1
|
Li T, Xiong Z, Liu Y, Zhao H, Rong W, Chen Y, Chen G, Cao L, Liu Q, Song J, Wang W, Liu Y, Wang XZ, Liu SZ. Mechanism of vitamin C alleviating the immunotoxicity of 17α-methyltestosterone in Carassius auratus. BMC Genomics 2024; 25:1068. [PMID: 39528939 PMCID: PMC11552423 DOI: 10.1186/s12864-024-10967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In recent years, the use of endocrine-disrupting chemicals (EDCs) has become increasingly common, leading to severe environmental pollution and harm to aquatic organisms. 17α-Methyltestosterone (MT) is a synthetic androgen that can cause immunotoxicity in aquaculture, affecting fish health. To address this issue, this study aimed to investigate the effect of Vitamin C (VC) on MT-induced immunotoxicity and determine the optimal VC supplementation. RESULTS Carassius auratus was exposed to 50 ng/L MT and treated with 25, 50, and 150 mg/kg VC for 7, 14, and 21 d. Morphological indicators, histological characteristics, hepatic antioxidant capacity, and immune-related gene expression were analyzed. Additionally, RNA-seq was performed on the liver tissues of the control, MT, and MT + 25 mg/kg VC groups after 21 d. Results showed that, MT treatment significantly increased liver malondialdehyde content and inhibited immune-related gene expression (TNF-α, IL-8, INF-γ, IL-10, Caspase-9, and IGF-I), causing oxidative stress and immunotoxicity, leading to hepatic steatosis. However, supplementation with 25-50 mg/kg VC effectively alleviated the MT-induced damage to the hepatic structure and immune system. RNA-seq revealed significant enrichment of differentially expressed genes in multiple signaling pathways, including the mTOR, MAPK, and Wnt pathways. CONCLUSIONS In summary, 25-50 mg/kg VC alleviated inhibitory effect of MT on immune-related genes in C. auratus liver, reducing MT-induced tissue damage. VC not only alleviated inflammation, oxidative stress, and immunotoxicity induced by MT through the regulation of the mTOR, MAPK, and Wnt signaling pathways, but also indirectly enhanced cellular antioxidant defense mechanisms by regulating the NRF2 pathway. This provides a theoretical basis for VC application in aquaculture, improving fish health and increasing efficiency.
Collapse
Affiliation(s)
- Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yue Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Gen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Lu Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xian-Zong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.
- Yangjiazhuang, Jinzhong City, Taigu County, Shanxi Province, China.
| | - Shao-Zhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, 030801, China.
- Yangjiazhuang, Jinzhong City, Taigu County, Shanxi Province, China.
| |
Collapse
|
2
|
Hedayatikatouli F, Kalyn M, Elsaid D, Mbesha HA, Ekker M. Neuroprotective Effects of Ascorbic Acid, Vanillic Acid, and Ferulic Acid in Dopaminergic Neurons of Zebrafish. Biomedicines 2024; 12:2497. [PMID: 39595063 PMCID: PMC11592154 DOI: 10.3390/biomedicines12112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a debilitating neurodegenerative disease that targets the nigrostriatal dopaminergic (DAnergic) system residing in the human midbrain and is currently incurable. The aim of this study is to investigate the neuroprotective effects of ascorbic acid, vanillic acid, and ferulic acid in a zebrafish model of PD induced by MPTP by assessing the impact of these compounds on DAnergic neurons, focusing on gene expression, mitochondrial dynamics, and cellular stress responses. Methods/Results: Following exposure and qPCR and immunohistochemical analyses, ascorbic acid enhanced DAnergic function, indicated by an upregulation of the dopamine transporter (dat) gene and increased eGFP+ DAnergic cells, suggesting improved dopamine reuptake and neuroprotection. Ascorbic acid also positively affected mitochondrial dynamics and stress response pathways, countering MPTP-induced dysregulation. Vanillic acid only had modest, if any, neuroprotective effects on DAnergic neurons following MPTP administration. Ferulic acid exhibited the largest neuroprotective effects through the modulation of gene expression related to DAnergic neurons and mitochondrial dynamics. Conclusions: These findings suggest that ascorbic acid and ferulic acid can act as potential protective interventions for DAnergic neuron health, demonstrating various beneficial effects at the molecular and cellular levels. However, further investigation is needed to translate these results into clinical applications. This study enhances the understanding of neuroprotective strategies in neurodegenerative diseases, emphasizing the importance of considering interactions between physiological systems.
Collapse
Affiliation(s)
| | | | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
3
|
Paduraru E, Jijie R, Simionov IA, Gavrilescu CM, Ilie T, Iacob D, Lupitu A, Moisa C, Muresan C, Copolovici L, Copolovici DM, Mihalache G, Lipsa FD, Solcan G, Danelet GA, Nicoara M, Ciobica A, Solcan C. Honey Enriched with Additives Alleviates Behavioral, Oxidative Stress, and Brain Alterations Induced by Heavy Metals and Imidacloprid in Zebrafish. Int J Mol Sci 2024; 25:11730. [PMID: 39519279 PMCID: PMC11546825 DOI: 10.3390/ijms252111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental concerns have consistently been a focal point for the scientific community. Pollution is a critical ecological issue that poses significant threats to human health and agricultural production. Contamination with heavy metals and pesticides is a considerable concern, a threat to the environment, and warrants special attention. In this study, we investigated the significant issues arising from sub-chronic exposure to imidacloprid (IMI), mercury (Hg), and cadmium (Cd), either alone or in combination, using zebrafish (Danio rerio) as an animal model. Additionally, we assessed the potential protective effects of polyfloral honey enriched with natural ingredients, also called honey formulation (HF), against the combined sub-chronic toxic effects of the three contaminants. The effects of IMI (0.5 mg·L-1), Hg (15 μg·L-1), and Cd (5 μg·L-1), both individually and in combination with HF (500 mg·L-1), on zebrafish were evaluated by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), various antioxidant enzyme activities like superoxide dismutase and glutathione peroxidase (SOD and GPx), 2D locomotor activity, social behavior, histological and immunohistochemical factors, and changes in body element concentrations. Our findings revealed that all concentrations of pollutants may disrupt social behavior, diminish swimming performances (measured by total distance traveled, inactivity, and swimming speed), and elevate oxidative stress (OS) biomarkers of SOD, GPx, and MDA in zebrafish over the 21-day administration period. Fish exposed to IMI and Hg + Cd + IMI displayed severe lesions and increased GFAP (Glial fibrillary acidic protein) and S100B (S100 calcium-binding protein B) protein expression in the optic tectum and cerebellum, conclusively indicating astrocyte activation and neurotoxic effects. Furthermore, PCNA (Proliferating cell nuclear antigen) staining revealed reduced cell proliferation in the IMI-exposed group, contrasting with intensified proliferation in the Hg + Cd group. The nervous system exhibited significant damage across all studied concentrations, confirming the observed behavioral changes. Moreover, HF supplementation significantly mitigated the toxicity induced by contaminants and reduced OS. Therefore, the exposure to chemical mixtures offers a more complete picture of adverse impacts on aquatic ecosystems and the supplementation with bioactive compounds can help to reduce the toxicity induced by exposure to environmental pollutants.
Collapse
Affiliation(s)
- Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies (RAMTECH), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Dunarea de Jos University of Galati, No. 47 Domnească Street, 800008 Galati, Romania;
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, No. 98 George Coșbuc Street, 800385 Galati, Romania
| | - Cristina-Maria Gavrilescu
- Department of Biomedical Sciences, Grigore T. Popa University of Medicine and Pharmacy, No. 16 University Street, 700115 Iasi, Romania;
| | - Tudor Ilie
- Synergy Plant Products, No. 12 Milano Street, Prejmer, 507165 Brasov, Romania;
| | - Diana Iacob
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Andreea Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Claudia Muresan
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Dana M. Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Florin Daniel Lipsa
- Department of Food Technologies, Ion Ionescu de la Brad University of Life Sciences, No. 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Gabriela-Alexandra Danelet
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8 Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54 Independence Street, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, No. 11 Pacurari Street, 700511 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| |
Collapse
|
4
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
5
|
Mohammed-Geba K, Mohamed-Farahat A, Alsherbeny S, Gaafar AY, Schott EJ, Galal-Khallaf A. Biofiltering capacity of Chambardia rubens (Bivalvia: Unionidae) may modulate expression of stress and growth genes inhibited by the neonicotinoid insecticide acetamiprid in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124312. [PMID: 38852661 DOI: 10.1016/j.envpol.2024.124312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Neonicotinoid insecticides specifically target insect subtypes of nicotinic acetylcholine receptors. Acetamiprid (ACE: C10H11ClN4), the neonicotinoid insecticide, is used to control crop insect pests worldwide. It is a nitrile, monochloropyridine, and carboxamidine that is highly soluble and accessible to waterways. There, it causes neurotoxic and oxidative perturbance to non-target organisms. The unionid mussel Chamabradia rubens is a common Northern River Nile suspension feeder. The current study aimed to assess ACE filtration from waters by C. rubens, and whether this biological power can reduce ACE effects on fish. Removal of ACE by C. rubens was assessed using LC-MS/MS. Zebrafish Danio rerio adults were exposed to different sublethal doses of ACE in the presence or absence of C. rubens in their aquaria. The results showed that mussels could remove significant ACE amounts from water, where it accumulated mostly in the digestive gland. The presence of C.rubens in zebrafish aquaria having ACE was accompanied by significant upregulation of antioxidant enzyme gene transcripts and total H2O2 scavenging, in contrast to mussel-free ACE-exposed groups. Meanwhile, liver triglycerides rose 5-6-fold in response to ACE in the "Fish-Only" groups, indicating an ACE-induced hepatotoxicity. Also, Insulin-like growth factor 1 (igf1) and fish body mass increased more in "Fish + Mussel" groups than in the "Fish-Only" ones. In aggregate, these findings suggest that the Nile mussel could reduce the oxidative stress and metabolic changes induced in fish by ACE. This can contribute valuable environmental and economic benefits upon the use of this mussel as a biofilter.
Collapse
Affiliation(s)
- Khaled Mohammed-Geba
- Molecular Biology and Biotechnology Laboratory, Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | | | - Sherif Alsherbeny
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza, 12311, Egypt
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Center, Egypt
| | - Eric J Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA
| | - Asmaa Galal-Khallaf
- Molecular Biology and Biotechnology Laboratory, Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| |
Collapse
|
6
|
Ran Y, Shen X, Li Y. Glycyrrhiza Extract and Curcumin Alleviates the Toxicity of Cadmium via Improving the Antioxidant and Immune Functions of Black Goats. TOXICS 2024; 12:284. [PMID: 38668507 PMCID: PMC11053436 DOI: 10.3390/toxics12040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
To investigate the mitigative effects of glycyrrhiza extract (GE) and curcumin (CUR) on the antioxidant and immune functions of the Guizhou black goat exposed to cadmium (Cd), 50 healthy Guizhou black goats (11.08 ± 0.22 kg, male, six months old) were used in a 60-day trial and were randomly assigned to five groups with 10 replicates per group, one goat per replicate. All goats were fed a basal diet, with drinking water and additives varying slightly between groups. Control group: tap water (0.56 μg·L-1 Cd); Cd group: drinking water containing Cd (20 mg Cd·kg-1·body weight, CdCl2·2.5H2O); GE group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 GE; CUR group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 CUR; combined group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 GE and CUR. Compared with the Cd group, GE and CUR significantly increased the levels of hemoglobin and red blood cell count in the blood, and the activities of serum antioxidant enzyme activity and immune function in the Guizhou black goat (p < 0.05). The treatment effect in the combined group was better than that in the GE and CUR groups. The results showed that GE and CUR improved the antioxidant and immune functions of the serum and livers of the Guizhou black goat and alleviated the toxicity damage of Cd contamination. This research has positive implications for both livestock management and human health.
Collapse
Affiliation(s)
- Yang Ran
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (X.S.)
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (X.S.)
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (X.S.)
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
7
|
Ju Y, Bu D, Wang H, Li B, Cheng D. In silico prediction aided preparation of antioxidant soybean peptides by enzymatic hydrolysis for ameliorating lead exposure-induced toxicity. Food Funct 2024; 15:3365-3379. [PMID: 38289622 DOI: 10.1039/d3fo04697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Food derived bioactive peptides are prominent dietary supplements to protect against oxidative stress induced by lead (Pb) exposure. This study aimed to develop a new strategy for rapid preparation of highly active antioxidant soybean polypeptides (ASPs) against Pb toxicity. In silico enzymatic hydrolysis simulation and antioxidant activity prediction showed that pepsin, chymotrypsin and bromelain can produce peptides with the highest activity. The preparation process was then optimized, and the obtained ASP showed good antioxidant and metal-chelating activities in vitro. An in vivo study showed that ASP exerted prominent protective effects against Pb-induced cognitive impairment and tissue damage in mice by reducing Pb deposition and enhancing the antioxidant capacity in tissues and was superior to Vc, DMSA or their combination in some aspects. ASP composition analysis demonstrated that its prominent antioxidant activity might be attributed to the high proportion of amino acid residues E, L, P and V in the peptide sequence and L, V and A at the C- and N-termini. In conclusion, in silico prediction could facilitate the preparation of ASP. And the ASP prepared with the new strategy exerted prominent protective effects against Pb toxicity.
Collapse
Affiliation(s)
- Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| | - Dingdong Bu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| | - Bingye Li
- Tianxiang (Shandong) Biotechnology Co., Ltd, Room 1001, Block H2, Innovation Valley Industrial Park, Haichuan Road, Liuhang Street, Jining, Shandong, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
8
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Xiu W, Ding W, Mou S, Li Y, Sultan Y, Ma J, Li X. Adverse effects of fenpropathrin on the intestine of common carp (Cyprinus carpio L.) and the mechanism involved. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105799. [PMID: 38458669 DOI: 10.1016/j.pestbp.2024.105799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Fenpropathrin (FEN), a pyrethroid pesticide, is frequently detected in natural water bodies, unavoidable pose adverse effects to aquatic organisms. However, the harmful effects and potential mechanisms of FEN on aquatic species are poorly understood. In this study, common carp were treatment with FEN at 0.45 and 1.35 μg/L for 14 d, and the toxic effects and underlying mechanisms of FEN on the intestine of carp were revealed. RNA-seq results showed that FEN exposure cause a wide range of transcriptional alterations in the intestine and the differentially expressed genes were mainly enrichment in the pathways related to immune and metabolism. Specifically, FEN exposure induced pathological damage and altered submicroscopic structure of the intestine, elevated the levels of Bacteroides fragilis enterotoxin, altered the contents of claudin-1, occludin, and zonula occluden-1 (ZO-1), and causing injury to the intestinal barrier. In addition, inflammation-related index TNF-α in the serum and IL-6 in the intestinal tissues were generally increased after FEN exposure. Moreover, FEN exposure promoted an increase in reactive oxygen species (ROS), altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), upregulated the contents of malondialdehyde (MDA) in the intestines. The apoptosis-related parameter cytochrome c, caspase-9, and caspase-3 were significantly altered, indicating that inflammation reaction, oxidative stress, and apoptosis may be involved in the toxic mechanism of FEN on carp. Moreover, FEN treatment also altered the intestinal flora community significantly, which may affect the intestinal normal physiological function and thus affect the growth of fish. Overall, the present study help to clarify the intestinal reaction mechanisms after FEN treatment, and provide a basis for the risk assessment of FEN.
Collapse
Affiliation(s)
- Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Yang Q, Li G, Jin N, Zhang D. Synergistic/antagonistic toxicity characterization and source-apportionment of heavy metals and organophosphorus pesticides by the biospectroscopy-bioreporter-coupling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167057. [PMID: 37709080 DOI: 10.1016/j.scitotenv.2023.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Many anthropogenic chemicals are manufactured and eventually enter the surrounding environment, threatening food security and human health. Considering the additive or synergistic effects of pollutant mixtures, there is an expanding need for rapid, cost-effective and field-portable screening methods in environmental monitoring. This study used a recently developed biospectroscopy-bioreporter-coupling (BBC) approach to investigate the binary toxicity of Ag(I), Cr(VI) and four organophosphorus pesticides (dichlorvos, parathion, omethoate and monocrotophos). Ag(I) and Cr(VI) altered the toxicity mechanisms of pesticides, explained by the synergistic or antagonistic effect of Ag/Cr-induced cytotoxicity and pesticide-induced genotoxicity. The discriminating Raman spectral peaks associated with organophosphorus pesticides were 1585 and 1682 cm-1, but 750, 1004, 1306 and 1131 cm-1 were found in heavy metal and pesticide mixtures. More spectral alterations were related to pesticides rather than Ag(I) or Cr(VI), hinting at the dominant toxicity mechanisms of pesticides in mixtures. Ag(I) supplement significantly increased the levels of reactive oxygen species induced by organophosphorus pesticides, attributing to the increased permeability of cell membrane and entrance of toxic substances into the cells by the oligodynamic actions. This study lends deeper insights into the interactions between microbes and pollutant mixtures, offering clues to assess the cocktail effects of multiple pollutants comprehensively.
Collapse
Affiliation(s)
- Qiuyuan Yang
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
Rahman ANA, Altohamy DE, Elshopakey GE, Abdelwarith AA, Younis EM, Elseddawy NM, Elgamal A, Bazeed SM, Khamis T, Davies SJ, Ibrahim RE. Potential role of dietary Boswellia serrata resin against mancozeb fungicide-induced immune-antioxidant suppression, histopathological alterations, and genotoxicity in Nile tilapia, Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106738. [PMID: 37922777 DOI: 10.1016/j.aquatox.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κβ), transforming growth factor-beta (TGF-β), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1β and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora M Elseddawy
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
12
|
Wang Y, Wu M, Xiang L, Liu S, Luo G, Lin Q, Xiao L. Association of Dietary Vitamin C Consumption with Serum Klotho Concentrations. Foods 2023; 12:4230. [PMID: 38231677 DOI: 10.3390/foods12234230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Klotho is widely recognized as a protein that combats aging and possesses antioxidative characteristics, which have been implicated in the pathophysiology of numerous diseases. There is emerging evidence suggesting that the consumption of dietary nutrients, particularly those rich in antioxidants, could be associated with serum Klotho concentrations. Dietary vitamin C is one of the critical nutrients that possesses antioxidant properties. Nonetheless, the association between dietary vitamin C consumption and serum Klotho concentrations remains unclear. OBJECTIVE Aiming to evaluate the relationship between serum Klotho concentrations and dietary vitamin C consumption among Americans aged 40 to 79, we conducted a population-based study. METHODS From the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016, a grand total of 11,282 individuals who met the criteria were selected as eligible participants for the study. Serum Klotho concentrations were measured using an ELISA kit that is commercially available. Trained interviewers evaluated the consumption of dietary vitamin C in the diet through a 24-hour dietary recall technique. A generalized linear model was used to evaluate the correlation between the consumption of dietary vitamin C in the diet and serum Klotho concentrations. Further examination was conducted using restricted cubic spline (RCS) analysis to explore the non-linear correlation between dietary vitamin C consumption in the diet and serum Klotho concentrations. RESULTS After accounting for possible confounding factors, serum Klotho concentrations rose by 1.17% (95% confidence interval (CI): 0.37%, 1.99%) with every standard deviation (SD) rise in dietary vitamin C consumption. With the first quintile of dietary vitamin C consumption as a reference, the percentage change of serum Klotho concentrations in the fifth quintile of dietary vitamin C consumption was 3.66% higher (95% CI: 1.05%, 6.32%). In older, normal-weight, and male participants, the subgroup analysis revealed a stronger correlation between dietary vitamin C consumption and serum Klotho concentrations. Analysis of RCS showed a linear positive association between dietary vitamin C consumption and the levels of serum Klotho concentrations. CONCLUSION The findings of this research indicate a strong and positive correlation between dietary vitamin C consumption and serum Klotho concentrations among the general adult population in the United States. Further studies are needed to validate the present findings and to explore specific mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mingyang Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lu Xiang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Si Liu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Qian Lin
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
13
|
Simionov IA, Călmuc M, Iticescu C, Călmuc V, Georgescu PL, Faggio C, Petrea ŞM. Human health risk assessment of potentially toxic elements and microplastics accumulation in products from the Danube River Basin fish market. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104307. [PMID: 37914033 DOI: 10.1016/j.etap.2023.104307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The present study aimed to quantify the concentration levels of potentially toxic elements (PTEs) such as aluminum, arsenic, cadmium, chromium, copper, nickel, lead, zinc, and mercury, as well as microplastics occurrence in various tissues of fish and seafood species, commercialized in the Lower Danube River Basin. A health risk assessment analysis was performed based on the PTEs concentration levels in the muscle tissue. Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TR) of PTEs were calculated. It was observed that the species within the seafood category registered the highest levels of PTEs. For instance, in the muscle tissue of bivalve Mytilus galloprovincialis (from the Black Sea), the highest value was observed in the case of Zn (37.693 mg/kg), and the presence of polystyrene polymer was identified. The values associated with EDI, THQ, HI, and TR of PTE exposure were significantly lower than 1.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Mădălina Călmuc
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Cătălina Iticescu
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Chemistry, Physics and Environment, "Dunarea de Jos" University Galati, 800008 Galati, Romania.
| | - Valentina Călmuc
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Puiu-Lucian Georgescu
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Chemistry, Physics and Environment, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Ştefan-Mihai Petrea
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| |
Collapse
|
14
|
Zhang Z, Qiu T, Zhou J, Gong X, Yang K, Zhang X, Lan Y, Yang C, Zhou Z, Ji Y. Toxic effects of sirolimus and everolimus on the development and behavior of zebrafish embryos. Biomed Pharmacother 2023; 166:115397. [PMID: 37659200 DOI: 10.1016/j.biopha.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
Sirolimus and everolimus have been widely used in children. These mammalian target of rapamycin (mTOR) inhibitors have shown excellent efficacy not only in organ transplant patients as immunosuppressive agents but also in patients with some other diseases. However, whether mTOR inhibitors can affect the growth and development of children is of great concern. In this study, using zebrafish models, we discovered that sirolimus and everolimus could slow the development of zebrafish, affecting indicators such as survival, hatching, deformities, body length, and movement. In addition to these basic indicators, sirolimus and everolimus had certain slowing effects on the growth and development of the nervous system, blood vessels, and the immune system. These effects were dose dependent. When the drug concentration reached or exceeded 0.5 μM, the impacts of sirolimus and everolimus were very significant. More interestingly, the impact was transient. Over time, the various manifestations of experimental embryos gradually approached those of control embryos. We also compared the effects of sirolimus and everolimus on zebrafish, and we revealed that there was no significant difference between these drugs in terms of their effects. In summary, the dose of sirolimus and everolimus in children should be strictly controlled, and the drug concentration should be monitored over time. Otherwise, drug overdosing may have a certain impact on the growth and development of children.
Collapse
Affiliation(s)
- Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuepeng Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Congxia Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zilong Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Kumar Reddy CP, Manikandavelu D, Arisekar U, Ahilan B, Uma A, Jayakumar N, Kim W, Govarthanan M, Harini C, Vidya RS, Madhavan N, Kumar Reddy DR. Toxicological effect of endocrine disrupting insecticide (deltamethrin) on enzymatical, haematological and histopathological changes in the freshwater iridescent shark, Pangasius hypothalamus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104201. [PMID: 37391053 DOI: 10.1016/j.etap.2023.104201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
This study investigated the deltamethrin (DMN) induced harmful effects on Pangasius hypophthalmus using enzymatic activity, haematological, and histopathological changes. LC50 value was 0.021mg/L at 96h, and sublethal toxicity was tested for 45 days at two `concentrations (i.e., 1/5th and 1/10th of LC50). Haematological parameters and enzymatic activities significantly changed between DMN-exposed and control groups (p<0.05). Histopathologically, both DMN doses induced liver hyperemia, hepatic cell rupture, necrosis, hypertrepheoid bile duct, shifting nuclei, vascular haemorrhage, and hepatocyte degeneration, while in gill, secondary lamellae destruction, a fusion of adjacent gill lamellae, hypertrophy, hyperplasia, adhesion, and fusion were noticed. Kidney developed melanomacrophages, increased periglomerular and peritubular space, vacuolation, decreased glomerulus, hyaline droplets in tubular cells, loss of tubular epithelium, distal convoluted segment hypertrophy, and granular layer in brain pyramid and Purkinje cell nucleus. But, limiting pesticide impacts on freshwater fish and their habitat requires a holistic, cradle-to-grave approach and toxicological studies.
Collapse
Affiliation(s)
| | - D Manikandavelu
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi - 628 008, Tamil Nadu, India.
| | - B Ahilan
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - A Uma
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - N Jayakumar
- Dr. M.G. R. Fisheries College and Research Institute, Tamil Nadu Fisheries University,Ponneri - 601 204, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - C Harini
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur-524344, India
| | - R Sri Vidya
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur-524344, India
| | - N Madhavan
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur-524344, India
| | | |
Collapse
|
16
|
Banaee M, Sagvand S, Sureda A, Amini M, Haghi BN, Sopjani M, Faggio C. Evaluation of single and combined effects of mancozeb and metalaxyl on the transcriptional and biochemical response of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109597. [PMID: 36889533 DOI: 10.1016/j.cbpc.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Mancozeb and metalaxyl are fungicidal agents frequently used in combination to control fungi in crops that may affect non-target organisms when entering ecosystems. This study aims to evaluate the environmental effects of Mancozeb (MAN) and Metalaxyl (MET), alone and in combination, on zebrafish (Danio rerio) as an experimental model. The oxidative stress biomarkers and the transcription of genes involved in detoxification in zebrafish (Danio rerio) were assessed after co-exposure to MAN (0, 5.5, and 11 μg L-1) and MET (0, 6.5, and 13 mg L-1) for 21 days. Exposure to MAN and MET induced a significant increase in the expression of genes related to detoxification mechanisms (Ces2, Cyp1a, and Mt2). Although Mt1 gene expression increased in fish exposed to 11 μg L-1 of MAN combined with 13 mg L-1 of MET, Mt1 expression was down-regulated significantly in other experimental groups (p < 0.05). The combined exposure to both fungicides showed synergistic effects in the expression levels that are manifested mainly at the highest concentration. Although a significant (p < 0.05) increase in alkaline phosphatase (ALP) and transaminases (AST and ALT), catalase activities, the total antioxidant capacity, and malondialdehyde (MDA) contents in the hepatocytes of fish exposed to MAN and MET alone and in combination was detected, lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT) activities, and hepatic glycogen content decreased significantly (p < 0.05). Overall, these results emphasize that combined exposure to MET and MAN can synergistically affect the transcription of genes involved in detoxification (except Mt1 and Mt2) and biochemical indicators in zebrafish.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Shiva Sagvand
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mentor Sopjani
- Faculty of Medicine of the University of Prishtina, Prishtina, Kosovo.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
17
|
Wang H, Li X, Wang W, Xu J, Ai W, Huang H, Wang X. Immunotoxicity induced by triclocarban exposure in zebrafish triggering the risk of pancreatic cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121458. [PMID: 36934961 DOI: 10.1016/j.envpol.2023.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Owing to frequent application as a broad-spectrum bactericide, triclocarban (TCC) exposure has raised great concern for aquatic organisms and human health. Herein, based on transcriptome sequencing data analysis of zebrafish, we confirmed that TCC induced oxidative stress and dysimmunity through transcriptional regulation of the related genes. With aid of the Cancer Genome Atlas (TCGA) assembler database, 52 common differentially expressed genes, whose functions were related to immunity, were screened out by virtue of the meta-analysis of pancreatic cancer sample data and differential transcription profiles from TCC-exposed larvae. Acute TCC exposure affected formation of the innate immune cells, delayed mature thymic T-cell development, reduced immunoglobulin M (IgM) levels and promoted excessive release of the pro-inflammatory factors (IL-6, IL-1β and tnfα). Under TCC exposure, the expressions of the genes associated with immune cell abundance in pancreatic cancer were significantly down-regulated, while the levels of ROS were prominently increased in concomitant with suppressed antioxidant activity. Moreover, a series of marker genes (pi3k, nrf2, keap1, ho-1 and nqo1) in the PI3K/Nrf2 antioxidant-stress pathway were abnormally expressed under TCC exposure. Interestingly, vitamin C decreased the malformation and increased the survival rate of 120-hpf larvae and effectively alleviated TCC-induced oxidative stress and immune responses. Overall, TCC exposure induced immunotoxicity and increased the risk of pancreatic cancer by inhibiting the antioxidant capacity of the PI3K/Nrf2 signal pathway. These observations enrich our in-depth understanding of the effects of TCC on early embryonic-larval development and immune damage in zebrafish.
Collapse
Affiliation(s)
- Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaqi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
18
|
Ünal E, Sulukan E, Şenol O, Baran A, Nadaroğlu H, Kankaynar M, Kızıltan T, Ceyhun SB. Antioxidant/protective effects of carob pod (Ceratonia siliqua L.) water extract against deltamethrin-induced oxidative stress/toxicity in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109584. [PMID: 36822298 DOI: 10.1016/j.cbpc.2023.109584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
In our study, the antioxidant capacity of carob pods water extract (CPWE) against deltamethrin (DM)-induced oxidative stress, a widely used pesticide around the world, was investigated in vitro and in vivo in a zebrafish model. The in vitro antioxidant capacity of the obtained extract was evaluated with different methods using trolox, BHA and BHT standard antioxidants. For in vivo experiments, 4hpf zebrafish embryos were exposed to 10 ppb and 25 ppb DM for 120 h and the larvae were treated with 1-10 and 100 ppm CPWE for 4 h at 72th hours. According to the results obtained, it has been determined that the exposure of zebrafish to DM during the developmental period causes important body malformations, decrease in survival rate, reduction in eye size, shortening in body length and decrease in locomotor activity in the dark period. In addition, according to the results of whole-mount staining, it was determined that DM caused a significant increase in the amount of free oxygen radicals and apoptotic cells. It was also confirmed by metabolome analysis that CPWE application for 4 h reduced DM-induced toxicity and oxidative stress. As a result, it can be said that CPWE has an important antioxidant capacity in eliminating DM-induced oxidative stress.
Collapse
Affiliation(s)
- Elif Ünal
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Hayrunnisa Nadaroğlu
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Tuba Kızıltan
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
19
|
Sudhabose S, Sooryakanth B, Rajan MR. Impact of acute and sub-acute exposure of magnesium oxide nanoparticles on mrigal Cirrhinus mrigala. Heliyon 2023; 9:e15605. [PMID: 37151616 PMCID: PMC10161695 DOI: 10.1016/j.heliyon.2023.e15605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
This experiment was conducted to investigate the impact of acute and sub-acute exposure of magnesium oxide nanoparticles on Mrigal Cirrhinus mrigala. For sub-acute tests 1/100,1/50,1/10 were selected based on the LC50 at 96 h s. Protein, carbohydrate, and lipid, Aspartate aminotransferase, alanine transaminase, lactate dehydrogenase and DPPH, HRSA assays were analyzed in the gill, muscle, and liver of Mrigal. Protein and lipid levels increased on the 7th,14th day compared to control. Carbohydrate levels decreased on the 7th,14th day of exposure, and the enzymatical changes increased on the 7th,14th day. Antioxidant levels highly increased in DPPH assay compared to the HRSA assay. This study provides the biochemical, antioxidant, and behavioral changes in relation to the exposure of MgO NPs.
Collapse
|
20
|
Jijie R, Paduraru E, Simionov IA, Faggio C, Ciobica A, Nicoara M. Effects of Single and Combined Ciprofloxacin and Lead Treatments on Zebrafish Behavior, Oxidative Stress, and Elements Content. Int J Mol Sci 2023; 24:4952. [PMID: 36902383 PMCID: PMC10003324 DOI: 10.3390/ijms24054952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Even though the toxic effects of antibiotics and heavy metals have been extensively studied in the last decades, their combined adverse impact on aquatic organisms is poorly understood. Therefore, the objective of this study was to assess the acute effects of a ciprofloxacin (Cipro) and lead (Pb) mixture on the 3D swimming behavior, acetylcholinesterase (AChE) activity, lipid peroxidation level (MDA-malondialdehyde), activity of some oxidative stress markers (SOD-superoxide dismutase and GPx-glutathione peroxidase), and the essential elements content (Cu-copper, Zn-zinc, Fe-iron, Ca-calcium, Mg-magnesium, Na-sodium and K-potassium) in the body of zebrafish (Danio rerio). For this purpose, zebrafish were exposed to environmentally relevant concentrations of Cipro, Pb, and a mixture for 96 h. The results revealed that acute exposure to Pb alone and in mixture with Cipro impaired zebrafish exploratory behavior by decreasing swimming activity and elevating freezing duration. Moreover, significant deficiencies of Ca, K, Mg, and Na contents, as well as an excess of Zn level, were observed in fish tissues after exposure to the binary mixture. Likewise, the combined treatment with Pb and Cipro inhibited the activity of AChE and increased the GPx activity and MDA level. The mixture produced more damage in all studied endpoints, while Cipro had no significant effect. The findings highlight that the simultaneous presence of antibiotics and heavy metals in the environment can pose a threat to the health of living organisms.
Collapse
Affiliation(s)
- Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700506 Iasi, Romania
| | - Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| | - Ira-Adeline Simionov
- Rexdan Research Infrastructure, “Dunarea de Jos” University Galati, 800008 Galati, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, “Dunarea de Jos” University Galati, 800008 Galati, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| |
Collapse
|
21
|
Raposo-Garcia S, Costas C, Louzao MC, Vale C, Botana LM. Synergistic effect of environmental food pollutants: Pesticides and marine biotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160111. [PMID: 36370778 DOI: 10.1016/j.scitotenv.2022.160111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Emerging marine biotoxins such as ciguatoxins and pyrethroid compounds, widely used in agriculture, are independently treated as environmental toxicants. Their maximum residue levels in food components are set without considering their possible synergistic effects as consequence of their interaction with the same cellular target. There is an absolute lack of data on the possible combined cellular effects that biological and chemical pollutants, may have. Nowadays, an increasing presence of ciguatoxins in European Coasts has been reported and these toxins can affect human health. Similarly, the increasing use of phytosanitary products for control of food plagues has raised exponentially during the last decades due to climate change. The lack of data and regulation evaluating the combined effect of environmental pollutants with the same molecular target led us to analyse their in vitro effects. In this work, the effects of ciguatoxins and pyrethroids in human sodium channels were investigated. The results presented in this study indicate that both types of compounds have a profound synergistic effect in voltage-dependent sodium channels. These food pollutants act by decreasing the maximum peak inward sodium currents and hyperpolarizing the sodium channels activation, effects that are boosted by the simultaneous presence of both compounds. A fact that highlights the need to re-evaluate their limits in feedstock as well as their potential in vivo toxicity considering that they act on the same cellular target. Moreover, this work sets the cellular basis to further apply this type of studies to other water and food pollutants that may act synergistically and thus implement the corresponding regulatory limits taking into account its presence in a healthy diet.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Celia Costas
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - M Carmen Louzao
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| |
Collapse
|
22
|
Okeke ES, Feng W, Mao G, Chen Y, Qian X, Luo M, Xu H, Qiu X, Wu X, Yang L. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109527. [PMID: 36442598 DOI: 10.1016/j.cbpc.2022.109527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17β-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria. https://twitter.com/Okeke
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China
| |
Collapse
|
23
|
Muthukumaravel K, Kanagavalli V, Pradhoshini KP, Vasanthi N, Santhanabharathi B, Alam L, Musthafa MS, Faggio C. Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109492. [PMID: 36283648 DOI: 10.1016/j.cbpc.2022.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
Collapse
Affiliation(s)
- Kannayiram Muthukumaravel
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, Tamil Nadu 614 701, India
| | | | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Natarajan Vasanthi
- P.G. and Research Department of Zoology, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, Tamil Nadu 614 701, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 S.Agata-Messina, Italy.
| |
Collapse
|
24
|
Porretti M, Arrigo F, Di Bella G, Faggio C. Impact of pharmaceutical products on zebrafish: An effective tool to assess aquatic pollution. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109439. [PMID: 35961532 DOI: 10.1016/j.cbpc.2022.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Overuse of pharmaceuticals products (PPs) and sometimes ineffective wastewater purification systems have led to the accumulation of these residues in aquatic systems. Raising concerns about the likely harmful effects of these substances both to ecosystems and to human health. Animals as model organisms are nowadays increasingly used to track the health of environmental system around the world. They can be used to understand biological processes, to obtain information on the health status of the environment, and to better understand the effects of xenobiotics on organisms. Among model organisms, the zebrafish (Danio rerio) is one of the best models for studying evolution biology, cancer, toxicology, drug discovery, and genetics. This fish is a multipurpose model organism, due to its easy of maintenance and keeping and the transparency of the embryo during the early stages of development. In this paper, the toxicological effects of typical PPs, and their effects on zebrafish are reviewed. Many PPs have been found to be toxic or even fatal to zebrafish. Showing how these pharmaceuticals compound can affect zebrafish from the larval stage and even in the adult stage. Zebrafish is thus a model for how we can better understand how medications affect not only individual fish but the entire aquatic ecosystem, bringing about perturbations in their behaviour and putting their survival at risk.
Collapse
Affiliation(s)
- Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy
| | - Federica Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| |
Collapse
|
25
|
Dong K, Li L, Chen C, Tengbe MS, Chen K, Shi Y, Wu X, Qiu X. Impacts of cetylpyridinium chloride on the behavior and brain neurotransmitter levels of juvenile and adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109393. [PMID: 35700941 DOI: 10.1016/j.cbpc.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Cetylpyridinium chloride (CPC) is a cationic surfactant that has been widely used as an antibacterial ingredient in pharmaceutical and personal care products. Due to its high residue in surface waters, there is increasing concern over the potential risk of CPC to aquatic ecosystems. However, knowledge of its impacts on fish is still limited. Therefore, this study exposed juvenile and adult zebrafish to CPC (0, 10, and 40 μg/L) for four days. Subsequently, changes in their behavioral traits and brain levels of several neurotransmitters were investigated. The behavioral assay showed that CPC exposure significantly decreased the locomotor activity and social interaction of zebrafish at both life stages, and juveniles were more sensitive to CPC exposure than adults. In the control groups, the brain neurotransmitters concentrations increased with age in zebrafish. However, CPC exposure tended to increase the brain neurotransmitter levels of juveniles but decreased their levels in adults. Correlation analysis revealed that the brain monoamine neurotransmitters and their turnover might play important roles in the life stage-dependent behavioral response to CPC. In particular, the DOPAC/DA ratio was significantly associated with CPC-induced hypoactivity and reduced social interactions in juveniles but not adults. Our findings demonstrated that CPC exposure could cause abnormal behavior in juvenile and adult zebrafish and disturb their brain neurotransmitters, even at environmentally relevant concentrations, and thus highlighted the necessity for further assessing its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Kejun Dong
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lixia Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Michaela Sia Tengbe
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
26
|
Assessing Anti-Social and Aggressive Behavior in a Zebrafish ( Danio rerio) Model of Parkinson's Disease Chronically Exposed to Rotenone. Brain Sci 2022; 12:brainsci12070898. [PMID: 35884705 PMCID: PMC9313068 DOI: 10.3390/brainsci12070898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Rotenone (ROT) is currently being used in various research fields, especially neuroscience. Separated from other neurotoxins, ROT induces a Parkinson’s disease (PD)-related phenotype that mimics the associated clinical spectrum by directly entering the central nervous system (CNS). It easily crosses through the blood−brain barrier (BBB) and accumulates in mitochondria. Unfortunately, most of the existing data focus on locomotion. This is why the present study aimed to bring novel evidence on how ROT alone or in combination with different potential ant(agonists) might influence the social and aggressive behavior using the counterclockwise rotation as a neurological pointer. Material and Methods: Thus, we exposed zebrafish to ROT—2.5 µg/L, valproic acid (VPA)—0.5 mg/mL, anti-parkinsonian drugs (LEV/CARB)—250 mg + 25 mg, and probiotics (PROBIO)—3 g for 32 days by assessing the anti-social profile and mirror tests and counterclockwise rotation every 4 days to avoid chronic stress. Results: We observed an abnormal pattern in the counterclockwise rotation only in the (a) CONTROL, (c) LEV/CARB, and (d) PROBIO groups, from both the top and side views, this indicating a reaction to medication and supplements administered or a normal intrinsic feature due to high levels of stress/anxiety (p < 0.05). Four out of eight studied groups—(b) VPA, (c) LEV/CARB, (e) ROT, and (f) ROT + VPA—displayed an impaired, often antithetical behavior demonstrated by long periods of time on distinct days spent on the right and the central arm (p < 0.05, 0.005, and 0.0005). Interestingly, groups (d) PROBIO, (g) ROT + LEV/CARB, and (h) ROT + PROBIO registered fluctuations but not significant ones in contrast with the above groups (p > 0.05). Except for groups (a) CONTROL and (d) PROBIO, where a normalized trend in terms of behavior was noted, the rest of the experimental groups exhibited exacerbated levels of aggression (p < 0.05, 0.005, and 0.001) not only near the mirror but as an overall reaction (p < 0.05, 0.005, and 0.001). Conclusions: The (d) PROBIO group showed a significant improvement compared with (b) VPA, (c) LEV/CARB, and ROT-treated zebrafish (e−h). Independently of the aggressive-like reactions and fluctuations among the testing day(s) and groups, ROT disrupted the social behavior, while VPA promoted a specific typology in contrast with LEV/CARB.
Collapse
|
27
|
Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). WATER 2022. [DOI: 10.3390/w14091357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diazinon (DZN) is a widely used pesticide that can affect the vital organs of non-target aquatic animals—mainly fish. This study evaluated the acute toxicity (LC50) of six DZN concentrations (0.5, 0.75, 1.5, 2, 2.5, and 3 mg·L−1) and, based on its evaluation after 24 h, 48 h, 72 h, and 96 h, two sublethal concentrations for chronic toxicity testing (0.01 and 0.05 mg·L−1) for 21 days of exposure to DZN on grass carp fingerlings (Ctenopharyngodon idella Valenciennes, 1844). The median lethal concentrations of DZN at 24, 48, 72, and 96 h were 1.83, 1.57, 1.35, and 1.12 mg·L−1, respectively. Next, histological observations after 96 h LC50 showed oedema of the primary lamellae of the gills at low pesticide concentrations (0.5 to 1 mg·L−1) and extensive necrosis of primary lamellae of the gills at higher concentrations (1.5 to 3 mg·L−1). Moreover, cytoplasmic vacuolation and extensive necrosis were observed in liver tissue. Increased skin mucus, unbalanced swimming on the water surface, and increased gill opercula movements were noted during chronic exposure. Haematological parameters such as haematocrit, red blood cell count, white blood cell count, haemoglobin, and mean corpuscular volume were significantly reduced after 21 days of exposure to 0.05 mg·L−1 of DNZ (p < 0.05). The present study shows that DZN has various toxic effects on grass carp, which may pose a potential risk for other fish species.
Collapse
|
28
|
Qiu X, Chen C, Shi Y, Chen K, Li M, Xu H, Wu X, Takai Y, Shimasaki Y, Oshima Y. Persistent impact of amitriptyline on the behavior, brain neurotransmitter, and transcriptional profile of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106129. [PMID: 35248893 DOI: 10.1016/j.aquatox.2022.106129] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Discontinuation of amitriptyline (AMI) has been demonstrated to induce long-term withdrawal syndromes in mammals. However, no studies have focused on the persistent impacts of short-term AMI exposure on teleosts. Here, following exposure to AMI (2.5 and 40 μg/L) for 7 days (E7), zebrafish were transferred into AMI-free water to recover for 21 days (R21). The behavior, brain neurotransmitters, and brain transcriptional profiles were investigated on E7 and R21. AMI exposure induced persistent hypoactivity (2.5 and 40 μg/L) and abnormal schooling behavior (40 μg/L). AMI also induced long-term impacts on the brain serotonin (5-HT), 5-hydroxyindoleacetic acid, norepinephrine, and acetylcholine levels, several of which showed significant correlations with the locomotor activity or schooling behavior. Transcriptional analysis revealed persistent dysregulation in the pathways involved in the circadian rhythm, glycan biosynthesis and metabolism, and axon guidance in brain samples. Twelve genes were predicted as key driver genes in response to AMI exposure, and their significantly differential expression may direct changes across the related molecular networks. Moreover, upregulated brain 5-HT may serve as the central modulator of the persistent AMI pathogenesis in zebrafish. Considering AMI residues in natural waters may temporarily exceed μg/L, corresponding persistent adverse effects on teleosts should not be ignored.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
29
|
The Dietary Effects of Nutmeg (Myristica fragrans) Extract on Growth, Hematological Parameters, Immunity, Antioxidant Status, and Disease Resistance of Common Carp (Cyprinus carpio) against Aeromonas hydrophila. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Medicinal plants are increasingly used in aquaculture owing to their beneficial impacts on the health status of farmed fish. The current study was conducted to investigate the effect of nutmeg (Myristica fragrans) extract on growth, immunity, antioxidant parameters, and resistance of common carp (Cyprinus carpio) against Aeromonas hydrophila. In addition, in vitro antibacterial activity of the skin mucus of fish fed on nutmeg extract was evaluated against three major fish pathogenic bacteria through the standard disk diffusion method. Fish (17.27 ± 0.11 g) were divided into four groups and fed on experimental diets containing different levels of nutmeg extract, including zero (control), 0.5% (M1), 1% (M2), and 2% (M3) per kg diet. Results showed that nutmeg significantly enhanced growth parameters after a four-week feeding trial. Feed conversion ratio was remarkably reduced with the lowest value reported for the M3 group, whereas weight gain was notably increased in M2 and M3. No significant effect was found on the hematological profile, including mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular volume, and hematocrit, while the highest levels of red blood cells and white blood cells were found in the M3 group. Stress biomarkers, including glucose and cortisol, were the lowest in the M3 group. Serum and skin mucus immunological and antioxidant parameters were significantly higher in M3, followed by M2, where the highest resistance was also observed. In addition, skin mucus samples effectively inhibited Streptococcus iniae, Yersinia ruckeri, and Aeromonas hydrophila. Overall, the present results suggest that dietary nutmeg (20 g/kg diet) could be used as a growth promotor and immunostimulant in common carp.
Collapse
|