1
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024:S0092-8674(24)00976-0. [PMID: 39326416 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
4
|
Ma K, Gauthier LO, Cheung F, Huang S, Lek M. High-throughput assays to assess variant effects on disease. Dis Model Mech 2024; 17:dmm050573. [PMID: 38940340 PMCID: PMC11225591 DOI: 10.1242/dmm.050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan O. Gauthier
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Frances Cheung
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Sciandra F, Desiderio C, Vincenzoni F, Viscuso S, Bozzi M, Hübner W, Jimenez-Gutierrez GE, Cisneros B, Brancaccio A. Analysis of the GFP-labelled β-dystroglycan interactome in HEK-293 transfected cells reveals novel intracellular networks. Biochem Biophys Res Commun 2024; 703:149656. [PMID: 38364681 DOI: 10.1016/j.bbrc.2024.149656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane β-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. β-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with β-DG, HEK-293 cells were transiently transfected with a plasmid carrying the β-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing β-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for β-DG binding. A series of already known β-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel β-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with β-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires β-DG for a proper nuclear localization. These results expand the role of β-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Simona Viscuso
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Manuela Bozzi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy; Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, University of Bielefeld, 33615, Bielefeld, Germany
| | | | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México, 07360, Mexico
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy; School of Biochemistry, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
6
|
Karas BF, Terez KR, Mowla S, Battula N, Flannery KP, Gural BM, Aboussleman G, Mubin N, Manzini MC. Removal of pomt1 in zebrafish leads to loss of α-dystroglycan glycosylation and dystroglycanopathy phenotypes. Hum Mol Genet 2024; 33:709-723. [PMID: 38272461 PMCID: PMC11000664 DOI: 10.1093/hmg/ddae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Biallelic mutations in Protein O-mannosyltransferase 1 (POMT1) are among the most common causes of a severe group of congenital muscular dystrophies (CMDs) known as dystroglycanopathies. POMT1 is a glycosyltransferase responsible for the attachment of a functional glycan mediating interactions between the transmembrane glycoprotein dystroglycan and its binding partners in the extracellular matrix (ECM). Disruptions in these cell-ECM interactions lead to multiple developmental defects causing brain and eye malformations in addition to CMD. Removing Pomt1 in the mouse leads to early embryonic death due to the essential role of dystroglycan during placental formation in rodents. Here, we characterized and validated a model of pomt1 loss of function in the zebrafish showing that developmental defects found in individuals affected by dystroglycanopathies can be recapitulated in the fish. We also discovered that pomt1 mRNA provided by the mother in the oocyte supports dystroglycan glycosylation during the first few weeks of development. Muscle disease, retinal synapse formation deficits, and axon guidance defects can only be uncovered during the first week post fertilization by generating knock-out embryos from knock-out mothers. Conversely, maternal pomt1 from heterozygous mothers was sufficient to sustain muscle, eye, and brain development only leading to loss of photoreceptor synapses at 30 days post fertilization. Our findings show that it is important to define the contribution of maternal mRNA while developing zebrafish models of dystroglycanopathies and that offspring generated from heterozygous and knock-out mothers can be used to differentiate the role of dystroglycan glycosylation in tissue formation and maintenance.
Collapse
Affiliation(s)
- Brittany F Karas
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Kristin R Terez
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Shorbon Mowla
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Namarata Battula
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Kyle P Flannery
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Brian M Gural
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Grace Aboussleman
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Numa Mubin
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| |
Collapse
|
7
|
Safwat S, Flannery KP, El Beheiry AA, Mokhtar MM, Abdalla E, Manzini MC. Genetic blueprint of congenital muscular dystrophies with brain malformations in Egypt: A report of 11 families. Neurogenetics 2024; 25:93-102. [PMID: 38296890 PMCID: PMC11076401 DOI: 10.1007/s10048-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Congenital muscular dystrophies (CMDs) are a group of rare muscle disorders characterized by early onset hypotonia and motor developmental delay associated with brain malformations with or without eye anomalies in the most severe cases. In this study, we aimed to uncover the genetic basis of severe CMD in Egypt and to determine the efficacy of whole exome sequencing (WES)-based genetic diagnosis in this population. We recruited twelve individuals from eleven families with a clinical diagnosis of CMD with brain malformations that fell into two groups: seven patients with suspected dystroglycanopathy and five patients with suspected merosin-deficient CMD. WES was analyzed by variant filtering using multiple approaches including splicing and copy number variant (CNV) analysis. We identified likely pathogenic variants in FKRP in two cases and variants in POMT1, POMK, and B3GALNT2 in three individuals. All individuals with merosin-deficient CMD had truncating variants in LAMA2. Further analysis in one of the two unsolved cases showed a homozygous protein-truncating variant in Feline Leukemia Virus subgroup C Receptor 1 (FLVCR1). FLVCR1 loss of function has never been previously reported. Yet, loss of function of its paralog, FLVCR2, causes lethal hydranencephaly-hydrocephaly syndrome (Fowler Syndrome) which should be considered in the differential diagnosis for dystroglycanopathy. Overall, we reached a diagnostic rate of 86% (6/7) for dystroglycanopathies and 100% (5/5) for merosinopathy. In conclusion, our results provide further evidence that WES is an important diagnostic method in CMD in developing countries to improve the diagnostic rate, management plan, and genetic counseling for these disorders.
Collapse
Affiliation(s)
- Sylvia Safwat
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kyle P Flannery
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ahmed A El Beheiry
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed M Mokhtar
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Traverso M, Baratto S, Iacomino M, Di Duca M, Panicucci C, Casalini S, Grandis M, Falace A, Torella A, Picillo E, Onore ME, Politano L, Nigro V, Innes AM, Barresi R, Bruno C, Zara F, Fiorillo C, Scala M. DAG1 haploinsufficiency is associated with sporadic and familial isolated or pauci-symptomatic hyperCKemia. Eur J Hum Genet 2024; 32:342-349. [PMID: 38177406 PMCID: PMC10923780 DOI: 10.1038/s41431-023-01516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.
Collapse
Affiliation(s)
- Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Casalini
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Esther Picillo
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Luisa Politano
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| |
Collapse
|
10
|
Guo J, Balić P, Borodkin VS, Filippov DV, Codée JDC. Synthesis of Unsymmetrical Difluoromethylene Bisphosphonates. Org Lett 2024; 26:739-744. [PMID: 38215221 PMCID: PMC10825822 DOI: 10.1021/acs.orglett.3c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
We demonstrate the use of the symmetrical diethyl(dimethyl)difluoromethylene bisphosphonate reagent for the synthesis of terminal and unsymmetrical difluoromethylene bisphosphonates, close analogues of biologically important molecules. The difference in reactivity of the methyl and ethyl groups in the symmetrical diethyl(dimthyl)difluoromethylene bisphosphonate is exploited in a stepwise demethylation-condensation sequence to functionalize either side of the reagent to allow the generation of a series of close bioisosteres of natural pyrophosphate molecules, including ADPr, CDP-glycerol and CDP-ribitol.
Collapse
Affiliation(s)
- Jianyun Guo
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Pascal Balić
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Vladimir S. Borodkin
- Division
of Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, U.K.
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
11
|
Jahncke JN, Miller DS, Krush M, Schnell E, Wright KM. Inhibitory CCK+ basket synapse defects in mouse models of dystroglycanopathy. eLife 2024; 12:RP87965. [PMID: 38179984 PMCID: PMC10942650 DOI: 10.7554/elife.87965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.
Collapse
Affiliation(s)
- Jennifer N Jahncke
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Milana Krush
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Schnell
- Operative Care Division, Portland VA Health Care SystemPortlandUnited States
- Anesthesiology and Perioperative Medicine, Oregon Health & Science UniversityPortlandUnited States
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
12
|
Lu QL, Holbrook MC, Cataldi MP, Blaeser A. Break Down of the Complexity and Inconsistency Between Levels of Matriglycan and Disease Phenotype in FKRP-Related Dystroglycanopathies: A Review and Model of Interpretation. J Neuromuscul Dis 2024; 11:275-284. [PMID: 38277301 DOI: 10.3233/jnd-230205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.
Collapse
Affiliation(s)
- Qi L Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
13
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
14
|
Yang T, Chandel I, Gonzales M, Okuma H, Prouty SJ, Zarei S, Joseph S, Garringer KW, Landa SO, Yonekawa T, Walimbe AS, Venzke DP, Anderson ME, Hord JM, Campbell KP. Identification of a short, single site matriglycan that maintains neuromuscular function in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572361. [PMID: 38187633 PMCID: PMC10769215 DOI: 10.1101/2023.12.20.572361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Matriglycan (-1,3-β-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.
Collapse
Affiliation(s)
- Tiandi Yang
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ishita Chandel
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Miguel Gonzales
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Hidehiko Okuma
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Sally J Prouty
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Sanam Zarei
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Keith W Garringer
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Saul Ocampo Landa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Takahiro Yonekawa
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Ameya S Walimbe
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - David P Venzke
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Mary E Anderson
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Jeffery M Hord
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
15
|
Sciandra F, Bozzi M, Bigotti MG. From adhesion complex to signaling hub: the dual role of dystroglycan. Front Mol Biosci 2023; 10:1325284. [PMID: 38155958 PMCID: PMC10752950 DOI: 10.3389/fmolb.2023.1325284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Dystroglycan (DG) is a transmembrane protein widely expressed in multiple cells and tissues. It is formed by two subunits, α- and β-DG, and represents a molecular bridge between the outside and the inside of the cell, which is essential for the mechanical and structural stability of the plasma membrane. The α-subunit is a cell-surface protein that binds to the extracellular matrix (ECM) and is tightly associated with the plasma membrane via a non-covalent interaction with the β-subunit, which, in turn, is a transmembrane protein that binds to the cytoskeletal actin. DG is a versatile molecule acting not only as a mechanical building block but also as a modulator of outside-inside signaling events. The cytoplasmic domain of β-DG interacts with different adaptor and cytoskeletal proteins that function as molecular switches for the transmission of ECM signals inside the cells. These interactions can modulate the involvement of DG in different biological processes, ranging from cell growth and survival to differentiation and proliferation/regeneration. Although the molecular events that characterize signaling through the ECM-DG-cytoskeleton axis are still largely unknown, in recent years, a growing list of evidence has started to fill the gaps in our understanding of the role of DG in signal transduction. This mini-review represents an update of recent developments, uncovering the dual role of DG as an adhesion and signaling molecule that might inspire new ideas for the design of novel therapeutic strategies for pathologies such as muscular dystrophy, cardiomyopathy, and cancer, where the DG signaling hub plays important roles.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), Roma, Italy
| | - Manuela Bozzi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), Roma, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica, Università Cattolica del Sacro Cuore di Roma, Roma, Italy
| | - Maria Giulia Bigotti
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- Bristol Heart Institute, Research Floor Level 7, Bristol Royal Infirmary, Bristol, United Kingdom
| |
Collapse
|
16
|
Geoffroy M, Pili L, Buffa V, Caroff M, Bigot A, Gicquel E, Rouby G, Richard I, Fragnoud R. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Cells 2023; 12:2444. [PMID: 37887288 PMCID: PMC10604961 DOI: 10.3390/cells12202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Limb-Girdle Muscular Dystrophy R9 (LGMDR9) is a dystroglycanopathy caused by Fukutin-related protein (FKRP) defects leading to the deficiency of α-DG glycosylation, essential to membrane integrity. Recombinant adeno-associated viral vector (rAAV) gene therapy offers great therapeutic promise for such neuromuscular disorders. Pre-clinical studies have paved the way for a phase 1/2 clinical trial aiming to evaluate the safety and efficacy of FKRP gene therapy in LGMDR9 patients. To demonstrate product activity, quality, and consistency throughout product and clinical development, regulatory authorities request several quality controls, including a potency assay aiming to demonstrate and quantify the intended biological effect of the gene therapy product. In the present study, we generated FKRP knock-out (KO) cells fully depleted of α-DG glycosylation using CRISPR-Cas9 to assess the functional activity of a rAAV-FKRP gene therapy. We then developed a high-throughput On-Cell-Western methodology to evaluate the restoration of α-DG glycosylation in KO-FKRP cells and determine the biological activity of the FKRP transgene. The determination of the half maximal effective concentration (EC50) provides a method to compare the rAAV-FKRP batch using a reference standard. The generation of KO-FKRP muscle cells associated with the high-throughput On-Cell-Western technique may serve as a cell-based potency assay to assess rAAV-FKRP gene therapy products.
Collapse
Affiliation(s)
- Marine Geoffroy
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Louna Pili
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Valentina Buffa
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Maëlle Caroff
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Anne Bigot
- Institut de Myologie, Université Pierre et Marie Curie Paris 6, UM76 Univ. Paris 6/U974 UMR7215, CNRS Pitié-Salpétrière-INSERM, UMRS 974, 75000 Paris, France
| | - Evelyne Gicquel
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Grégory Rouby
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
- Atamyo Therapeutics, 91000 Evry, France
| | - Romain Fragnoud
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| |
Collapse
|
17
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
18
|
Farooqi N, Rahman A, Ali Y, Ali K, Khan MEH, Jones DA, Abdelkarim M, Ullah F, Jalil F. Phylogenetic analysis of promoter regions of human Dolichol kinase (DOLK) and orthologous genes using bioinformatics tools. Open Life Sci 2023; 18:20220591. [PMID: 37250845 PMCID: PMC10224619 DOI: 10.1515/biol-2022-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 05/31/2023] Open
Abstract
The Dolichol kinase (DOLK) gene encodes the polytopic DOLK protein associated with the endoplasmic reticulum (ER) N-glycosylation pathway catalyzing the final step in the biosynthesis of dolichol phosphate. Dolichol phosphate is an oligosaccharide carrier required for N-glycosylation of DOLK protein, with its deficiency leading to a severe hypo glycosylation phenotype in humans which can cause congenital disorders of glycosylation and death in early infancy. The aim of the present study is to identify the phylogenetic relationship between human and ortholog species based on their conserved sequences in DOLK gene. Sequence alignment of DOLK was carried out in this study and the evolutionarily conserved regulatory sequences were identified using bioinformatics. Promoter sequence of human DOLK was compared with orthologous sequences from different organisms. Conserved non-coding sequences (CNS) and motifs in promoter regions were found by analyzing upstream promoter sequences of Homo sapiens DOLK and its orthologous genes in other organisms. Conserved sequences were predicted in the promoter regions in CNS1 and CNS2. Conserved protein sequences were also identified by alignment of the orthologous sequences. Organisms with similar gene sequences are assumed to be closely related and the ER N-glycosylation pathway is conserved in them.
Collapse
Affiliation(s)
- Nadia Farooqi
- Department of Zoology, Women Campus, University of Swat, 19120, Swat, Pakistan
| | - Ataur Rahman
- Department of Botany, Laboratory of Plant Ecology and Dendrochronology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Ali
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Mardan, Pakistan
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Al Tarafa, Jelaiah Street, Duhail North, PO Box 24449Doha, Qatar
| | - Muhammad Ezaz Hasan Khan
- College of General Education, University of Doha for Science and Technology, Al Tarafa, Jelaiah Street, Duhail North, PO Box 24449Doha, Qatar
| | - David Aaron Jones
- College of Health Sciences, University of Doha for Science and Technology, Al Tarafa, Jelaiah Street, Duhail North, PO Box 24449Doha, Qatar
| | - Mouadh Abdelkarim
- College of General Education, University of Doha for Science and Technology, Al Tarafa, Jelaiah Street, Duhail North, PO Box 24449Doha, Qatar
| | - Farman Ullah
- Centre for Biotechnology and Microbiology, University of Swat, 19120, Swat, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Mardan, Pakistan
| |
Collapse
|
19
|
Xu Y, Ma Q, Ren J, Chen L, Guo W, Feng K, Zeng Z, Huang T, Cai Y. Using Machine Learning Methods in Identifying Genes Associated with COVID-19 in Cardiomyocytes and Cardiac Vascular Endothelial Cells. Life (Basel) 2023; 13:life13041011. [PMID: 37109540 PMCID: PMC10146712 DOI: 10.3390/life13041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) not only causes respiratory system damage, but also imposes strain on the cardiovascular system. Vascular endothelial cells and cardiomyocytes play an important role in cardiac function. The aberrant expression of genes in vascular endothelial cells and cardiomyocytes can lead to cardiovascular diseases. In this study, we sought to explain the influence of respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the gene expression levels of vascular endothelial cells and cardiomyocytes. We designed an advanced machine learning-based workflow to analyze the gene expression profile data of vascular endothelial cells and cardiomyocytes from patients with COVID-19 and healthy controls. An incremental feature selection method with a decision tree was used in building efficient classifiers and summarizing quantitative classification genes and rules. Some key genes, such as MALAT1, MT-CO1, and CD36, were extracted, which exert important effects on cardiac function, from the gene expression matrix of 104,182 cardiomyocytes, including 12,007 cells from patients with COVID-19 and 92,175 cells from healthy controls, and 22,438 vascular endothelial cells, including 10,812 cells from patients with COVID-19 and 11,626 cells from healthy controls. The findings reported in this study may provide insights into the effect of COVID-19 on cardiac cells and further explain the pathogenesis of COVID-19, and they may facilitate the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
GDP-Mannose Pyrophosphorylase B ( GMPPB)-Related Disorders. Genes (Basel) 2023; 14:genes14020372. [PMID: 36833299 PMCID: PMC9956253 DOI: 10.3390/genes14020372] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
GDP-mannose pyrophosphorylase B (GMPPB) is a cytoplasmic protein that catalyzes the formation of GDP-mannose. Impaired GMPPB function reduces the amount of GDP-mannose available for the O-mannosylation of α-dystroglycan (α-DG) and ultimately leads to disruptions of the link between α-DG and extracellular proteins, hence dystroglycanopathy. GMPPB-related disorders are inherited in an autosomal recessive manner and caused by mutations in either a homozygous or compound heterozygous state. The clinical spectrum of GMPPB-related disorders spans from severe congenital muscular dystrophy (CMD) with brain and eye abnormalities to mild forms of limb-girdle muscular dystrophy (LGMD) to recurrent rhabdomyolysis without overt muscle weakness. GMPPB mutations can also lead to the defect of neuromuscular transmission and congenital myasthenic syndrome due to altered glycosylation of the acetylcholine receptor subunits and other synaptic proteins. Such impairment of neuromuscular transmission is a unique feature of GMPPB-related disorders among dystroglycanopathies. LGMD is the most common phenotypic presentation, characterized by predominant proximal weakness involving lower more than upper limbs. Facial, ocular, bulbar, and respiratory muscles are largely spared. Some patients demonstrate fluctuating fatigable weakness suggesting neuromuscular junction involvement. Patients with CMD phenotype often also have structural brain defects, intellectual disability, epilepsy, and ophthalmic abnormalities. Creatine kinase levels are typically elevated, ranging from 2 to >50 times the upper limit of normal. Involvement of the neuromuscular junction is demonstrated by the decrement in the compound muscle action potential amplitude on low-frequency (2-3 Hz) repetitive nerve stimulation in proximal muscles but not in facial muscles. Muscle biopsies typically show myopathic changes with variable degrees of reduced α-DG expression. Higher mobility of β-DG on Western blotting represents a specific feature of GMPPB-related disorders, distinguishing it from other α-dystroglycanopathies. Patients with clinical and electrophysiologic features of neuromuscular transmission defect can respond to acetylcholinesterase inhibitors alone or combined with 3,4 diaminopyridine or salbutamol.
Collapse
|
21
|
Millozzi F, Papait A, Bouché M, Parolini O, Palacios D. Nano-Immunomodulation: A New Strategy for Skeletal Muscle Diseases and Aging? Int J Mol Sci 2023; 24:1175. [PMID: 36674691 PMCID: PMC9862642 DOI: 10.3390/ijms24021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
The skeletal muscle has a very remarkable ability to regenerate upon injury under physiological conditions; however, this regenerative capacity is strongly diminished in physio-pathological conditions, such as those present in diseased or aged muscles. Many muscular dystrophies (MDs) are characterized by aberrant inflammation due to the deregulation of both the lymphoid and myeloid cell populations and the production of pro-inflammatory cytokines. Pathological inflammation is also observed in old muscles due to a systemic change in the immune system, known as "inflammaging". Immunomodulation represents, therefore, a promising therapeutic opportunity for different skeletal muscle conditions. However, the use of immunomodulatory drugs in the clinics presents several caveats, including their low stability in vivo, the need for high doses to obtain therapeutically relevant effects, and the presence of strong side effects. Within this context, the emerging field of nanomedicine provides the powerful tools needed to control the immune response. Nano-scale materials are currently being explored as biocarriers to release immunomodulatory agents in the damaged tissues, allowing therapeutic doses with limited off-target effects. In addition, the intrinsic immunomodulatory properties of some nanomaterials offer further opportunities for intervention that still need to be systematically explored. Here we exhaustively review the state-of-the-art regarding the use of nano-sized materials to modulate the aberrant immune response that characterizes some physio-pathological muscle conditions, such as MDs or sarcopenia (the age-dependent loss of muscle mass). Based on our learnings from cancer and immune tolerance induction, we also discuss further opportunities, challenges, and limitations of the emerging field of nano-immunomodulation.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Andrea Papait
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| |
Collapse
|
22
|
Toniolo L, Sirago G, Fiotti N, Giacomello E. Golgi Complex form and Function: A Potential Hub Role Also in Skeletal Muscle Pathologies? Int J Mol Sci 2022; 23:ijms232314989. [PMID: 36499316 PMCID: PMC9740117 DOI: 10.3390/ijms232314989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
A growing number of disorders has been associated with mutations in the components of the vesicular transport machinery. The early secretory pathway consists of Endoplasmic Reticulum, numerous vesicles, and the Golgi Complex (GC), which work together to modify and package proteins to deliver them to their destination. The GC is a hub organelle, crucial for organization of the other secretory pathway components. As a consequence, GC's form and function are key players in the pathogenesis of several disorders. Skeletal muscle (SKM) damage can be caused by defective protein modifications and traffic, as observed in some Limb girdle muscular dystrophies. Interestingly, in turn, muscle damage in Duchenne dystrophic SKM cells also includes the alteration of GC morphology. Based on the correlation between GC's form and function described in non-muscle diseases, we suggest a key role for this hub organelle also in the onset and progression of some SKM disorders. An altered GC could affect the secretory pathway via primary (e.g., mutation of a glycosylation enzyme), or secondary mechanisms (e.g., GC mis-localization in Duchenne muscles), which converge in SKM cell failure. This evidence induces considering the secretory pathway as a potential therapeutic target in the treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Giuseppe Sirago
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Nicola Fiotti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Correspondence: ; Tel.: +39-040-3993251
| |
Collapse
|
23
|
Gaertner A, Burr L, Klauke B, Brodehl A, Laser KT, Klingel K, Tiesmeier J, Schulz U, zu Knyphausen E, Gummert J, Milting H. Compound Heterozygous FKTN Variants in a Patient with Dilated Cardiomyopathy Led to an Aberrant α-Dystroglycan Pattern. Int J Mol Sci 2022; 23:ijms23126685. [PMID: 35743126 PMCID: PMC9223741 DOI: 10.3390/ijms23126685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Fukutin encoded by FKTN is a ribitol 5-phosphate transferase involved in glycosylation of α-dystroglycan. It is known that mutations in FKTN affect the glycosylation of α-dystroglycan, leading to a dystroglycanopathy. Dystroglycanopathies are a group of syndromes with a broad clinical spectrum including dilated cardiomyopathy and muscular dystrophy. In this study, we reported the case of a patient with muscular dystrophy, early onset dilated cardiomyopathy, and elevated creatine kinase levels who was a carrier of the compound heterozygous variants p.Ser299Arg and p.Asn442Ser in FKTN. Our work showed that compound heterozygous mutations in FKTN lead to a loss of fully glycosylated α-dystroglycan and result in cardiomyopathy and end-stage heart failure at a young age.
Collapse
Affiliation(s)
- Anna Gaertner
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
- Correspondence: (A.G.); (H.M.)
| | - Lidia Burr
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Baerbel Klauke
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Andreas Brodehl
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Kai Thorsten Laser
- Zentrum für Angeborene Herzfehler, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (K.T.L.); (E.z.K.)
| | - Karin Klingel
- Kardiopathologie, Institut für Pathologie und Neuropathologie, Universitätsklinikum Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany;
| | - Jens Tiesmeier
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Uwe Schulz
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Edzard zu Knyphausen
- Zentrum für Angeborene Herzfehler, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (K.T.L.); (E.z.K.)
| | - Jan Gummert
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Hendrik Milting
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
- Correspondence: (A.G.); (H.M.)
| |
Collapse
|
24
|
Tamura T, Omura Y, Kotera K, Ito R, Ohno S, Manabe N, Yamaguchi Y, Tamura JI. Synthesis of the matriglycan hexasaccharide, -3Xylα1-3GlcAβ1-trimer and its interaction with laminin. Org Biomol Chem 2022; 20:8489-8500. [DOI: 10.1039/d2ob01388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Matriglycan hexasaccharide (-3Xylα1-3GlcAβ1)3-O(C2H4O)3CH2CCH and the biotin conjugate was synthesized. The hexasaccharide showed good interaction with laminin-G-like domains 4 and 5 of laminin-α2 using saturation transfer difference-NMR and bio-layer interferometry.
Collapse
Affiliation(s)
- Takahiro Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553 Japan
| | - Yuka Omura
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Kota Kotera
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Ryota Ito
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558 Japan
| | - Jun-ichi Tamura
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553 Japan
- Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| |
Collapse
|