1
|
Maqbool M, Hussain MS, Shaikh NK, Sultana A, Bisht AS, Agrawal M. Noncoding RNAs in the COVID-19 Saga: An Untold Story. Viral Immunol 2024; 37:269-286. [PMID: 38968365 DOI: 10.1089/vim.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Mangalore, India
| | - Ajay Singh Bisht
- Shri Guru Ram Rai University School of Pharmaceutical Sciences, Dehradun, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, India
| |
Collapse
|
2
|
Zhou J, Wei C, Li G, He W, Song M, Liu X, Feng J, Liu J. The involvement of circulating miR-146a and miR-27a in patients with atherosclerotic cardiovascular disease after SARS-CoV-2 infection. Clin Cardiol 2024; 47:e24274. [PMID: 38884329 PMCID: PMC11181128 DOI: 10.1002/clc.24274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is a group of clinical diseases based on pathology of atherosclerosis that is the leading cause of mortality worldwide. There is a bidirectional interaction between ASCVD and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alterations in circulating miRNAs levels are involved in the development of ASCVD in patients infected with SARS-CoV-2, however, the correlation between ASCVD co-infection with SARS-CoV-2 and alterations of cardiac-specific miRNAs is not well understood. HYPOTHESIS The circulating miR-146a and miR-27a are involved in bidirectional interactions between ASCVD and SARS-CoV-2 infections. METHODS Circulating miR-146a and miR-27a levels were measured in serum and PBMCs deriving from ASCVD patients and controls after SARS-CoV-2 infection by qRT-PCR analysis. The levels of neutralizing antibodies-resistant SARS-CoV-2 in human serum was determined by competitive magnetic particle chemiluminescence method. Interleukin (IL)-6 levels were detected by automatic biochemical analyzer using electrochemiluminescence. RESULTS Significant downregulation of circulating miR-146a and upregulation of miR-27a in ASCVD patients after infection with SARS-CoV-2 compared with controls were observed, among which the alterations were more evident in ASCVD patients comorbid with hyperlipidemia and diabetes mellitus. Consistently, correlation analysis revealed that serum miR-146a and miR-27a levels were associated with the levels of lipids and glucose, inflammatory response, and immune function in ASCVD patients. Remarkably, SARS-CoV-2 S protein RBD stimulation of PBMCs derived from both ASCVD and controls significantly downregulated miR-146a, upregulated miR-27a expression levels, and promoted IL-6 release in vitro. CONCLUSIONS The circulating miR-146a and miR-27a are involved in metabolism, inflammation, and immune levels in patients with ASCVD after SARS-CoV-2 infection, laying the foundation for the development of strategies to prevent the risk of SARS-CoV-2 infection in ASCVD patients.
Collapse
Affiliation(s)
- Jiahong Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Chao Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Guangrong Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Wenwei He
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| |
Collapse
|
3
|
Shbeer AM. Mystery of COVID 19: Focusing on important ncRNAs and effective signaling pathways. Pathol Res Pract 2024; 255:155155. [PMID: 38354486 DOI: 10.1016/j.prp.2024.155155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
This article provides a thorough investigation of the essential role of non-coding RNAs (ncRNAs) in the context of COVID-19, emphasizing their impact on the complex molecular dynamics of the viral infection. By conducting a systematic review of existing literature, we identify key ncRNAs involved in different stages of the viral life cycle, modulation of host immune response, and disease progression. The importance of microRNAs, long non-coding RNAs, and other ncRNA types emerges as influential factors in shaping the interaction between the host and the virus. Additionally, the study delves into the effective signaling pathways linked to COVID-19 pathogenesis, uncovering intricate molecular cascades that govern viral entry, replication, and host cell response. This exploration encompasses established pathways such as IL-6/JAK/STAT signaling, highlighting their interplay within the context of COVID-19. By synthesizing this knowledge, our aim is not only to enhance our understanding of the molecular complexities of COVID-19 but also to reveal potential therapeutic targets. Through elucidating the interaction between ncRNAs and signaling pathways, our article seeks to contribute to ongoing efforts in developing targeted interventions against COVID-19, ultimately advancing our ability to address this global health crisis.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
4
|
Sefatjoo Z, Mohebbi SR, Hosseini SM, Shoraka S, Saeedi Niasar M, Baghaei K, Meyfour A, Sadeghi A, Malekpour H, Asadzadeh Aghdaei H, Zali MR. Evaluation of long non-coding RNAs EGOT, NRAV, NRIR and mRNAs ISG15 and IFITM3 expressions in COVID-19 patients. Cytokine 2024; 175:156495. [PMID: 38184893 DOI: 10.1016/j.cyto.2023.156495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.
Collapse
Affiliation(s)
- Zahra Sefatjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Research and Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ramandi A, Akbarzadeh MA, Khaheshi I, Khalilian MR. Aortic dissection and Covid-19; a comprehensive systematic review. Curr Probl Cardiol 2023; 48:101129. [PMID: 35139402 PMCID: PMC8817949 DOI: 10.1016/j.cpcardiol.2022.101129] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 19 (Covid-19) has been declared as a pandemic disease since March 2020; causing wide array of signs and symptoms, many of which result in increased mortality rates worldwide. Although it was initially known as an acute respiratory disease, Covid-19 is accompanied with several extrapulmonary manifestations, of which the cardiovascular ones are of major importance. Among other cardiovascular complications of Covid-19, aortic dissection has been a significant yet underrated problem. The pathophysiology of aortic dissection consists of various inflammatory pathways, that could be influenced by Covid-19 infection. We herein have reviewed articles inclusive of aortic dissection concurrent with Covid-19 infection in a systematic manner, along with the probable similarities in pathophysiology of aortic dissection with Covid-19 infection.
Collapse
Affiliation(s)
- Alireza Ramandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Akbarzadeh
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Khalilian
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Depletion of γδ T Cells Leads to Reduced Angiogenesis and Increased Infiltration of Inflammatory M1-like Macrophages in Ischemic Muscle Tissue. Cells 2022; 11:cells11091490. [PMID: 35563796 PMCID: PMC9102774 DOI: 10.3390/cells11091490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
γδ T cells, a small subset of T cells in blood, play a substantial role in influencing immunoregulatory and inflammatory processes. The functional impact of γδ T cells on angiogenesis in ischemic muscle tissue has never been reported and is the topic of the present work. Femoral artery ligation (FAL) was used to induce angiogenesis in the lower leg of γδ T cell depleted mice and wildtype and isotype antibody-treated control groups. Gastrocnemius muscle tissue was harvested 3 and 7 days after FAL and assessed using (immuno-)histological analyses. Hematoxylin and Eosin staining showed an increased area of tissue damage in γδ T cell depleted mice 7 days after FAL. Impaired angiogenesis was demonstrated by lower capillary to muscle fiber ratio and decreased number of proliferating endothelial cells (CD31+/BrdU+). γδ T cell depleted mice showed an increased number of total leukocytes (CD45+), neutrophils (MPO+) and neutrophil extracellular traps (NETs) (MPO+/CitH3+), without changes in the neutrophils to NETs ratio. Moreover, the depletion resulted in a higher macrophage count (DAPI/CD68+) caused by an increase in inflammatory M1-like macrophages (CD68+/MRC1−). Altogether, we show that depletion of γδ T cells leads to increased accumulation of leukocytes and M1-like macrophages, along with impaired angiogenesis.
Collapse
|
7
|
Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. EPIGENOMES 2022; 6:epigenomes6020013. [PMID: 35645252 PMCID: PMC9150012 DOI: 10.3390/epigenomes6020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Although few in number, studies on epigenome of the heart of COVID-19 patients show that epigenetic signatures such as DNA methylation are significantly altered, leading to changes in expression of several genes. It contributes to pathogenic cardiac phenotypes of COVID-19, e.g., low heart rate, myocardial edema, and myofibrillar disarray. DNA methylation studies reveal changes which likely contribute to cardiac disease through unknown mechanisms. The incidence of severe COVID-19 disease, including hospitalization, requiring respiratory support, morbidity, and mortality, is disproportionately higher in individuals with co-morbidities. This poses unprecedented strains on the global healthcare system. While their underlying conditions make patients more susceptible to severe COVID-19 disease, strained healthcare systems, lack of adequate support, or sedentary lifestyles from ongoing lockdowns have proved detrimental to their underlying health conditions, thus pushing them to severe risk of congenital heart disease (CHD) itself. Prophylactic vaccines against COVID-19 have ushered new hope for CHD. A common connection between COVID-19 and CHD is SARS-CoV-2’s host receptor ACE2, because ACE2 regulates and protects organs, including the heart, in various ways. ACE2 is a common therapeutic target against cardiovascular disease and COVID-19 which damages organs. Hence, this review explores the above regarding CHDs, cardiovascular damage, and cardiac epigenetics, in COVID-19 patients.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB E2L 4L2, Canada;
| | - Rwik Sen
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Correspondence:
| |
Collapse
|
8
|
Coagulopathy and Fibrinolytic Pathophysiology in COVID-19 and SARS-CoV-2 Vaccination. Int J Mol Sci 2022; 23:ijms23063338. [PMID: 35328761 PMCID: PMC8955234 DOI: 10.3390/ijms23063338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is frequently complicated by thrombosis. In some cases of severe COVID-19, fibrinolysis may be markedly enhanced within a few days, resulting in fatal bleeding. In the treatment of COVID-19, attention should be paid to both coagulation activation and fibrinolytic activation. Various thromboses are known to occur after vaccination with SARS-CoV-2 vaccines. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can occur after adenovirus-vectored vaccination, and is characterized by the detection of anti-platelet factor 4 antibodies by enzyme-linked immunosorbent assay and thrombosis in unusual locations such as cerebral venous sinuses and visceral veins. Treatment comprises high-dose immunoglobulin, argatroban, and fondaparinux. Some VITT cases show marked decreases in fibrinogen and platelets and marked increases in D-dimer, suggesting the presence of enhanced-fibrinolytic-type disseminated intravascular coagulation with a high risk of bleeding. In the treatment of VITT, evaluation of both coagulation activation and fibrinolytic activation is important, adjusting treatments accordingly to improve outcomes.
Collapse
|
9
|
Incidence and prognosis of myocardial injury in patients with severe trauma. Eur J Trauma Emerg Surg 2021; 48:3073-3079. [PMID: 34878581 PMCID: PMC9360164 DOI: 10.1007/s00068-021-01846-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Purpose Severe trauma can lead to end organ damages of varying severity, including myocardial injury. In the non-cardiac surgery setting, there is extensive evidence that perioperative myocardial injury is associated with increased morbidity and mortality. The impact of myocardial injury on outcome after severe trauma has not been investigated adequately yet. We hypothesized that myocardial injury is associated with increased in-hospital mortality in patients with severe trauma. Materials/methods This retrospective cohort study included patients ≥ 18 years with severe trauma [defined as injury severity score (ISS) ≥ 16] that were admitted to the resuscitation room of the Emergency Department of the University Hospital Duesseldorf, Germany, between 2016 and 2019. The main endpoint was in-hospital mortality. Main exposure was myocardial injury at arrival [defined as high-sensitive troponin T (hsTnT) > 14 ng/l]. For statistical analysis, receiver operating characteristic curve (ROC) and multivariate binary logistic regression were performed. Results Out of 368 patients, 353 were included into statistical analysis (72.5% male, age: 55 ± 21, ISS: 28 ± 12). Overall in-hospital mortality was 26.1%. Myocardial injury at presentation was detected in 149 (42.2%) patients. In-hospital mortality of patients with and without myocardial injury at presentation was 45% versus 12.3%, respectively. The area under the curve (AUC) for hsTnT and mortality was 0.76 [95% confidence interval (CI) 0.71–0.82]. The adjusted odds ratio of myocardial injury for in-hospital mortality was 2.27 ([95%CI 1.16–4.45]; p = 0.017). Conclusion Myocardial injury after severe trauma is common and independently associated with in-hospital mortality. Thus, hsTnT might serve as a new prognostic marker in this cohort. Supplementary Information The online version contains supplementary material available at 10.1007/s00068-021-01846-2.
Collapse
|