways that play key roles in the development of IBD. In recent years, several protein post-translational modification pathways, such as ubiquitination, phosphorylation, methylation, acetylation, and glycolysis, have been implicated in IBD. An aberrant ubiquitination in IBD is often associated with dysregulated immune responses and inflammation. Mesenchymal stem cells (MSCs) play a crucial role in regulating ubiquitination modifications through the ubiquitin-proteasome system, a cellular machinery responsible for protein degradation. Specifically, MSCs have been shown to influence the ubiquitination of key signaling molecules involved in inflammatory pathways. This paper reviews the recent research progress in MSC-regulated ubiquitination in IBD, highlighting their therapeutic potential in treating IBD and offering a promising avenue for developing targeted interventions to modulate the immune system and alleviate inflammatory conditions.
Collapse
Affiliation(s)
- Hong Xi Liao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Xiaojun Mao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Lan Wang
- Department of Laboratory Medicine, Danyang Blood Station, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
2
|
Le Menn G, Pikkarainen K, Mennerich D, Miroszewska D, Kietzmann T, Chen Z. USP28 protects development of inflammation in mouse intestine by regulating STAT5 phosphorylation and IL22 production in T lymphocytes. Front Immunol 2024; 15:1401949. [PMID: 39076972 PMCID: PMC11284026 DOI: 10.3389/fimmu.2024.1401949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Ubiquitin-specific proteases (USPs), a large subset of more than 50 deubiquitinase proteins, have recently emerged as promising targets in cancer. However, their role in immune cell regulation, particularly in T cell activation, differentiation, and effector functions, remains largely unexplored. Methods We utilized a USP28 knockout mouse line to study the effect of USP28 on T cell activation and function, and its role in intestinal inflammation using the dextran sulfate sodium (DSS)-induced colitis model and a series of in vitro assays. Results Our results show that USP28 exerts protective effects in acute intestinal inflammation. Mechanistically, USP28 knockout mice (USP28-/-) exhibited an increase in total T cells mainly due to an increased CD8+ T cell content. Additionally, USP28 deficiency resulted in early defects in T cell activation and functional changes. Specifically, we observed a reduced expression of IL17 and an increase in inducible regulatory T (iTreg) suppressive functions. Importantly, activated T cells lacking USP28 showed increased STAT5 phosphorylation. Consistent with these findings, these mice exhibited increased susceptibility to acute DSS-induced intestinal inflammation, accompanied by elevated IL22 cytokine levels. Conclusions Our findings demonstrate that USP28 is essential for T cell functionality and protects mice from acute DSS-induced colitis by regulating STAT5 signaling and IL22 production. As a T cell regulator, USP28 plays a crucial role in immune responses and intestinal health.
Collapse
Affiliation(s)
- Gwenaëlle Le Menn
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Keela Pikkarainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Zhou F, Du H, Wang Y, Fu W, Zhao B, Zhou J, Zhang YJ. Deciphering the Selectivity of CBL-B Inhibitors Using All-Atom Molecular Dynamics and Machine Learning. ACS Med Chem Lett 2024; 15:1017-1025. [PMID: 39015275 PMCID: PMC11247639 DOI: 10.1021/acsmedchemlett.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
We employ a combination of accelerated molecular dynamics and machine learning to unravel how the dynamic characteristics of CBL-B and C-CBL confer their binding affinity and selectivity for ligands from subtle structural disparities within their binding pockets and dissociation pathways. Our predictive model of dissociation rate constants (k off) demonstrates a moderate correlation between predicted k off and experimental IC50 values, which is consistent with experimental k off and τ-random accelerated molecular dynamics (τRAMD) results. By employing a linear regression of dissociation trajectories, we identified key amino acids in binding pockets and along the dissociation paths responsible for activity and selectivity. These amino acids are statistically significant in achieving activity and selectivity and contribute to the primary structural discrepancies between CBL-B and C-CBL. Moreover, the binding free energies calculated from molecular mechanics with generalized Born and surface area solvation (MM/GBSA) highlight the ΔG difference between CBL-B and C-CBL. The k off prediction, together with the key amino acids, provides important guides for designing drugs with high selectivity.
Collapse
Affiliation(s)
- Feng Zhou
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| | - Haolin Du
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| | - Yang Wang
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| | - Weiqiang Fu
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| | - Bingchen Zhao
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| | - Jielong Zhou
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| | - Yingsheng J. Zhang
- Beijing
StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China
| |
Collapse
|
4
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
McEwen DP, Ray P, Nancarrow DJ, Wang Z, Kasturirangan S, Abdullah S, Balan A, Hoskeri R, Thomas D, Lawrence TS, Beer DG, Lagisetty KH, Ray D. ISG15/GRAIL1/CD3 axis influences survival of patients with esophageal adenocarcinoma. JCI Insight 2024; 9:e179315. [PMID: 38781019 PMCID: PMC11383178 DOI: 10.1172/jci.insight.179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David G Beer
- Department of Surgery, Section of Thoracic Surgery
| | | | | |
Collapse
|
6
|
Wang Y, Zhou Y, Yang L, Lei L, He B, Cao J, Gao H. Challenges Coexist with Opportunities: Spatial Heterogeneity Expression of PD-L1 in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303175. [PMID: 37934012 PMCID: PMC10767451 DOI: 10.1002/advs.202303175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Indexed: 11/08/2023]
Abstract
Cancer immunotherapy using anti-programmed death-ligand 1 (PD-L1) antibodies has been used in various clinical applications and achieved certain results. However, such limitations as autoimmunity, tumor hyperprogression, and overall low patient response rate impede its further clinical application. Mounting evidence has revealed that PD-L1 is not only present in tumor cell membrane but also in cytoplasm, exosome, or even nucleus. Among these, the dynamic and spatial heterogeneous expression of PD-L1 in tumors is mainly responsible for the unsatisfactory efficacy of PD-L1 antibodies. Hence, numerous studies focus on inhibiting or degrading PD-L1 to improve immune response, while a comprehensive understanding of the molecular mechanisms underlying spatial heterogeneity of PD-L1 can fundamentally transform the current status of PD-L1 antibodies in clinical development. Herein, the concept of spatial heterogeneous expression of PD-L1 is creatively introduced, encompassing the structure and biological functions of various kinds of PD-L1 (including mPD-L1, cPD-L1, nPD-L1, and exoPD-L1). Then an in-depth analysis of the regulatory mechanisms and potential therapeutic targets of PD-L1 is provided, seeking to offer a solid basis for future investigation. Moreover, the current status of agents is summarized, especially small molecular modulators development directed at these new targets, offering a novel perspective on potential PD-L1 therapeutics strategies.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Yang Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Lianyi Yang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Lei Lei
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Bin He
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Jun Cao
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
7
|
Luo X, Wang Y, Zhang H, Chen G, Sheng J, Tian X, Xue R, Wang Y. Identification of a Prognostic Signature for Ovarian Cancer Based on Ubiquitin-Related Genes Suggesting a Potential Role for FBXO9. Biomolecules 2023; 13:1724. [PMID: 38136595 PMCID: PMC10742228 DOI: 10.3390/biom13121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Ovarian cancer (OV) is associated with high mortality and poses challenges in diagnosis and prognosis prediction. Ubiquitin-related genes (UbRGs) are involved in the initiation and progression of cancers, but have still not been utilized for diagnosis and prognosis of OV. METHODS K48-linked ubiquitination in ovarian tissues from our OV and control cohort was assessed using immunohistochemistry. UbRGs, including ubiquitin and ubiquitin-like regulators, were screened based on the TCGA-OV and GTEx database. Univariate Cox regression analysis identified survival-associated UbRGs. A risk model was established using the LASSO regression and multivariate Cox regression analysis. The relationship between UbRGs and immune cell infiltration, tumor mutational burden, drug sensitivity, and immune checkpoint was determined using the CIBERSORT, ESTIMATE, and Maftools algorithms, based on the Genomics of Drug Sensitivity in Cancer and TCGA-OV databases. GEPIA2.0 was used to analyze the correlation between FBXO9/UBD and DNA damage repair-related genes. Finally, FBXO9 and UBD were accessed in tissues or cells using immunohistochemistry, qPCR, and Western blot. RESULTS We confirmed the crucial role for ubiquitination in OV as a significant decrease of K48-linked ubiquitination was observed in primary OV lesions. We identified a prognostic signature utilizing two specific UbRGs, FBXO9 and UBD. The risk score obtained from this signature accurately predicted the overall survival of TCGA-OV training dataset and GSE32062 validation dataset. Furthermore, this risk score also showed association with immunocyte infiltration and drug sensitivity, revealing potential mechanisms for ubiquitination mediated OV risk. In addition, FBXO9, but not UBD, was found to be downregulated in OV and positively correlated with DNA damage repair pathways, suggesting FBXO9 as a potential cancer suppressor, likely via facilitating DNA damage repair. CONCLUSIONS We identified and validated a signature of UbRGs that accurately predicts the prognosis, offers valuable guidance for optimizing chemotherapy and targeted therapies, and suggests a potential role for FBXO9 in OV.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingjie Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guangquan Chen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jindan Sheng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiu Tian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Renhao Xue
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China (G.C.)
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
9
|
Wang YW, Zuo JC, Chen C, Li XH. Post-translational modifications and immune responses in liver cancer. Front Immunol 2023; 14:1230465. [PMID: 37609076 PMCID: PMC10441662 DOI: 10.3389/fimmu.2023.1230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Post-translational modification (PTM) refers to the covalent attachment of functional groups to protein substrates, resulting in structural and functional changes. PTMs not only regulate the development and progression of liver cancer, but also play a crucial role in the immune response against cancer. Cancer immunity encompasses the combined efforts of innate and adaptive immune surveillance against tumor antigens, tumor cells, and tumorigenic microenvironments. Increasing evidence suggests that immunotherapies, which harness the immune system's potential to combat cancer, can effectively improve cancer patient prognosis and prolong the survival. This review presents a comprehensive summary of the current understanding of key PTMs such as phosphorylation, ubiquitination, SUMOylation, and glycosylation in the context of immune cancer surveillance against liver cancer. Additionally, it highlights potential targets associated with these modifications to enhance the response to immunotherapies in the treatment of liver cancer.
Collapse
Affiliation(s)
| | | | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Bedran G, Gasser HC, Weke K, Wang T, Bedran D, Laird A, Battail C, Zanzotto FM, Pesquita C, Axelson H, Rajan A, Harrison DJ, Palkowski A, Pawlik M, Parys M, O'Neill JR, Brennan PM, Symeonides SN, Goodlett DR, Litchfield K, Fahraeus R, Hupp TR, Kote S, Alfaro JA. The Immunopeptidome from a Genomic Perspective: Establishing the Noncanonical Landscape of MHC Class I-Associated Peptides. Cancer Immunol Res 2023; 11:747-762. [PMID: 36961404 PMCID: PMC10236148 DOI: 10.1158/2326-6066.cir-22-0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tumor antigens can emerge through multiple mechanisms, including translation of noncoding genomic regions. This noncanonical category of tumor antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry (MS) to enable the discovery of noncanonical MHC class I-associated peptides (ncMAP) from noncoding regions. Considering that the emergence of tumor antigens can also involve posttranslational modifications (PTM), we included an open search component in our pipeline. Leveraging the wealth of MS-based immunopeptidomics, we analyzed data from 26 MHC class I immunopeptidomic studies across 11 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant PTMs, using spectral matching and controlled their FDR to 1%. The noncanonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 55%. The data reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine development.
Collapse
Affiliation(s)
- Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Kenneth Weke
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Tongjie Wang
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominika Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alexander Laird
- Urology Department, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Christophe Battail
- CEA, Grenoble Alpes University, INSERM, IRIG, Biosciences and Bioengineering for Health Laboratory (BGE) - UA13 INSERM-CEA-UGA, Grenoble, France
| | | | - Catia Pesquita
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ajitha Rajan
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Aleksander Palkowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Maciej Pawlik
- Academic Computer Centre CYFRONET, AGH University of Science and Technology, Cracow, Poland
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan N. Symeonides
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- University of Victoria Genome BC Proteome Centre, Victoria, Canada
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Paris, France
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
11
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
12
|
Abstract
Cancer immunotherapy with immune-checkpoint blockade has improved the outcomes of patients with various malignancies, yet a majority do not benefit or develop resistance. To address this unmet need, efforts across the field are targeting additional coinhibitory receptors, costimulatory proteins, and intracellular mediators that could prevent or bypass anti-PD1 resistance mechanisms. The CD28 costimulatory pathway is necessary for antigen-specific T cell activation, though prior CD28 agonists did not translate successfully to clinic due to toxicity. Casitas B lymphoma-b (Cbl-b) is a downstream, master regulator of both CD28 and CTLA-4 signaling. This E3 ubiquitin ligase regulates both innate and adaptive immune cells, ultimately promoting an immunosuppressive tumor microenvironment (TME) in the absence of CD28 costimulation. Recent advances in pharmaceutical screening and computational biology have enabled the development of novel platforms to target this once 'undruggable' protein. These platforms include DNA encoded library screening, allosteric drug targeting, small-interfering RNA inhibition, CRISPR genome editing, and adoptive cell therapy. Both genetic knock-out models and Cbl-b inhibitors have been shown to reverse immunosuppression in the TME, stimulate cytotoxic T cell activity, and promote tumor regression, findings augmented with PD1 blockade in experimental models. In translating Cbl-b inhibitors to clinic, we propose specific gene expression profiles that may identify patient populations most likely to benefit. Overall, novel Cbl-b inhibitors provide antigen-specific immune stimulation and are a promising therapeutic tool in the field of immuno-oncology.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Jia C, Zhang X, Qu T, Wu X, Li Y, Zhao Y, Sun L, Wang Q. Depletion of PSMD14 suppresses bladder cancer proliferation by regulating GPX4. PeerJ 2023; 11:e14654. [PMID: 36632137 PMCID: PMC9828270 DOI: 10.7717/peerj.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Objective The aim of this study was to investigate the role of deubiquitinase (DUB) 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) in patients with bladder cancer. Methods From 2016 to 2018, 181 patients diagnosed with primary bladder cancer at the Affiliated Hospital of Qingdao University were recruited. The expression of PSMD14 in bladder cancer tissues was tested by immunochemistry. The association between PSMD14 expression and clinical and pathological data and outcomes of bladder cancer patients was determined. Overexpression and knockdown cells were constructed to evaluate the effects of PSMD14 on proliferation of bladder cancer cells. Results Our results showed that PSMD14 was significantly overexpressed in bladder cancer tissues compared to adjacent non-tumor tissues (76.24% vs 23.76%, P = 0.02). The expression of PSMD14 was significantly higher in patients with larger tumor diameters (85.14% vs 70.09%, P = 0.019) and patients with a family history of cancer (92.16% vs 70.00%, P = 0.002). Patients with high expression of PSMD14 had poor disease-free survival (DFS) (HR = 2.89, 95% CI [1.247-6.711], P = 0.013). Gain and loss of function experiments demonstrated that PSMD14 deficiency inhibited bladder cancer cell proliferation. Additionally, depletion of PSMD14 suppressed bladder cancer cell growth via down-regulation of GPX4, and the promotion of PSMD14-induced cell growth was observably reversed by the GPX4 inhibitor RSL3. Conclusion We determined that PSMD14 is highly expressed in bladder cancer tissues, and that PSMD14 expression correlated with poor disease-free survival. Depletion of PSMD14 could inhibit the proliferation of bladder cancer cells through the downregulation of GPX4. Therefore, PSMD14 may be an effective target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Changxin Jia
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xin Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tingting Qu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiuyun Wu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yang Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lijiang Sun
- Department of Urology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Endocrine and metabolic diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
14
|
Yang D, Wang J, Hu M, Li F, Yang F, Zhao Y, Xu Y, Zhang X, Tang L, Zhang X. Combined multiomics analysis reveals the mechanism of CENPF overexpression-mediated immune dysfunction in diffuse large B-cell lymphoma in vitro. Front Genet 2022; 13:1072689. [PMID: 36644760 PMCID: PMC9837108 DOI: 10.3389/fgene.2022.1072689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most common aggressive B-cell lymphomas with significant heterogeneity. More than half of patients are cured, but 40%-45% still face relapse or develop drug resistance, and the mechanism is not yet known. In this study, Centrimeric protein F (CENPF) overexpression was found in several DLBCL patients with relapsed or refractory disease compared to patients with complete remission. Thus, the human DLBCL cell line SU-DHL-4 was chosen for this study, and CENPF was upregulated in that cell line by using an adenovirus in vitro. Mass spectrometry-based quantitative proteome analysis was first performed, and the results showed that the expression levels of various proteins were increased when CENPF was upregulated, and these proteins are mainly involved in cellular processes, biological regulation, immune system processes and transcriptional regulator activity. Bioinformatics data analysis revealed that the main enriched proteins, including UBE2A, UBE2C, UBE2S, TRIP12, HERC2, PIRH2, and PIAS, were involved in various ubiquitin-related kinase activities and ubiquitination processes. Thus, ubiquitinome analysis was further performed, and the results demonstrated that proteins in many immune-related cellular pathways, such as natural killer cell-mediated cytotoxicity, the T-cell receptor signaling pathway and the B-cell receptor signaling pathway, were significantly deubiquitinated after CENPF was upregulated in DLBCL cells. Furthermore, TIMER2.0 was also used to reveal the association between CENPF and immune infiltration in DLBCL. The results showed that CENPF expression was positively correlated with CD8+ T cells, NK cells and B lymphocytes in DLBCL samples but negatively correlated with regulatory T cells. Aberrant activation of CENPF may induce immune dysregulation in DLBCL cells by mediating protein deubiquitination in various immune signaling pathways, which leads to tumor escape of DLBCL, but further experimental validation is still needed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingqiu Hu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Li
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Youcai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xuezhong Zhang, ; Lijun Tang, ; Xiuqun Zhang,
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xuezhong Zhang, ; Lijun Tang, ; Xiuqun Zhang,
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xuezhong Zhang, ; Lijun Tang, ; Xiuqun Zhang,
| |
Collapse
|
15
|
USP9x promotes CD8 + T-cell dysfunction in association with autophagy inhibition in septic liver injury. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-10. [PMID: 36514222 PMCID: PMC10157537 DOI: 10.3724/abbs.2022174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sepsis is a life-threatening condition manifested by concurrent inflammation and immunosuppression. Ubiquitin-specific peptidase 9, X-linked (USP9x), is a USP domain-containing deubiquitinase which is required in T-cell development. In the present study, we investigate whether USP9x plays a role in hepatic CD8 + T-cell dysfunction in septic mice. We find that CD8 + T cells are decreased in the blood of septic patients with liver injury compared with those without liver injury, the CD4/CD8 ratio is increased, and the levels of cytolytic factors, granzyme B and perforin are downregulated. The number of hepatic CD8 + T cells and USP9x expression are both increased 24 h after cecal ligation and puncture-induced sepsis in a mouse model, a pattern similar to liver injury. The mechanism involves promotion of CD8 + T-cell dysfunction by USP9x associated with suppression of cell cytolytic activity via autophagy inhibition, which is reversed by the USP9x inhibitor WP1130. In the in vivo studies, autophagy is significantly increased in hepatic CD8 + T cells of septic mice with conditional knockout of mammalian target of rapamycin. This study shows that USP9x has the potential to be used as a therapeutic target in septic liver injury.
Collapse
|
16
|
Gaikwad S, Agrawal MY, Kaushik I, Ramachandran S, Srivastava SK. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Semin Cancer Biol 2022; 86:137-150. [PMID: 35341913 DOI: 10.1016/j.semcancer.2022.03.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICP) are currently one of the most novel and promising areas of immune-oncology research. This novel way of targeting tumor cells has shown favorable success over the past few years with some FDA approvals such as Ipilimumab, Nivolumab, Pembrolizumab etc. Currently, more than 3000 clinical trials of immunotherapeutic agents are ongoing with majority being ICPs. However, as the number of trials increase so do the challenges. Some challenges such as adverse side effects, non-specific binding on healthy tissues and absence of response in some subset populations are critical obstacles. For a safe and effective further therapeutic development of molecules targeting ICPs, understanding their mechanism at molecular level is crucial. Since ICPs are mostly membrane bound receptors, a number of downstream signaling pathways divaricate following ligand-receptor binding. Most ICPs are expressed on more than one type of immune cell populations. Further, the expression varies within a cell type. This naturally varied expression pattern adds to the difficulty of targeting specific effector immune cell types against cancer. Hence, understanding the expression pattern and cellular mechanism helps lay out the possible effect of any immunotherapy. In this review, we discuss the signaling mechanism, expression pattern among various immune cells and molecular interactions derived using interaction database analysis (BioGRID).
Collapse
Affiliation(s)
- Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
17
|
Chen Z, Song M, Wang T, Gao J, Lin F, Dai H, Zhang C. Role of circRNA in E3 Modification under Human Disease. Biomolecules 2022; 12:biom12091320. [PMID: 36139159 PMCID: PMC9496110 DOI: 10.3390/biom12091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is often regarded as a special kind of non-coding RNA, involved in the regulation mechanism of various diseases, such as tumors, neurological diseases, and inflammation. In a broad spectrum of biological processes, the modification of the 76-amino acid ubiquitin protein generates a large number of signals with different cellular results. Each modification may change the result of signal transduction and participate in the occurrence and development of diseases. Studies have found that circRNA-mediated ubiquitination plays an important role in a variety of diseases. This review first introduces the characteristics of circRNA and ubiquitination and summarizes the mechanism of circRNA in the regulation of ubiquitination in various diseases. It is hoped that the emergence of circRNA-mediated ubiquitination can broaden the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Zishuo Chen
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Minkai Song
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Jiawen Gao
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Lin
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Hui Dai
- Hospital Office, Ganzhou People’s Hospital, Ganzhou 341000, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| |
Collapse
|
18
|
Fransen MF. Immunological Responses to Cancer Therapy. Int J Mol Sci 2022; 23:ijms23136989. [PMID: 35805986 PMCID: PMC9267108 DOI: 10.3390/ijms23136989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marieke F Fransen
- Department of Pulmonary Medicine, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|