1
|
Wei Y, Cheng Y, Wei H, Wang Y, Zhang X, Miron RJ, Zhang Y, Qing S. Development of a super-hydrophilic anaerobic tube for the optimization of platelet-rich fibrin. Platelets 2024; 35:2316745. [PMID: 38385327 DOI: 10.1080/09537104.2024.2316745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Horizontal platelet-rich fibrin (H-PRF) contains a variety of bioactive growth factors and cytokines that play a key role in the process of tissue healing and regeneration. The blood collection tubes used to produce Solid-PRF (plasmatrix (PM) tubes) have previously been shown to have a great impact on the morphology, strength and composition of the final H-PRF clot. Therefore, modification to PM tubes is an important step toward the future optimization of PRF. To this end, we innovatively modified the inner wall surface of the PM tubes with plasma and adjusted the gas environment inside the PM tubes to prepare super-hydrophilic anaerobic plasmatrix tubes (SHAP tubes). It was made anaerobic for the preparation of H-PRF with the aim of improving mechanical strength and bioactivity. The findings demonstrated that an anaerobic environment stimulated platelet activation within the PRF tubes. After compression, the prepared H-PRF membrane formed a fibrous cross-linked network with high fracture strength, ideal degradation characteristics, in addition to a significant increase in size. Thereafter, the H-PRF membranes prepared by the SHAP tubes significantly promoted collagen synthesis of gingival fibroblast and the mineralization of osteoblasts while maintaining excellent biocompatibility, and advantageous antibacterial properties. In conclusion, the newly modified PRF tubes had better platelet activation properties leading to better mechanical strength, a longer degradation period, and better regenerative properties in oral cell types including gingival fibroblast and alveolar osteoblasts. It also improves the success rate of H-PRF preparation in patients with coagulation dysfunction and expands the clinical application scenario.
Collapse
Affiliation(s)
- Yan Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yihong Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongjiang Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, University of Bern, Bern Switzerland
| | - Xiaoxin Zhang
- Department of Periodontology, University of Bern, Bern Switzerland
| | - Richard J Miron
- Department of Dental Implantology, School and Hospital of Stomatology University of Wuhan, Wuhan, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Dental Implantology, School and Hospital of Stomatology University of Wuhan, Wuhan, China
| | - Shanglan Qing
- Department of Stomatology Chongqing General Hospital, Chongqing, China
| |
Collapse
|
2
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
3
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
4
|
Sarthi S, Bhardwaj H, Kumar Jangde R. Advances in nucleic acid delivery strategies for diabetic wound therapy. J Clin Transl Endocrinol 2024; 37:100366. [PMID: 39286540 PMCID: PMC11404062 DOI: 10.1016/j.jcte.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, the prevalence of diabetic wounds has significantly increased, posing a substantial medical challenge due to their propensity for infection and delayed healing. These wounds not only increase mortality rates but also lead to amputations and severe mobility issues. To address this, advancements in bioactive molecules such as genes, growth factors, proteins, peptides, stem cells, and exosomes into targeted gene therapies have emerged as a preferred strategy among researchers. Additionally, the integration of photothermal therapy (PTT), nucleic acid, and gene therapy, along with 3D printing technology and the layer-by-layer (LBL) self-assembly approach, shows promise in diabetic wound treatment. Effective delivery of small interfering RNA (siRNA) relies on gene vectors. This review provides an in-depth exploration of the pathophysiological characteristics observed in diabetic wounds, encompassing diminished angiogenesis, heightened levels of reactive oxygen species, and impaired immune function. It further examines advancements in nucleic acid delivery, targeted gene therapy, advanced drug delivery systems, layer-by-layer (LBL) techniques, negative pressure wound therapy (NPWT), 3D printing, hyperbaric oxygen therapy, and ongoing clinical trials. Through the integration of recent research insights, this review presents innovative strategies aimed at augmenting the multifaceted management of diabetic wounds, thus paving the way for enhanced therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Soniya Sarthi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| | - Harish Bhardwaj
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| | - Rajendra Kumar Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| |
Collapse
|
5
|
Pan J, Luo L, Jiang Z, Huang H, Jiang B. The effect of injectable platelet-rich fibrin and platelet-rich fibrin in regenerative endodontics: a comparative in vitro study. J Appl Oral Sci 2024; 32:e20230449. [PMID: 38896639 PMCID: PMC11178352 DOI: 10.1590/1678-7757-2023-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To explore the feasibility of injectable platelet-rich fibrin (i-PRF) in regenerative endodontics by comparing the effect of i-PRF and platelet-rich fibrin (PRF) on the biological behavior and angiogenesis of human stem cells from the apical papilla (SCAPs). METHODOLOGY i-PRF and PRF were obtained from venous blood by two different centrifugation methods, followed by hematoxylin-eosin (HE) staining and scanning electron microscopy (SEM). Enzyme-linked immunosorbent assay (ELISA) was conducted to quantify the growth factors. SCAPs were cultured with different concentrations of i-PRF extract (i-PRFe) and PRF extract (PRFe), and the optimal concentrations were selected using the Cell Counting Kit-8 (CCK-8) assay. The cell proliferation and migration potentials of SCAPs were then observed using the CCK-8 and Transwell assays. Mineralization ability was detected by alizarin red staining (ARS), and angiogenesis ability was detected by tube formation assay. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of genes related to mineralization and angiogenesis. The data were subjected to statistical analysis. RESULTS i-PRF and PRF showed a similar three-dimensional fibrin structure, while i-PRF released a higher concentration of growth factors than PRF ( P <.05). 1/4× i-PRFe and 1/4× PRFe were selected as the optimal concentrations. The cell proliferation rate of the i-PRFe group was higher than that of the PRFe group ( P <.05), while no statistical difference was observed between them in terms of cell mitigation ( P >.05). More importantly, our results showed that i-PRFe had a stronger effect on SCAPs than PRFe in facilitating mineralization and angiogenesis, with the consistent result of RT-qPCR ( P <.05). CONCLUSION This study revealed that i-PRF released a higher concentration of growth factors and was superior to PRF in promoting proliferation, mineralization and angiogenesis of SCAPs, which indicates that i-PRF could be a promising biological scaffold for application in pulp regeneration.
Collapse
Affiliation(s)
- Jing Pan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Linjuan Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Zhen Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Haiyan Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| |
Collapse
|
6
|
Niemczyk W, Janik K, Żurek J, Skaba D, Wiench R. Platelet-Rich Plasma (PRP) and Injectable Platelet-Rich Fibrin (i-PRF) in the Non-Surgical Treatment of Periodontitis-A Systematic Review. Int J Mol Sci 2024; 25:6319. [PMID: 38928026 PMCID: PMC11203877 DOI: 10.3390/ijms25126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The gold standard in the non-surgical treatment of periodontitis is scaling and root planing (SRP). In recent years, the use of autogenous platelet concentrates has spread over many specialties in dentistry and, thus, has also been gaining popularity in periodontal treatment. Its two main fractions are platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), which, since 2014, can also be used via injection as injectable platelet-rich fibrin (i-PRF). The authors conducted a comprehensive systematic review in accordance with the PRISMA 2020 guidelines. It involved searching PubMed, Embase, Scopus, and Google Scholar databases using the phrases ("Root Planing" OR "Subgingival Curettage" OR "Periodontal Debridement") AND ("Platelet-Rich Plasma"). Based on the authors' inclusion and exclusion criteria, 12 results were included in the review, out of 1170 total results. The objective of this review was to ascertain the impact of utilizing PRP and i-PRF in SRP. The results revealed that both the incorporation of PRP and i-PRF were found to be significantly associated with are duction in gingival pocket depth and again in clinical attachment level; however, i-PRF demonstrated superiority in improving clinical parameters. Furthermore, i-PRF demonstrated notable bactericidal efficacy against Porphyromonas gingivalis. On the other hand, PRP proved inferior to an Nd:YAG laser in clinical parameter improvement; however, it demonstrated significant efficiency as well. This literature review led the authors to the conclusion that autologous platelet concentrates might be competent agents for improving the therapeutic outcomes of SRP.
Collapse
Affiliation(s)
- Wojciech Niemczyk
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (D.S.); (R.W.)
| | - Katarzyna Janik
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (D.S.); (R.W.)
| | - Jacek Żurek
- Specialist Medical Practice, Polne Wzgórze 11 Street, 32-300 Olkusz, Poland;
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (D.S.); (R.W.)
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (D.S.); (R.W.)
| |
Collapse
|
7
|
Wei S, Zhang X, Yu F, Guo S, Wei H. Peri-implant epidermoid cyst: A case report and literature analysis. Clin Implant Dent Relat Res 2024; 26:509-517. [PMID: 38321649 DOI: 10.1111/cid.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND A peri-implant cystic lesion is a rare finding, and to date most investigators have considered that its pathogenesis is caused by trauma and infection related to dental implantation. However, the pathogenesis of these cysts remains unclear and is recognized to have multifactorial origins. CASE PRESENTATION In February 2021, a 75-year-old male patient underwent implant restoration due to mobility of the left maxillary central incisor. The implant achieved good osseointegration and was successfully restored. However, in March 2023, the patient sought treatment due to mobility of the dental implant. Clinical examination showed that the implant had loosened in three directions (vertical, mesial-distal, and labial-lingual), and the peri-implant mucosa was slightly red and swollen. Radiographic examination (cone beam computed tomography) showed a large radiolucent area with clear boundaries involving the cervical and middle portions of the dental implant, and white bone lines were observed at the edge of the low-density shadow. Intraoperatively, we removed the patient's implant, performed a complete debridement, and conducted bone augmentation surgery in the area of bone defect. Postoperatively, the patient recovered well. The final histopathological result confirmed an epidermoid cyst. CONCLUSIONS Peri-implant epidermoid cyst is a rare complication that affects the long-term outcome of implant therapy. This case serves as a warning to clinicians to avoid involving epithelial tissue in the implant site during implant surgery, in order to prevent the potential occurrence of a peri-implant epidermoid cyst, thereby creating better conditions for the patient's recovery and the long-term efficacy of the implant.
Collapse
Affiliation(s)
- Shibo Wei
- Department of Oral Implantology, The Fourth Affiliated Hospital of Nanchang University, School of Medicine, Nanchang University, Nanchang, China
| | - Xu Zhang
- Department of Oral Implantology, The Fourth Affiliated Hospital of Nanchang University, School of Medicine, Nanchang University, Nanchang, China
| | - Fei Yu
- Department of Oral Implantology, The Fourth Affiliated Hospital of Nanchang University, School of Medicine, Nanchang University, Nanchang, China
| | - Shuigen Guo
- Department of Oral Implantology, The Fourth Affiliated Hospital of Nanchang University, School of Medicine, Nanchang University, Nanchang, China
| | - Hongwu Wei
- Department of Oral Implantology, The Fourth Affiliated Hospital of Nanchang University, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Straub A, Utz C, Stapf M, Vollmer A, Breitenbuecher N, Kübler AC, Brands RC, Hartmann S, Lâm TT. Impact of aminopenicillin administration routes on antimicrobial effects of platelet-rich fibrin: An in-vitro investigation. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101725. [PMID: 38048907 DOI: 10.1016/j.jormas.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION The aim of the study was to investigate the impact of different aminopenicillin administration routes on the antimicrobial effects of platelet-rich fibrin (PRF). METHODS We enrolled patients undergoing treatment with amoxicillin/clavulanic acid (AMC) orally or ampicillin/sulbactam (SAM) intravenously. AMC was applied in a single oral dose (875/125 mg), or in a double oral dose (1750/250 mg), and SAM in a dose of 2000/1000 mg. Blood was obtained one hour after the intake of AMC or 15 min after the infusion of SAM ended. Antimicrobial effects were investigated in agar diffusion tests with fresh PRF, PRF stored for 24, and PRF stored for 48 h. Agar diffusion tests were performed with Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Porphyromonas gingivalis. Inhibition zones (IZs) around a 6 mm PRF disc were measured after 24 h. RESULTS IZs for fresh PRF and the single oral dose of AMC were 0.0, 4.7, 15.2, 2.3, and 0.9 mm (E. coli, S. aureus, S. pneumoniae, H. influenzae, and P. gingivalis, respectively). For the double oral dose, these values were 0.0, 11.4, 20.0, 8.1, and 7.4 mm. IZs for SAM were 11.9, 18.2, 24.7, 20.3, and 22.1 mm. Differences between parenteral and oral application as well as between different oral doses were significant (p<0.0001, one-way ANOVA). DISCUSSION The results of our study demonstrate that oral administration is a suitable route to load PRF with these drugs. This could expand the scope of PRF application to prevent infections at the surgical site, especially in an outpatient setting in which drugs are normally applied orally.
Collapse
Affiliation(s)
- Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany.
| | - Chiara Utz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Maximilian Stapf
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Andreas Vollmer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Niko Breitenbuecher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Straße 2/E1, Würzburg 97080, Germany
| |
Collapse
|
9
|
Askar EM, Abdelmegid AM, Elshal LM, Shaheen MA. Effect of platelet rich plasma versus melatonin on testicular injury induced by Busulfan in adult albino rats: a histological and immunohistochemical study. Ultrastruct Pathol 2024; 48:192-212. [PMID: 38420954 DOI: 10.1080/01913123.2024.2322567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
This study was done to estimate the testicular histological alterations induced by Busulfan (BUS) and compare the possible protective effects of melatonin (MT) and platelet rich plasma (PRP) in a rat model. Sixty-four male rats were dispersed into: control group, BUS group, melatonin group, and PRP group. Blood samples were processed for biochemical analysis. Tissue specimens were managed for light and electron microscopic studies. Immunohistochemical expression of vimentin and proliferating cell nuclear antigen (PCNA) was performed. Busulfan induced severe testicular damage in all studied methodologies. It showed a statistically significant decrease in serum testosterone and elevation of MDA when compared to the control group. Abnormal testicular cytostructures suggesting defective spermatogenesis were observed: distorted seminiferous tubules, deformed spermatogenic cells, low germinal epithelium height, few mature spermatozoa, and also deformed barrier. Vimentin and PCNA expressions were reduced. Ultrastructurally, Sertoli cells and the blood testis barrier were deformed, spermatogenic cells were affected, and mature spermatozoa were few and showed abnormal structure. Both melatonin and PRP induced improvement in all the previous parameters and restoration of spermatogenesis as confirmed by improvement of Johnsen's score from 2.6 ± .74 to 7.6 ± .92. In conclusion, melatonin and PRP have equal potential to ameliorate the testicular toxicity of BUS. Melatonin can provide a better noninvasive way to combat BUS induced testicular injury.
Collapse
Affiliation(s)
- Eman M Askar
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| | - Amira M Abdelmegid
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| | | | - Mohamed A Shaheen
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| |
Collapse
|
10
|
Jia K, You J, Zhu Y, Li M, Chen S, Ren S, Chen S, Zhang J, Wang H, Zhou Y. Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization. Front Bioeng Biotechnol 2024; 12:1286035. [PMID: 38689760 PMCID: PMC11058865 DOI: 10.3389/fbioe.2024.1286035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Platelet-rich fibrin, a classical autologous-derived bioactive material, consists of a fibrin scaffold and its internal loading of growth factors, platelets, and leukocytes, with the gradual degradation of the fibrin scaffold and the slow release of physiological doses of growth factors. PRF promotes vascular regeneration, promotes the proliferation and migration of osteoblast-related cells such as mesenchymal cells, osteoblasts, and osteoclasts while having certain immunomodulatory and anti-bacterial effects. PRF has excellent osteogenic potential and has been widely used in the field of bone tissue engineering and dentistry. However, there are still some limitations of PRF, and the improvement of its biological properties is one of the most important issues to be solved. Therefore, it is often combined with bone tissue engineering scaffolds to enhance its mechanical properties and delay its degradation. In this paper, we present a systematic review of the development of platelet-rich derivatives, the structure and biological properties of PRF, osteogenic mechanisms, applications, and optimization to broaden their clinical applications and provide guidance for their clinical translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Straub A, Stapf M, Utz C, Vollmer A, Flesch J, Kübler A, Scherf-Clavel O, Lâm TT, Hartmann S. Antimicrobial effects of clindamycin-loaded platelet-rich fibrin (PRF). Clin Oral Investig 2024; 28:144. [PMID: 38351376 PMCID: PMC10864470 DOI: 10.1007/s00784-024-05532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES Recent research has demonstrated that platelet-rich fibrin (PRF) is an appropriate carrier for ampicillin/sulbactam. The aim of the study was to investigate whether PRF is also a suitable bio-carrier for clindamycin (CLI). METHODS PRF membranes were produced from 36 patients receiving intravenous therapy with CLI (e.g. due to the diagnosis of an osteonecrosis of the jaw or infections). Concentrations of CLI in PRF membranes were measured with liquid chromatography-tandem mass spectrometry, and the antimicrobial effects were investigated in vitro in agar diffusion tests with fresh PRF and PRF stored for 24 h. Storage was performed in an incubator at 36 °C to simulate the in-vivo situation. RESULTS The mean concentration of CLI in plasma was 1.0 ± 0.3 μg/100 mg plasma; in resulting PRF membranes 0.7 ± 0.4 μg/100 mg PRF. Agar diffusion tests were performed with Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus mitis, Porphyromonas gingivalis, and Fusobacterium nucleatum. Mean inhibition zones, in mm, for fresh PRF were 17.3, 12.2, 18.8, 17.1, 25.8 and 18.1, 12.7, 19.2, 17.3, and 26.3 for stored PRF, respectively. CONCLUSION The results demonstrate that PRF is a suitable bio-carrier for CLI when administered systemically to patients. The concentration in PRF generated from patients after infusion of 600 mg CLI dose suffices to target clinically relevant bacteria. CLINICAL RELEVANCE Using PRF as a carrier for local antibiotic application can prevent infections in oral and maxillofacial surgery. Within the study limitations, the findings could expand the scope of PRF application by adding CLI as a new antibiotic to the spectrum of PRF therapy.
Collapse
Affiliation(s)
- Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Maximilian Stapf
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Chiara Utz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Andreas Vollmer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Julia Flesch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Alexander Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Oliver Scherf-Clavel
- Department of Pharmacy, University of München, Butenandtstraße 5, 81377, Munich, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Straße 2/E1, 97080, Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
12
|
Ma TQ, Chen NN, Xiao RC, Li QR, Zhan MY, Gou CL, Hu J, Leng F, Li LG, Han N, Li HT, Peng XC, Chen SY, Li XY, Li TF. Indocyanine green-loaded platelet activated by photodynamic and photothermal effects for selective control of wound repair. Photodiagnosis Photodyn Ther 2024; 45:103945. [PMID: 38135108 DOI: 10.1016/j.pdpdt.2023.103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Prompt and effective wound repair is an essential strategy to promote recovery and prevent infection in patients with various types of trauma. Platelets can release a variety of growth factors upon activation to facilitate revascularization and tissue repair, provided that their activation is uncontrollable. The present study is designed to explore the selective activation of platelets by photodynamic and photothermal effects (PDE/PTE) as well as the trauma repair mediated by PDE/PTE. MATERIALS AND METHODS In the current research, platelets were extracted from the blood of mice. Indocyanine green (ICG) was applied to induce PDE/PTE. The uptake of ICG by platelets was detected by laser confocal microscopy and flow cytometry. The cellular integrity was measured by microscopy. The reactive oxygen species (ROS) generation and temperature of platelets were assayed by 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) and temperature detector. The activation of platelets was measured by western blots (WB), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The release of growth factor was detected by enzyme-linked immuno sorbent assay (Elisa), wherein the in vitro cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EDU) assay. The wound infection rates model and histological examination were constructed to assay the ICG-loaded platelet-mediated wound repair. RESULTS Platelets could load with ICG, a kind of photodynamic and photothermal agent, as carriers and remain intact. Near-infrared (NIR) laser irradiation of ICG-loaded platelets (ICG@PLT) facilitated higher temperature and ROS generation, which immediately activated ICG@PLT, as characterized by increased membrane p-selectin (CD62p), cyclooxygenase-2 (COX-2), thromboxane A2 receptor (TXA2R) expression, elevated hydrated particle size, and prominent aggregation in platelets. Further investigation revealed that massive insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) were released from the activated ICG@PLT, which also promoted the proliferation of endothelial cells and keratinocytes in co-culture. In consequence, activated platelets and increased neovascularization could be observed in rats with wound infection treated by ICG@PLT in the presence of NIR. More impressively, the hydrogel containing ICG@PLT accelerated wound healing and suppressed inflammation under NIR, exhibiting excellent wound repair properties. CONCLUSION Taken together, the current work identified that platelets could be activated by PDE/PTE and thereby release growth factor, potentiating wound repair in a controlled manner.
Collapse
Affiliation(s)
- Tian-Qi Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Nan-Nan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Rong-Cheng Xiao
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Meng-Yi Zhan
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Chang-Long Gou
- Department of Ultrasound Medicine, Taihe Hospital of Shiyan, Hubei University of Medicine, Hubei, 442000, China
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Fan Leng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Hai-Tao Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Department of Pathology, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, PR China
| | - Si-Yuan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xian-Yu Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
13
|
Phuong Tran TT, Vu Pham TA. Effect of advanced and injectable platelet-rich fibrins against Aggregatibacter actinomycetemcomitans in subjects with or without periodontal diseases. J Dent Sci 2023; 18:491-496. [PMID: 37021261 PMCID: PMC10068356 DOI: 10.1016/j.jds.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/19/2022] [Indexed: 04/05/2023] Open
Abstract
Background/purpose: Data for comparing effects of advanced platelet-rich fibrin (A-PRF+) and injectable platelet-rich fibrin (i-PRF) against Aggregatibacter actinomycetemcomitans (Aa) in subjects with differently periodontal conditions are scarce. This study aimed to compare the antimicrobial capacity of A-PRF+ and i-PRF obtained from subjects with or without periodontal diseases against the pathogenic bacteria Aa. Materials and methods The number of red blood cells, platelets, and white blood cells on the blood samples of 60 individuals, including healthy subjects (n = 20), patients with gingivitis (n = 20), and patients with periodontitis (n = 20), were analyzed before preparing A-PRF+ and i-PRF. In addition, the in vitro antibacterial effect of the two platelet concentrates was evaluated by using the agar diffusion test and a minimum inhibitory concentration (MIC) experiment. Results I-PRF exhibited a significantly better antibacterial effect than A-PRF+ within the gingivitis and periodontitis groups, with a more expansive zone of inhibition and a lower MIC. Among the studied groups, the A-PRF+ and i-PRF collected from the periodontitis group inhibited Aa significantly more compared with the gingivitis and healthy groups. Conclusion Although both A-PRF+ and i-PRF exhibited an antibacterial effect against Aa through the zone of inhibition and MIC tests, in the gingivitis and periodontitis groups, i-PRF exhibited better antibacterial activity than A-PRF+, and PRF products from the periodontitis group had greater effects against Aa than PRF products from the two other groups.
Collapse
Affiliation(s)
- Thao Thi Phuong Tran
- Faculty of Odonto-Stomatology, Hong Bang International University, Ho Chi Minh City, Viet Nam
| | - Thuy Anh Vu Pham
- Division of Odonto-Stomatology, School of Medicine, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
- Corresponding author. School of Medicine, Vietnam National University Ho Chi Minh City, YA1 Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City 590000, Binh Duong Province, Viet Nam.
| |
Collapse
|
14
|
Bennardo F, Gallelli L, Palleria C, Colosimo M, Fortunato L, De Sarro G, Giudice A. Can platelet-rich fibrin act as a natural carrier for antibiotics delivery? A proof-of-concept study for oral surgical procedures. BMC Oral Health 2023; 23:134. [PMID: 36894902 PMCID: PMC9996939 DOI: 10.1186/s12903-023-02814-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVES Evaluate the role of platelet-rich fibrin (PRF) as a natural carrier for antibiotics delivery through the analysis of drug release and antimicrobial activity. MATERIALS AND METHODS PRF was prepared according to the L-PRF (leukocyte- and platelet-rich fibrin) protocol. One tube was used as control (without drug), while an increasing amount of gentamicin (0.25 mg, G1; 0.5 mg, G2; 0.75 mg, G3; 1 mg, G4), linezolid (0.5 mg, L1; 1 mg, L2; 1.5 mg, L3; 2 mg, L4), vancomycin (1.25 mg, V1; 2.5 mg, V2; 3.75 mg, V3; 5 mg, V4) was added to the other tubes. At different times the supernatant was collected and analyzed. Strains of E. coli, P. aeruginosa, S. mitis, H. influenzae, S. pneumoniae, S. aureus were used to assess the antimicrobial effect of PRF membranes prepared with the same antibiotics and compared to control PRF. RESULTS Vancomycin interfered with PRF formation. Gentamicin and linezolid did not change the physical properties of PRF and were released from membranes in the time intervals examined. The inhibition area analysis showed that control PRF had slight antibacterial activity against all tested microorganisms. Gentamicin-PRF had a massive antibacterial activity against all tested microorganisms. Results were similar for linezolid-PRF, except for its antibacterial activity against E. coli and P. aeruginosa that was comparable to control PRF. CONCLUSIONS PRF loaded with antibiotics allowed the release of antimicrobial drugs in an effective concentration. Using PRF loaded with antibiotics after oral surgery may reduce the risk of post-operative infection, replace or enhance systemic antibiotic therapy while preserving the healing properties of PRF. Further studies are needed to prove that PRF loaded with antibiotics represents a topical antibiotic delivery tool for oral surgical procedures.
Collapse
Affiliation(s)
- Francesco Bennardo
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Luca Gallelli
- Pharmacology Unit, Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Caterina Palleria
- Pharmacology Unit, Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Manuela Colosimo
- Microbiology and Virology Unit, Pugliese-Ciaccio Hospital, Catanzaro, Italy
| | - Leonzio Fortunato
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giovambattista De Sarro
- Pharmacology Unit, Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
15
|
Pham TAV, Tran TTP. Antimicrobial effect against Aggregatibacter actinomycetemcomitans of advanced and injectable platelet-rich fibrin from patients with periodontal diseases versus periodontally healthy subjects. J Oral Biol Craniofac Res 2023; 13:332-336. [PMID: 36937558 PMCID: PMC10018549 DOI: 10.1016/j.jobcr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Objectives Advanced platelet-rich fibrin (A-PRF+) and injectable platelet-rich fibrin (i-PRF) have recently been developed and used in periodontal therapy. Few studies have contrasted the antibacterial effectiveness of these autologous materials derived from individuals with healthy gums, gingivitis, and periodontitis. This study aimed to compare the antimicrobial effects of these PRF materials against the periodontal pathogenic bacterium Aggregatibacter actinomycetemcomitans (Aa) in patients with different periodontal conditions. Methods Blood samples were collected from periodontally healthy individuals, patients with gingivitis, or patients with periodontitis to prepare A-PRF+ and i-PRF. The antibacterial capacity of these materials was evaluated through antibiofilm formation, biofilm susceptibility, and the time-kill assay over a 48-h period. Results A-PRF+ and i-PRF from each patient groups interfered with Aa's ability to form biofilm on the test tube surface, and the effect of i-PRF was significantly different among the patient groups. In contrast, these plasma preparation had a weak impact on mature biofilm. For products from the gingivitis and periodontitis groups, these effects were significantly stronger for i-PRF than A-PRF+ (p = 0.012 and p = 0.004, respectively). All plasma preparations inhibited Aa growth in the first 12 h after application, and i-PRF exhibited a significantly greater antimicrobial effect than A-PRF + at each time point. Conclusion A-PRF+ and i-PRF in all three patient groups could inhibit the growth of Aa in vitro, and i-PRF from patients with periodontitis exhibited a more significant effect than PRF from the other groups.
Collapse
Affiliation(s)
- Thuy Anh Vu Pham
- Division of Odonto-Stomatology, School of Medicine, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | | |
Collapse
|
16
|
Pall E, Roman A, Olah D, Beteg FI, Cenariu M, Spînu M. Enhanced Bioactive Potential of Functionalized Injectable Platelet-Rich Plasma. Molecules 2023; 28:molecules28041943. [PMID: 36838930 PMCID: PMC9967773 DOI: 10.3390/molecules28041943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Injectable platelet-rich fibrin (iPRF) is a frequently used platelet concentrate used for various medical purposes both in veterinary and human medicine due to the regenerative potential of hard and soft tissues, and also because of its antimicrobial effectiveness. This in vitro study was carried out to assess the cumulative antimicrobial and antibiofilm effect of iPRF functionalized with a multifunctional glycoprotein, human lactoferrin (Lf). Thus, the ability to potentiate cell proliferation was tested on keratinocytes and evaluated by the CCK8 test. The combinations of iPRF and Lf induced an increase in the proliferation rate after 24 h. The average cell viability of treated cultures (all nine variants) was 102.87% ± 1.00, and the growth tendency was maintained even at 48 h. The highest proliferation rate was observed in cultures treated with 7% iPRF in combination with 50 µg/mL of Lf, with an average viability of 102.40% ± 0.80. The antibacterial and antibiofilm activity of iPRF, of human lactoferrin and their combination were tested by agar-well diffusion (Kirby-Bauer assay), broth microdilution, and crystal violet assay against five reference bacterial strains. iPRF showed antimicrobial and antibiofilm potential, but with variations depending on the tested bacterial strain. The global analysis of the results indicates an increased antimicrobial potential at the highest concentration of Lf mixed with iPRF. The study findings confirmed the hypothesized enhanced bioactive properties of functionalized iPRF against both Gram-positive and Gram-negative biofilm-producing bacteria. These findings could be further applied, but additional studies are needed to evaluate the mechanisms that are involved in these specific bioactive properties.
Collapse
Affiliation(s)
- Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
- Correspondence: (E.P.); (M.C.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Diana Olah
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Florin Ioan Beteg
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
- Correspondence: (E.P.); (M.C.)
| | - Marina Spînu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Evolution and Clinical Advances of Platelet-Rich Fibrin in Musculoskeletal Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010058. [PMID: 36671630 PMCID: PMC9854731 DOI: 10.3390/bioengineering10010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
Over the past few decades, various forms of platelet concentrates have evolved with significant clinical utility. The newer generation products, including leukocyte-platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF), have shown superior biological properties in musculoskeletal regeneration than the first-generation concentrates, such as platelet-rich plasma (PRP) and plasma rich in growth factors. These newer platelet concentrates have a complete matrix of physiological fibrin that acts as a scaffold with a three-dimensional (3D) architecture. Further, it facilitates intercellular signaling and migration, thereby promoting angiogenic, chondrogenic, and osteogenic activities. A-PRF with higher leukocyte inclusion possesses antimicrobial activity than the first generations. Due to the presence of enormous amounts of growth factors and anti-inflammatory cytokines that are released, A-PRF has the potential to replicate the various physiological and immunological factors of wound healing. In addition, there are more neutrophils, monocytes, and macrophages, all of which secrete essential chemotactic molecules. As a result, both L-PRF and A-PRF are used in the management of musculoskeletal conditions, such as chondral injuries, tendinopathies, tissue regeneration, and other sports-related injuries. In addition to this, its applications have been expanded to include the fields of reconstructive cosmetic surgery, wound healing in diabetic patients, and maxillofacial surgeries.
Collapse
|
18
|
Straub A, Vollmer A, Lâm TT, Brands RC, Stapf M, Scherf-Clavel O, Bittrich M, Fuchs A, Kübler AC, Hartmann S. Evaluation of advanced platelet-rich fibrin (PRF) as a bio-carrier for ampicillin/sulbactam. Clin Oral Investig 2022; 26:7033-7044. [PMID: 35941396 PMCID: PMC9708756 DOI: 10.1007/s00784-022-04663-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Mechanisms of wound healing are often impaired in patients with osteonecrosis of the jaw (ONJ). According to the guidelines for the treatment of this disease, early surgical intervention is indicated. However, surgery often faces complications such as wound healing disorders. The application of platelet-rich fibrin (PRF) after necrosectomy between bone and mucosa may constitute a promising approach to improve surgical results. An aspect that was not investigated until now is that PRF acts as a "bio-carrier" for antibiotics previously applied intravenously. MATERIALS AND METHODS We investigated the antimicrobial properties of PRF in 24 patients presenting ONJ undergoing systemic antibiosis with ampicillin/sulbactam. We measured the concentration of ampicillin/sulbactam in plasma and PRF and performed agar diffusion tests. Ampicillin/sulbactam was applied intravenously to the patient 10 minutes for blood sampling for PRF. No further incorporation of patients' blood or PRF product with antibiotic drugs was obtained. Four healthy patients served as controls. RESULTS Our results revealed that PRF is highly enriched with ampicillin/sulbactam that is released to the environment. The antibiotic concentration in PRF was comparable to the plasma concentration of ampicillin/sulbactam. The inhibition zone (IZ) of PRF was comparable to the standard ampicillin/sulbactam discs used in sensitivity testing. CONCLUSIONS The results of our study demonstrated that PRF is a reliable bio-carrier for systemic applied antibiotics and exhibits a large antimicrobial effect. CLINICAL RELEVANCE We describe a clinically useful feature of PRF as a bio-carrier for antibiotics. Especially when applied to poorly perfused tissues and bone such as in ONJ, the local release of antibiotics can reduce wound healing disorders like infections.
Collapse
Affiliation(s)
- Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery of the University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Andreas Vollmer
- Department of Oral and Maxillofacial Plastic Surgery of the University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology of the University of Würzburg, Josef-Schneider-Street 2/E1, 97080, Würzburg, Germany
| | - Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery of the University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Maximilian Stapf
- Institute of Pharmacy and Food Chemistry of the University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry of the University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, Josef-Schneider-Street 2, 97080, Würzburg, Germany
| | - Andreas Fuchs
- Department of Oral and Maxillofacial Plastic Surgery of the University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery of the University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery of the University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
19
|
Jäger M, Busch A, Sowislok A. Bioactivation of scaffolds in osteonecrosis. ORTHOPADIE (HEIDELBERG, GERMANY) 2022; 51:808-814. [PMID: 36074165 DOI: 10.1007/s00132-022-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Avascular osteonecrosis (AVN) due to local ischemia leads to an inhomogeneous osseous defect, which can be treated by resection and with bone substitute materials in a joint-preserving treatment. Due to the underlying risk profile of AVN, the mostly subchondral localization and the size of the local bone defect, bone regeneration is impaired. Therefore, bioactivation of the applied bone substitute materials prior to application is highly desirable. Apart from the use of growth factors and other soluble substances, the autologous application of location-typical cells and tissue is a useful alternative to support the bone healing properties of scaffolds. This article presents various methods to activate scaffolds for bone stimulation and discusses these techniques with respect to recent data from the literature.
Collapse
Affiliation(s)
- M Jäger
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien Hospital Mülheim a. d. Ruhr, Kaiserstr. 50, 45468, Mülheim a. d. Ruhr, Germany.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, Essen, Germany.
| | - A Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, Essen, Germany
| | - A Sowislok
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Petrescu N, Crisan B, Aghiorghiesei O, Sarosi C, Mirica IC, Lucaciu O, Iușan SAL, Dirzu N, Apostu D. Gradual Drug Release Membranes and Films Used for the Treatment of Periodontal Disease. MEMBRANES 2022; 12:895. [PMID: 36135916 PMCID: PMC9503414 DOI: 10.3390/membranes12090895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Periodontitis is an inflammatory disease that, if not treated, can cause a lot of harm to the oral cavity, to the patients' quality of life, and to the entire community. There is no predictable standardized treatment for periodontitis, but there have been many attempts, using antibiotics, tissue regeneration techniques, dental scaling, or root planning. Due to the limits of the above-mentioned treatment, the future seems to be local drug delivery systems, which could gradually release antibiotics and tissue regeneration inducers at the same time. Local gradual release of antibiotics proved to be more efficient than systemic administration. In this review, we have made a literature search to identify the articles related to this topic and to find out which carriers have been tested for drug release as an adjuvant in the treatment of periodontitis. Considering the inclusion and exclusion criteria, 12 articles were chosen to be part of this review. The selected articles indicated that the drug-releasing carriers in periodontitis treatment were membranes and films fabricated from different types of materials and through various methods. Some of the drugs released by the films and membranes in the selected articles include doxycycline, tetracycline, metronidazole, levofloxacin, and minocycline, all used with good outcome regarding their bactericide effect; BMP-2, Zinc-hydroxyapatite nanoparticles with regenerative effect. The conclusion derived from the selected studies was that gradual drug release in the periodontal pockets is a promising strategy as an adjuvant for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Nausica Petrescu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bogdan Crisan
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, 400029 Cluj-Napoca, Romania
| | - Ovidiu Aghiorghiesei
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Codruta Sarosi
- Institute of Chemistry Raluca Ripan, Department of Polymer Composites, Babes-Bolyai University, 400294 Cluj-Napoca, Romania
| | - Ioana Codruta Mirica
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Noemi Dirzu
- Medfuture Research Center for Advanced Medicine, School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Dragos Apostu
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022; 27:molecules27144504. [PMID: 35889381 PMCID: PMC9322155 DOI: 10.3390/molecules27144504] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The first bioprocess that occurs in response to wounding is the deterrence of local hemorrhage. This is accomplished by platelet aggregation and initiation of the hemostasis cascade. The resulting blood clot immediately enables the cessation of bleeding and then functions as a provisional matrix for wound healing, which begins a few days after injury. Here, fibrinogen and fibrin fibers are the key players, because they literally serve as scaffolds for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. Fibrin is also an important modulator of healing and a host defense system against microbes that effectively maintains incoming leukocytes and acts as reservoir for growth factors. This review presents recent advances in the understanding and applications of fibrin and fibrin-fiber-incorporated biomedical materials applied to wound healing and subsequent tissue repair. It also discusses how fibrin-based materials function through several wound healing stages including physical barrier formation, the entrapment of bacteria, drug and cell delivery, and eventual degradation. Pure fibrin is not mechanically strong and stable enough to act as a singular wound repair material. To alleviate this problem, this paper will demonstrate recent advances in the modification of fibrin with next-generation materials exhibiting enhanced stability and medical efficacy, along with a detailed look at the mechanical properties of fibrin and fibrin-laden materials. Specifically, fibrin-based nanocomposites and their role in wound repair, sustained drug release, cell delivery to wound sites, skin reconstruction, and biomedical applications of drug-loaded fibrin-based materials will be demonstrated and discussed.
Collapse
|
22
|
Ercan E, Suner SS, Silan C, Yilmaz S, Siddikoglu D, Sahiner N, Tunali M. Titanium platelet-rich fibrin (T-PRF) as high-capacity doxycycline delivery system. Clin Oral Investig 2022; 26:5429-5438. [PMID: 35501503 DOI: 10.1007/s00784-022-04510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Titanium platelet-rich fibrin (T-PRF), a second-generation autogenous blood concentrate with tough and thick fibrin meshwork activated by a titanium tube, was used as a drug carrier for doxycycline (Doxy) by injection. The objective of this study is to evaluate the loading capacity of T-PRF, release kinetics of doxycycline-loaded T-PRF, and its antibacterial effects against S. aureus and P. aeruginosa. MATERIALS AND METHODS The T-PRF and collagen were loaded with Doxy as T-PRF/Doxy and Collagen/Doxy, and their release and antibacterial activities against S. aureus and P. aeruginosa were investigated. Chemical characterization and morphological analysis were performed. RESULTS In comparison with collagen, approximately sevenfold more Doxy, 281 mg/g, was loaded into T-PRF. It was found that 25% of the loaded Doxy was released from T-PRF compared to only 12% from collagen within 72 h. The largest inhibition zone diameter (IZD) was observed for T-PRF/Dox with 32 ± 6 mm and 37 ± 5 mm for P. aereginosa and S. aureus, respectively. However, only 10 ± 5 mm and 10 ± 6 mm IZD were observed for bare T-PRF, and no inhibition zone was observed for the Collagen/Doxy group. A dense fibrin structure was visualized on SEM images of the T-PRF/Doxy group compared to the T-PRF group. CONCLUSIONS T-PRF has higher Doxy loading capacity and long-acting antibacterial effects compared to collagen. T-PRF was shown to have potential autogenous long-term drug-carrying capability for doxycycline. Also, the potential fibrinophilic properties of Doxy were observed to strengthen the structure of T-PRF. CLINICAL RELEVANCE T-PRF is an autogenous drug career with high loading capacity and extended antibacterial effects for doxycycline. Doxycycline molecules can be visible on T-PRF fibers. This study suggests that T-PRF/Dox could be used as a proper antibiotic delivery device in the treatments of periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Esra Ercan
- Department of Periodontology, Faculty of Dentistry, Canakkale Onsekiz Mart University, 17110, Canakkale, Turkey.
| | - Selin S Suner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, 17100, Turkey
| | - Coskun Silan
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, 17100, Turkey
| | - Selehattin Yilmaz
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, 17100, Turkey
| | - Duygu Siddikoglu
- Department of Biostatistics, Faculty of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, 17100, Turkey.,Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.,Department of Chemical & Biomedical Engineering, and Materials Science and Engineering Program, University of South Florida, Tampa, FL, 33620, USA
| | - Mustafa Tunali
- Department of Periodontology, Faculty of Dentistry, Canakkale Onsekiz Mart University, 17110, Canakkale, Turkey
| |
Collapse
|
23
|
A Strategic and Worldwide Cooperative Challenge Required for the Next Generation of Platelet Concentrates. Int J Mol Sci 2022; 23:ijms23073437. [PMID: 35408791 PMCID: PMC8998640 DOI: 10.3390/ijms23073437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Blood-derived biomaterials, which are represented by platelet-rich plasma (PRP) or more recently by platelet-rich fibrin (PRF), have been used in regenerative therapy for almost 30 years [...].
Collapse
|
24
|
Biofunctionalization of Xenogeneic Collagen Membranes with Autologous Platelet Concentrate-Influence on Rehydration Protocol and Angiogenesis. Biomedicines 2022; 10:biomedicines10030706. [PMID: 35327506 PMCID: PMC8945896 DOI: 10.3390/biomedicines10030706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The aim of this study was to analyze possible interactions of different xenogeneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®, Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood, saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24 and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05) was shown. After 72 h, CM in combination with PRF induced a statistically significant addition to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance CM vascularization.
Collapse
|
25
|
Proposal for a New Bioactive Kinetic Screw in an Implant, Using a Numerical Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new biomechanism, Bioactive Kinetic Screw (BKS) for screws and bone implants created by the first author, is presented using a bone dental implant screw, in which the bone particles, blood, cells, and protein molecules removed during bone drilling are used as a homogeneous autogenous transplant in the same implant site, aiming to obtain primary and secondary bone stability, simplifying the surgical procedure, and improving the healing process. The new BKS is based on complex geometry. In this work, we describe the growth factor (GF) delivery properties and the in situ optimization of the use of the GF in the fixation of bone screws through a dental implant. To describe the drilling process, an explicit dynamic numerical model was created, where the results show a significant impact of the drilling process on the bone material. The simulation demonstrates that the space occupied by the screw causes stress and deformation in the bone during the perforation and removal of the particulate bone, resulting in the accumulation of material removed within the implant screw, filling the limit hole of the drill grooves present on the new BKS.
Collapse
|
26
|
Allam E, Abdel Moniem R, Soliman G. Functional and structural assessment of the possible protective effect of platelet-rich plasma against ischemia/reperfusion-induced ovarian injury in adult rats. CHINESE J PHYSIOL 2022; 65:64-71. [DOI: 10.4103/cjp.cjp_3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|