1
|
Choi J, Son D, An S, Cho E, Lim S, Lee HJ. Effects of Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3 supplementation on weight loss and gut microbiota of overweight dogs. Sci Rep 2024; 14:25446. [PMID: 39455650 PMCID: PMC11511819 DOI: 10.1038/s41598-024-75594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of obesity in dogs is increasing worldwide. This study evaluated the effects of a mixed probiotic formula on the weight, body condition score (BCS), blood metabolite profiles, and gut microbiota of overweight and obese dogs over a 12-week supplementation period to determine the anti-obesity effects of Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3. This was a community-based, randomized study that sampled 41 overweight and obese dogs with a veterinarian-determined BCS of 6 or more. The physical activity of all the subjects was measured using a pedometer designed exclusively for dogs. The food intake was measured using the developed application. Only the treatment group received the mixed probiotic formula twice daily (3 g per dose). A significant decrease in body weight (p < 0.0001), BCS (p < 0.0001), serum TG (p < 0.0001), serum TC (p = 0.0400), and serum leptin (p = 0.0252), and a significantly increased serum adiponectin levels (p = 0.0007) were observed in the treatment group compared with the values in the control group. Microbiota analysis showed that Lactiplantibacillus increased and Erysipelatoclostridium, Staphylococcus, and Gemella decreased more significantly in the treatment group than in the control group. These results suggested that Lactiplantibacillus plantarum CBT LP3 and Bifidobacterium breve CBT BR3 may be effective in alleviating obesity in dogs.
Collapse
Grants
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 321036-05-1-HD040 The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries funded by the Ministry of Agriculture, Food, and Rural Affairs
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
- 00218423 The Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea)
Collapse
Affiliation(s)
- Jihee Choi
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea
| | - Dooheon Son
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Subin An
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea
| | - Eunbee Cho
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co. Ltd., Gimpo-si, Gyeonggi-do, 10003, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi- do, 13120, Republic of Korea.
| |
Collapse
|
2
|
Corfitsen HT, Bilde K, Rerup T, Larsen A. The effect of vortioxetine on faecal microbiota in high-fat diet-exposed mice-A link to weight protection. Basic Clin Pharmacol Toxicol 2024; 135:417-428. [PMID: 39129400 DOI: 10.1111/bcpt.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Weight gain is a common side effect of antidepressive treatment, causing distress among patients and caretakers as it can lead to treatment discontinuation and complications such as diabetes type II and cardiovascular disease. Vortioxetine is one of the newer antidepressants and the pharmacodynamics differ from the selective serotonin reuptake inhibitors. It is marketed as being weight neutral; however, there is little evidence as to why. In recent years, there has been an increased focus on the faecal microbiota and its impact on body weight and mental and physical health. In the current work, we examine the effect of vortioxetine on weight gain and faecal microbiota composition. METHODS Forty male C57BL/6NTac mice were primed for 8 weeks with a high-fat diet (Hfd) or control diet (Cd), followed by a 4-week period on the same diet and additional +/- vortioxetine 10 mg/kg/daily. RESULTS Vortioxetine reduced Hfd-induced weight gain (Hfd + V: 8.2%, Hfd - V: 12.7%; p = 0.0374) but did not affect weight gain of the control group (Cd + V: 7.54%, Cd - V: 7.56%; p = 0.4944). Significant differences in faecal microbiota were observed in mice who received vortioxetine. CONCLUSION Vortioxetine caused significant changes to the faecal microbiota composition and appeared to limit Hfd-induced weight gain.
Collapse
Affiliation(s)
| | - Katrine Bilde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine Rerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Raff H, Hainsworth KR, Woyach VL, Weihrauch D, Wang X, Dean C. Probiotic and high-fat diet: effects on pain assessment, body composition, and cytokines in male and female adolescent and adult rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R123-R132. [PMID: 38780441 PMCID: PMC11444502 DOI: 10.1152/ajpregu.00082.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high-fat diet (HFD) - 45% kcal from fat from weaning), we determined the effect of a single-strain dietary probiotic [Lactiplantibacillus plantarum 299v (Lp299v) from weaning] on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male versus female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many noninteracting main effects of age, diet, and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared with placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on an HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or a different etiology of pain. A major strength of our study was that a single-strain probiotic had a wide range of inhibiting effects on most proinflammatory cytokines. The positive effect of the probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.NEW & NOTEWORTHY A single-strain probiotic (Lp299v) had a wide range of inhibiting effects on most proinflammatory cytokines (especially IL12p70) measured in this high-fat diet rat model of mild obesity. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.
Collapse
Affiliation(s)
- Hershel Raff
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Keri R Hainsworth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Victoria L Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Xuemeng Wang
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Belà B, Coman MM, Verdenelli MC, Gramenzi A, Pignataro G, Fiorini D, Silvi S. In Vitro Assessment of Postbiotic and Probiotic Commercial Dietary Supplements Recommended for Counteracting Intestinal Dysbiosis in Dogs. Vet Sci 2024; 11:19. [PMID: 38250925 PMCID: PMC10819328 DOI: 10.3390/vetsci11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Many environmental aspects influence the preservation of a beneficial microbiome in dogs, and gut dysbiosis occurs when imbalances in the intestinal ecosystem cause functional changes in the microbial populations. The authors evaluated the effects of two specific commercial dietary supplements: a combination of a postbiotic and prebiotics (Microbiotal cane®) and a probiotic product (NBF 1®) recommended for counteracting intestinal dysbiosis in dogs, on the gut canine microbiota composition and its metabolic activities (production of short-chain fatty acids). The investigation was performed using an in vitro fermentation system inoculated with dog fecal samples. Microbiotal cane® promoted a more immediate increase in Lactobacillus spp. after the first 6 h of fermentation, whereas NBF 1® promoted the increase at the end of the process only. The two supplements supported an increase in the Bifidobacterium spp. counts only after 24 h. The in vitro abilities of Microbiotal cane® and NBF 1® to increase selectively beneficial bacterial groups producing acetic, propionic, and butyric acids suggest a possible positive effect on the canine gut microbiota, even if further in vivo studies are needed to confirm the beneficial effects on the intestinal health.
Collapse
Affiliation(s)
- Benedetta Belà
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Maria Magdalena Coman
- Synbiotec Srl spin-off di UNICAM, Via Gentile III da Varano, 62032 Camerino, Italy; (M.M.C.); (M.C.V.)
| | - Maria Cristina Verdenelli
- Synbiotec Srl spin-off di UNICAM, Via Gentile III da Varano, 62032 Camerino, Italy; (M.M.C.); (M.C.V.)
| | - Alessandro Gramenzi
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Giulia Pignataro
- Department of Science of Veterinary Medicine Science, Public Health and Animal Wellness, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (B.B.); (A.G.); (G.P.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy;
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
5
|
Ceylani T, Önlü H, Keskin S, Allahverdi H, Teker HT. SCD Probiotics mitigate cafeteria diet-induced liver damage in Wistar rats during development. J Gastroenterol Hepatol 2023; 38:2142-2151. [PMID: 37963489 DOI: 10.1111/jgh.16395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND AND AIM The liver plays a critical role in metabolic homeostasis, and its health is often compromised by poor dietary habits. This study aimed to investigate the therapeutic potential of SCD Probiotics in mitigating adverse liver effects induced by a cafeteria diet in male Wistar rats during their developmental period. METHODS Four groups of seven male Wistar rats each were subjected to different dietary regimens from day 21 (weaning) to day 56. The groups were as follows: a control group on normal feed; a probiotic-supplemented group on normal feed; a group on a cafeteria diet mixed with normal feed; and a group on a cafeteria diet mixed with normal feed, supplemented with SCD Probiotics. Liver health was assessed using Fourier transform infrared spectroscopy and histopathological evaluations. RESULTS Rats on the cafeteria diet exhibited significant disruptions in lipid, protein, cholesterol, triglyceride levels, and glycogen/phosphate content. Histopathological abnormalities such as lymphocytic infiltration, steatosis, and necrosis were also observed. However, SCD Probiotics supplementation led to notable improvements in the liver's biomolecular composition and mitigated histopathological abnormalities. Serum liver enzyme levels (AST, ALT, ALP, and LDH) also showed beneficial effects, while serum albumin levels remained stable. CONCLUSIONS SCD Probiotics demonstrated a promising potential to counteract the adverse liver effects induced by a cafeteria diet in male Wistar rats. The study revealed significant improvements in biomolecular composition, histopathology, and serum enzyme levels. However, these findings are preliminary and necessitate further in vivo studies and clinical trials for validation.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
- Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Harun Önlü
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
- Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Seda Keskin
- Department of Histology and Embryology, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
6
|
Tovar R, de Ceglia M, Ubaldi M, Rodríguez-Pozo M, Soverchia L, Cifani C, Rojo G, Gavito A, Hernandez-Folgado L, Jagerovic N, Ciccocioppo R, Baixeras E, Rodríguez de Fonseca F, Decara J. Administration of Linoleoylethanolamide Reduced Weight Gain, Dyslipidemia, and Inflammation Associated with High-Fat-Diet-Induced Obesity. Nutrients 2023; 15:4448. [PMID: 37892524 PMCID: PMC10609991 DOI: 10.3390/nu15204448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Acylethanolamides (NAEs) are bioactive lipids derived from diet fatty acids that modulate important homeostatic functions, including appetite, fatty acid synthesis, mitochondrial respiration, inflammation, and nociception. Among the naturally circulating NAEs, the pharmacology of those derived from either arachidonic acid (Anandamide), oleic acid (OEA), and palmitic acid (PEA) have been extensively characterized in diet-induced obesity. For the present work, we extended those studies to linoleoylethanolamide (LEA), one of the most abundant NAEs found not only in plasma and body tissues but also in foods such as cereals. In our initial study, circulating concentrations of LEA were found to be elevated in overweight humans (body mass index (BMI, Kg/m2) > 25) recruited from a representative population from the south of Spain, together with AEA and the endocannabinoid 2-Arachidonoyl glycerol (2-AG). In this population, LEA concentrations correlated with the circulating levels of cholesterol and triglycerides. In order to gain insight into the pharmacology of LEA, we administered it for 14 days (10 mg/kg i.p. daily) to obese male Sprague Dawley rats receiving a cafeteria diet or a standard chow diet for 12 consecutive weeks. LEA treatment resulted in weight loss and a reduction in circulating triglycerides, cholesterol, and inflammatory markers such as Il-6 and Tnf-alpha. In addition, LEA reduced plasma transaminases and enhanced acetyl-CoA-oxidase (Acox) and Uncoupling protein-2 (Ucp2) expression in the liver of the HFD-fed animals. Although the liver steatosis induced by the HFD was not reversed by LEA, the overall data suggest that LEA contributes to the homeostatic signals set in place in response to diet-induced obesity, potentially contributing with OEA to improve lipid metabolism after high fat intake. The anti-inflammatory response associated with its administration suggests its potential for use as a nutrient supplement in non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Rubén Tovar
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Marialuisa de Ceglia
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Miguel Rodríguez-Pozo
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Gema Rojo
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto IBIMA-Plataforma BIONAND, 29010 Málaga, Spain;
| | - Ana Gavito
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Laura Hernandez-Folgado
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Avenida Juan de la Cierva, 28006 Madrid, Spain; (L.H.-F.); (N.J.)
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Avenida Juan de la Cierva, 28006 Madrid, Spain; (L.H.-F.); (N.J.)
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Elena Baixeras
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, Instituto IBMA-Plataforma BIONAND, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29010 Malaga, Spain
| | - Juan Decara
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| |
Collapse
|
7
|
Barouei J, Martinic A, Bendiks Z, Mishchuk D, Heeney D, Slupsky CM, Marco ML. Type 2-resistant starch and Lactiplantibacillus plantarum NCIMB 8826 result in additive and interactive effects in diet-induced obese mice. Nutr Res 2023; 118:12-28. [PMID: 37536013 DOI: 10.1016/j.nutres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.
Collapse
Affiliation(s)
- Javad Barouei
- Integrated Food Security Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX; Department of Food Science & Technology, University of California, Davis, CA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, CA; Department of Nutrition, University of California, Davis, CA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA.
| |
Collapse
|
8
|
Coman MM, Micioni Di Bonaventura MV, Cifani C, Silvi S, Verdenelli MC. SYNBIO® Probiotic and Antioxidant Dietary Supplementation: Clinical Trial Evaluation of Potential Effects on Airline Flight Crew Members’ Well-Being. Microorganisms 2023; 11:microorganisms11040924. [PMID: 37110347 PMCID: PMC10145893 DOI: 10.3390/microorganisms11040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The irregular lifestyle of airline crew members, wide/adverse job-related exposures, and the impact of temporary hypoxia on gut microbiota well-being have increased concern about the daily recommended dose of certain nutrients among flight crew. The aim of this study was to determine if daily consumption of a SYNBIO® probiotics–elderberry extract supplement (ACTIVE) may contribute to the well-being of flight attendants. Forty healthy crew members enrolled in a double-blind, randomized, placebo-controlled study consumed one ACTIVE capsule/day or placebo for 30 days. Bowel well-being, health-related quality of life, and gastrointestinal tolerance were assessed by validated questionnaires. Saliva and fecal samples were analyzed to determine secretory immunoglobulin-A (sIgA) levels and to characterize gut microbiota composition, respectively. ACTIVE subjects presented a physiological improvement and a statistically significant higher Psychological General Well-Being Index (PGWBI) global score compared to PLACEBO subjects. The ACTIVE subjects showed significantly increased levels of lactobacilli and bifidobacteria compared to the PLACEBO group, while a significant increase in lactobacilli and a significant reduction in Enterobacteriaceae were registered when compared with the beginning of supplementation, confirming the persistence of probiotics in the gastrointestinal tract and the direct antagonism and competitive exclusion effects. Additionally, sIgA levels were significantly higher in the ACTIVE group compared to the baseline and to the PLACEBO group at the end of supplementation. The ACTIVE supplementation might be beneficial to airline crew members, improving their physiological state, their immune defenses, and the strength and efficiency of their gastrointestinal tract when responding to stressful conditions.
Collapse
Affiliation(s)
- Maria Magdalena Coman
- Synbiotec S.r.l., Spin-Off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy
| | | | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | | |
Collapse
|
9
|
Rodrigues FDS, Jantsch J, Fraga GDF, Dias VS, Eller S, De Oliveira TF, Giovenardi M, Guedes RP. Cannabidiol treatment improves metabolic profile and decreases hypothalamic inflammation caused by maternal obesity. Front Nutr 2023; 10:1150189. [PMID: 36969815 PMCID: PMC10033544 DOI: 10.3389/fnut.2023.1150189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionThe implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed.MethodsHere we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats.ResultsWe have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1β in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes.DiscussionTogether, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Franco De Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Renata Padilha Guedes,
| |
Collapse
|
10
|
de Ceglia M, Micioni Di Bonaventura MV, Romano A, Friuli M, Micioni Di Bonaventura E, Gavito AL, Botticelli L, Gaetani S, de Fonseca FR, Cifani C. Anxiety associated with palatable food withdrawal is reversed by the selective FAAH inhibitor PF-3845: A regional analysis of the contribution of endocannabinoid signaling machinery. Int J Eat Disord 2023. [PMID: 36840536 DOI: 10.1002/eat.23917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Consumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. METHODS Rats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). RESULTS Abstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. DISCUSSION Overall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food. PUBLIC SIGNIFICANCE The present study focused on evaluating the role of the endocannabinoid system in modulating withdrawal from naturally rewarding activities that have an impact on mood, such as feeding. The variations observed in the emotional behavior of abstinent rats was linked to neuroadaptations of the ECS in specific brain areas.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Málaga, Spain.,Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Ana L Gavito
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
11
|
Pagliai G, Coman MM, Baldi S, Dinu M, Nannini G, Russo E, Curini L, Colombini B, Lotti S, Pallecchi M, Di Gloria L, Bartolucci G, Ramazzotti M, Verdenelli MC, Sofi F, Amedei A. Effects of the probiotic Lactiplantibacillus plantarum IMC 510® on body composition, biochemical parameters, gut microbiota composition and function, and clinical symptoms of overweight/obese subjects. Front Nutr 2023; 10:1142527. [PMID: 37125045 PMCID: PMC10130646 DOI: 10.3389/fnut.2023.1142527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Background and aim In recent decades, obesity prevalence has reached epidemic proportions and considering the pivotal role of gut microbiota (GM) in the regulation of energy balance, alternative non-pharmacological approaches involving probiotics' administration have been proposed. The aim of the present study was to evaluate the effect of Lactiplantibacillus plantarum IMC 510® supplementation on anthropometric and biochemical parameters, GM composition and functionality, and gastrointestinal and general symptoms of overweight/obese subjects. Methods Forty overweight/obese subjects were randomly assigned to daily consume the probiotic Lactiplantibacillus plantarum IMC 510® or placebo for 3 months. Before and after the administration period, anthropometric and biochemical parameters, self-administered questionnaires, and plasma and stool samples were obtained from each participant. The GM characterization was performed with 16S rRNA sequencing, while fecal short (SCFAs) and medium (MCFAs) chain fatty acids were analyzed with a gas chromatography-mass spectrometry protocol. Results Compared to placebo, probiotic supplementation determined a significant decrease in body weight, BMI, waist circumference, waist-to-height ratio, and blood glucose. Moreover, probiotic administration produced a significant decrease of the genera Hafnia-Obesumbacterium and Romboutsia and an increase of Succiniclasticum spp.; conversely, placebo administration resulted in the decrease of Actinomycetaceae and an increase of both Alloprevotella spp. and of the levels of pro-inflammatory hexanoic and heptanoic acids. Conclusion Thanks to its effect in increasing some beneficial gut bacteria and lowering effects on waist circumference, fasting glucose levels and gastrointestinal symptoms of obese subjects, Lactiplantibacillus plantarum IMC 510® supplementation could represent a future and encouraging strategy for the prevention or treatment of obesity.
Collapse
Affiliation(s)
- Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | | | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy
- *Correspondence: Francesco Sofi,
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
- Amedeo Amedei,
| |
Collapse
|
12
|
Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
|
13
|
Exploratory Study for Probiotic Enrichment of a Sea Fennel ( Crithmum maritimum L.) Preserve in Brine. Foods 2022; 11:foods11152219. [PMID: 35892805 PMCID: PMC9331750 DOI: 10.3390/foods11152219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Considering the increasing consumer demand for vegan and vegetarian health foods, different vegetables have been already exploited to produce non-dairy probiotic foods. In addition to being rich in bioactive compounds, sea fennel (Crithmum maritimum L.), also known as rock samphire, represents a valuable candidate in the production of probiotic-enriched foods, and, to the authors' knowledge, it has not yet been explored as carrier for probiotics. Hence, the present study was aimed at evaluating the survival of a commercially available probiotic formulation, SYNBIO®, and Lactiplantibacillus plantarum IMC 509 in an artificially acidified, pasteurized sea fennel preserve in brine during a refrigerated storage of 44 days. Despite slight reductions in the microbial loads, at the end of the storage, both the probiotic formulations showed loads higher than 7.0 Log CFU g-1 of sea fennel or mL-1 of brine, above the recommended administration dose to exert beneficial health effects. Thus, acidified sea fennel sprouts in brine represent a potential vehicle for probiotics delivery to humans.
Collapse
|
14
|
Coman MM, Miorelli L, Micioni Di Bonaventura MV, Cifani C, Salvesi C, Amedei A, Silvi S, Verdenelli MC. Effects of probiotic Lactiplantibacillus plantarum IMC 510 supplementation on metabolic factors in otherwise healthy overweight and obese individuals. J Appl Microbiol 2022; 133:1956-1968. [PMID: 35796632 DOI: 10.1111/jam.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
AIMS Probiotic supplementation approach offers the possibility to shape the gut microbiota (GM), enabling the development of innovative formulations able to improve intestinal wellbeing and consequently the related body weight modulation and energy metabolism. In the present clinical study, a new potential probiotic supplement based on Lactiplantibacillus plantarum IMC 510 was studied for weight management. METHODS AND RESULTS Quantitative characterization by qPCR of representative bacterial groups of GM was used to determine the microbiota modulation at different supplementation periods. Furthermore, measurement of the endpoints linked to weight control (Body Mass Index (BMI), body weight, waist circumference) was assessed. Specific questionnaires to evaluate the impact on psychological and physiological point of view were performed. Results showed that after 90 days - Lact. plantarum IMC 510 supplementation brought an improvement of endpoints linked to weight control and healthy status, although no significant changes in the microbiota composition were reported for analysed bacterial groups, except for Lactobacillus spp. and Bifidobacterium spp. CONCLUSIONS We concluded that Lact. plantarum IMC 510 supplementation could be an interesting tool for weight management. More studies are needed to understand the impact on GM, for example evaluating the production of short chain fatty acids (SCFA), since their important role in dietary metabolism. Further research is necessary to better elucidate the relationship between GM and overweight and the mechanism of action by which Lact. plantarum IMC 510 modifies body weight. SIGNIFICANCE AND IMPACT OF THE STUDY However, these promising outcomes represent a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in the obesity prevention and management.
Collapse
Affiliation(s)
- Maria Magdalena Coman
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032, Camerino, Italy
| | | | | | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Chiara Salvesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|