1
|
Lima V, Morais STB, Ferreira VG, Almeida MB, Silva MPB, de A. Lopes T, de Oliveira JM, Raimundo JRS, Furtado DZS, Fonseca FLA, Oliveira RV, Cardoso DR, Carrilho E, Assunção NA. Multiplatform Metabolomics: Enhancing the Severity Risk Prognosis of SARS-CoV-2 Infection. ACS OMEGA 2024; 9:45746-45758. [PMID: 39583673 PMCID: PMC11579725 DOI: 10.1021/acsomega.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Concerns about the SARS-CoV-2 outbreak (COVID-19) continue to persist even years later, with the emergence of new variants and the risk of disease severity. Common clinical symptoms, like cough, fever, and respiratory symptoms, characterize the noncritical patients, classifying them from mild to moderate. In a more severe and complex scenario, the virus infection can affect vital organs, resulting, for instance, in pneumonia and impaired kidney and heart function. However, it is well-known that subclinical symptoms at a metabolic level can be observed previously but require a proper diagnosis because viral replication on the host leaves a track with a different profile depending on the severity of the illness. Metabolomic profiles of mild, moderate, and severe COVID-19 patients were obtained by multiple platforms (LC-HRMS and MALDI-MS), increasing the chance to elucidate a prognosis for severity risk. A strong link was discovered between phenylalanine metabolism and increased COVID-19 severity symptoms, a pathway linked to cardiac and neurological consequences. Glycerophospholipids and sphingolipid metabolisms were also dysregulated linearly with the increasing symptom severity, which can be related to virus proliferation, immune system avoidance, and apoptosis escaping. Our data, endorsed by other literature, strengthens the notion that these pathways might play a vital role in a patient's prognosis.
Collapse
Affiliation(s)
- Vinicius
S. Lima
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Sinara T. B. Morais
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Mariana B. Almeida
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Manuel Pedro Barros Silva
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Thais de A. Lopes
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Juliana M. de Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | - Danielle Z. S. Furtado
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Fernando L. A. Fonseca
- Faculdade
de Medicina do ABC, Santo André, São Paulo 09060-870, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| | - Regina V. Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Daniel R. Cardoso
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Emanuel Carrilho
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Nilson A. Assunção
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| |
Collapse
|
2
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
3
|
Zheng Q, Liu L, Guo X, Zhu F, Huang Y, Qin Q, Huang X. Fish ELOVL7a is involved in virus replication via lipid metabolic reprogramming. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109530. [PMID: 38570120 DOI: 10.1016/j.fsi.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Qi Zheng
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xixi Guo
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fengyi Zhu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
4
|
Liu L, Zhang Y, Yuan MD, Xiao DM, Xu WH, Zheng Q, Qin QW, Huang YH, Huang XH. Integrated multi-omics analysis reveals liver metabolic reprogramming by fish iridovirus and antiviral function of alpha-linolenic acid. Zool Res 2024; 45:520-534. [PMID: 38682434 PMCID: PMC11188608 DOI: 10.24272/j.issn.2095-8137.2024.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.
Collapse
Affiliation(s)
- Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangdong 511464, China
| | - Meng-Di Yuan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Dong-Miao Xiao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Wei-Hua Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Qi Zheng
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangdong 511464, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519082, China. E-mail:
| | - You-Hua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangdong 511464, China. E-mail:
| | - Xiao-Hong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangdong 511464, China. E-mail:
| |
Collapse
|
5
|
Oliveira LB, Mwangi VI, Sartim MA, Delafiori J, Sales GM, de Oliveira AN, Busanello ENB, Val FFDAE, Xavier MS, Costa FT, Baía-da-Silva DC, Sampaio VDS, de Lacerda MVG, Monteiro WM, Catharino RR, de Melo GC. Metabolomic Profiling of Plasma Reveals Differential Disease Severity Markers in COVID-19 Patients. Front Microbiol 2022; 13:844283. [PMID: 35572676 PMCID: PMC9094083 DOI: 10.3389/fmicb.2022.844283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.
Collapse
Affiliation(s)
- Lucas Barbosa Oliveira
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Victor Irungu Mwangi
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programas de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Pró-reitoria de Pesquisa e Pós-graduação, Universidade Nilton Lins, Manaus, Brazil
| | - Jeany Delafiori
- Laboratório Innovare de Biomarcadores, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Geovana Manzan Sales
- Laboratório Innovare de Biomarcadores, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arthur Noin de Oliveira
- Laboratório Innovare de Biomarcadores, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Estela Natacha Brandt Busanello
- Laboratório Innovare de Biomarcadores, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fernando Fonseca de Almeida E Val
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Mariana Simão Xavier
- Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fabio Trindade Costa
- Laboratório Innovare de Biomarcadores, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Djane Clarys Baía-da-Silva
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Vanderson de Souza Sampaio
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Rodrigo Ramos Catharino
- Laboratório Innovare de Biomarcadores, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gisely Cardoso de Melo
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Fundação de Medicina Tropical Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| |
Collapse
|