1
|
Geng Z, Tong Y, Chen Y, Wang J, Liu Z, Miao J, Li R. Investigating the causal relationship between immune factors and ankylosing spondylitis: insights from a Mendelian Randomization study. Adv Rheumatol 2024; 64:89. [PMID: 39696529 DOI: 10.1186/s42358-024-00428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Despite previous studies indicating a close relationship between immune system and ankylosing spondylitis (AS), the causal relationship between them remains unclear. METHODS Genome-wide association data were utilized to explore the causal link between 731 immune cells and AS using a bidirectional two-sample MR approach. The data included immune cell data from Orrù et al.'s study and AS data from the FinnGen consortium. Cochran's Q test and leave-one-out checked instrument variable (IV) heterogeneity. IVW was the primary method for causal analysis, with MR-Egger and MR-PRESSO addressing horizontal pleiotropy. FDR correction was applied to both analysis directions to rectify multiple testing errors. RESULTS In our study, 22 immune phenotypes out of 731 were casually linked to AS. After excluding 5 less robust features, 17 immune factors remained, with 4 being protective and the rest posing risks. Through FDR correction, we found a significant causal relationship between HLA DR on CD14- CD16+ monocyte and AS (OR (95%CI) = 0.70(0.60 ~ 0.83), P = 2.06*10-5). In the reverse analysis with AS as exposure, potential effects on 34 immune features were discovered. After correction, we confirmed significant causal relationships between AS and two immune features, namely CD20- B cell %lymphocyte (OR (95%CI) = 1.16(1.08-1.25), P = 1.91*10-5) and CD20- B cell %B cell (OR (95%CI) = 1.17(1.09-1.26), P = 1.50*10-5). CONCLUSIONS Our study identified various features associated with AS in different types of immune cells. These findings provide important clues and a theoretical basis for further understanding the pathogenesis of AS, guiding clinical treatment, and drug design.
Collapse
Affiliation(s)
- Ziming Geng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100141, China
| | - Yang Tong
- School of Finance, Nankai University, Tianjin, 300350, China.
| | - Yang Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jian Wang
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Ziwen Liu
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jun Miao
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
| | - Ruihua Li
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
2
|
Chen T, Huang C, Chen J, Xue J, Yang Z, Wang Y, Wu S, Wei W, Chen L, Liao S, Qin X, He R, Qin B, Liu C. Inorganic pyrophosphatase 1: a key player in immune and metabolic reprogramming in ankylosing spondylitis. Genes Immun 2024:10.1038/s41435-024-00308-0. [PMID: 39511317 DOI: 10.1038/s41435-024-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The relationships among immune cells, metabolites, and AS events were analyzed via Mendelian randomization (MR), and potential immune cells and metabolites were identified as risk factors for AS. Their relationships were subjected to intermediary MR analysis to identify the final immune cells and metabolites. The vertebral bone marrow blood samples from three patients with and without AS were subjected to 10× single-cell sequencing to further elucidate the role of immune cells in AS. The key genes were screened via expression quantitative trait loci (eQTLs) and MR analyses. The metabolic differences between the two groups were compared through single-cell metabolism analysis. Two subgroups of differentiated (CD)8+ memory T cells and naive B cells were obtained from the combined results of intermediary MR analysis and AS single-cell analysis. After the verification of key genes, inorganic pyrophosphatase 1 (PPA1) was identified as the hub gene, as it is differentially expressed in CD8+ memory T cells and can affect the metabolism of T cells in AS by affecting the expression of ferulic acid (FA)4 sulfate, which participates in the cellular immunity in AS.
Collapse
Affiliation(s)
- Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Chengqian Huang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiarui Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiang Xue
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhenwei Yang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yihan Wang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Songze Wu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Wendi Wei
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Liyi Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shian Liao
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiaopeng Qin
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Rongqing He
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Boli Qin
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
3
|
Leifer VP, Fang F, Song L, Kim J, Papanikolaou JF, Smeeton J, Thomopoulos S. Single-cell RNA-sequencing analysis of immune and mesenchymal cell crosstalk in the developing enthesis. Sci Rep 2024; 14:26839. [PMID: 39500962 PMCID: PMC11538517 DOI: 10.1038/s41598-024-77958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Autoimmunity underlies many painful disorders, such as enthesopathies, which localize to the enthesis. From infiltration of the synovium and axial skeleton by B cells, to disturbances in the ratio of M1/M2 enthesis macrophages, to CD8 + T cell mediated inflammation, autoimmune dysregulation is becoming increasingly well characterized in enthesopathies. Tissue resident B cells, macrophages, neutrophils, and T cells have also been localized in healthy human entheses. However, the potential developmental origins, presence, and role of immune cells (ICs) in enthesis development is not known. Here, we use single-cell RNA-sequencing analysis to describe IC subtypes present in the enthesis before, during, and after mineralization, and to infer regulatory interactions between ICs and mesenchymal cells (MCs). We report the presence of nine phenotypically distinct IC subtypes, including B cells, macrophages, neutrophils, and T cells. We find that specific IC subtypes may promote MC-proliferation and differentiation, and that MCs may regulate IC phenotype and autoimmunity. Our findings suggest that bidirectional regulatory interactions between ICs and MCs may be important to enthesis mineralization, and suggest that progenitor MCs have a unique ability to limit autoimmunity during development.
Collapse
Affiliation(s)
- Valia P Leifer
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Fei Fang
- Department Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Jieon Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - John F Papanikolaou
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Joanna Smeeton
- Department of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Lin L, Luo J, Cai Y, Wu X, Zhou L, Li T, Wang X, Xu H. Mass cytometry identifies imbalance of multiple immune-cell subsets associated with biologics treatment in ankylosing spondylitis. Int J Rheum Dis 2024; 27:e15378. [PMID: 39420773 DOI: 10.1111/1756-185x.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aims to comprehensively investigate immune-cell landscapes in ankylosing spondylitis (AS) patients and explore longitudinal immunophenotyping changes induced by biological agents. METHODS We employed mass cytometry with 35 cellular markers to analyze blood samples from 34 AS patients and 13 healthy controls (HC). Eleven AS patients were re-evaluated 1 month (4 patients) and 3 months (7 patients) after treatment with biological agents. Flow Self-Organizing Maps (FlowSOM) clustering was performed to identify specific cellular metaclusters. We compared cellular abundances across distinct subgroups and validated subset differences using gating strategies in flow cytometry scatter plots, visualized with FlowJo software. The proportions of differential subsets were then used for intercellular and clinical correlation analysis, as well as for constructing diagnostic models based on the random forest algorithm. RESULTS In AS patients, we identified and validated nine different immune-cell subsets compared to HC. Three subsets increased: helper T-cell 17 (Th17), mucosa-associated invariant T-cell (MAIT), and classical monocytes (CM). Six subsets decreased: effector memory T-cell (TEM), naïve B cells, transitional B cells, IL10+ memory B cells, non-classical monocytes (NCM), and neutrophils. Treatments with biological agents could rectify cellular abnormalities, particularly the imbalance of CM/NCM. Furthermore, these subsets may serve as biomarkers for assessing disease activity and constructing effective diagnostic models for AS. CONCLUSION These findings provide novel insights into the specific patterns of immune cell in AS, facilitating the further development of novel biomarkers and potential therapeutic targets for AS patients.
Collapse
Affiliation(s)
- Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yue Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Saad MA, Abdul-Sattar AB, Abdelal IT, Barak A. Association of Endoplasmic Reticulum Aminopeptidase 1 Gene Polymorphism with Susceptibility and Severity of Axial Spondyloarthritis in Egyptian Population: A Single-center Case-Control Study. Ann Afr Med 2024; 23:443-451. [PMID: 39034571 PMCID: PMC11364326 DOI: 10.4103/aam.aam_180_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) is a systemic, progressive, autoimmune disease. Complex interactions between environmental factors and host immune responses are the origin of axSpA. Together with human leukocyte antigen (HLA-B27), endoplasmic reticulum aminopeptidase 1 (ERAP1) gene is a potential non-HLA contributor to axSpA susceptibility. AIM This study aimed to identify the role of ERAP1 single-nucleotide polymorphisms (SNPs) (rs30187, rs27044, and rs27037) in susceptibility to and severity of axSpA in Egyptian patients. METHODS In this case-control study, we enrolled 120 patients with axSpA and 120 healthy individuals as controls. Real-time polymerase chain reaction was used to identify ERAP1 polymorphisms. RESULTS The present study revealed no significant association between ERAP1 SNPs (rs30187, rs27044, and rs27037) and axSpA susceptibility in Egyptian patients. A significant relationship was found only between the ERAP1 SNP rs27037 "GT" genotype and axSpA HLA-B27-positive cases, demonstrating a functional interaction between ERAP1 and HLA-B27-positive cases. Our analysis revealed a significant association between the ERAP1 SNP rs27037 "GT and TT" genotypes and Bath Ankylosing Spondylitis Disease Activity Index, in addition to an association between the ERAP1 SNP rs27037 "TT" genotype and active enthesitis. The ERAP1 SNP rs27044 "GG" genotype was significantly associated with active enthesitis, but not with clinical axial involvement. Finally, we did not observe a significant relationship between HLA-B27 positivity and disease severity in the studied cases. CONCLUSION Three SNPs (rs30187, rs27044, and rs27037) in ERAP1 do not confer susceptibility to axSpA in Egyptian patients. This association existed exclusively between the ERAP1 SNP (rs27037) "GT" genotype and axSpA HLA-B27-positive cases.
Collapse
Affiliation(s)
- Mohamed Ahmed Saad
- Department of Rheumatology and Rehabilitation, PMR Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Amal Bakry Abdul-Sattar
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Tharwat Abdelal
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Barak
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Liao HT, Chen CH. Bruton's Tyrosine Kinase in Ankylosing Spondylitis. Spine (Phila Pa 1976) 2024; 49:677-681. [PMID: 37706515 DOI: 10.1097/brs.0000000000004817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
STUDY DESIGN Prospective case-control study. OBJECTIVE To explore the role of Bruton's tyrosine kinase (BTK) in ankylosing spondylitis (AS). SUMMARY OF BACKGROUND DATA AS substantially affects patients, impairing the range of motion in the whole spine and peripheral joints, as well as overall quality of life. However, surveillance for this condition is limited, and biomarkers that can predict disease activity are not well documented. PATIENTS AND METHODS The expression of the BTK gene in peripheral blood mononuclear cells (PBMCs) was measured using flow cytometry and real-time quantitative polymerase chain reaction in 36 patients with AS and 30 healthy controls. Demographic features, Ankylosing Spondylitis Disease Activity Score-C-reactive protein (CRP) based, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, HLA-B27, erythrocyte sedimentation rate (ESR), and CRP were evaluated to identify factors associated with BTK expression. Analyses were performed using the Spearman rank correlation test for continuous data, the χ 2 test for categorical data, and that between continuous and dichotomous variables was measured using a point-biserial correlation test. The area under the curve of the receiver operating characteristic curve was used to assess the performance of each candidate biomarker. RESULTS BTK gene expression was significantly higher in patients with AS than in controls ( P = 0.026) according to quantitative polymerase chain reaction results. BTK Y223 was also high in CD19 + PBMCs from patients with AS, with CD 19+ BTK Y223+high cells being significantly positively correlated to ESR, CRP, and Ankylosing Spondylitis Disease Activity Score. A negative association was observed between BTK expression and the chest expansion distance. The area under the curve for CD 19+ BTK Y223+ was larger than that for ESR, but CRP still had the largest area. CONCLUSIONS BTK expression was higher in PBMCs from patients with AS when compared with controls, and was associated with a higher disease activity index, inflammatory reactants, and arthritis and extra-articular manifestations. These findings suggest that BTK expression may play a crucial role in the inflammatory process in individuals with AS.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsiung Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| |
Collapse
|
7
|
Shahzad F, Tahir R, Shahzad F, Afzal N. The possible protective role of HLA B27 and relevant immune markers in Juvenile Idiopathic Arthritis patients. Pak J Med Sci 2024; 40:835-840. [PMID: 38827853 PMCID: PMC11140352 DOI: 10.12669/pjms.40.5.7915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background & Objectives JIA is a disease with different immunological characteristics and a complicated genetic foundation. HLA B27 is a risk factor for the development of JIA, and its impact on immunopathogenesis of the disease is also an area of interest. To determine whether HLA B27 and immune markers varied between JIA patients and healthy population. Methods This comparative cross-sectional study was conducted at Immunology Department of University of Health sciences (UHS), Lahore from February 2018 till August 2021. A total of (71) JIA patients and (34) healthy controls were enrolled. B cells were enumerated by flowcytometry, ELISA was used for serum cytokines estimation and HLA B27 allele was detected by SPSS polymerase chain reaction. Results The HLA B27 allele was significantly more in the control group than in the patient group, suggesting it is a protective allele to prevent JIA. Peripheral blood B cell counts and percentages were significantly lower in the HLA B27 positive group than in the HLA B27 negative group of control population. Serum cytokine levels were not significantly different between the HLA B27 positive and HLA B27 negative allele of the two study populations. Conclusion In this study B cells are different between the two groups of control population however; serum cytokines are comparable between the study groups. Though, it was indicated that HLA B27 may be a preventive allele in the onset of JIA.
Collapse
Affiliation(s)
- Farhana Shahzad
- Farhana Shahzad, MBBS, M.Phil. Immunology Assistant Professor of Immunology University of Child Health Sciences, The Children’s Hospital, Lahore, Pakistan
| | - Romeeza Tahir
- Romeeza Tahir, MSC, M.Phil, PhD Immunology Assistant Professor of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Faheem Shahzad
- Faheem Shahzad, Senior Lab Manager, University of Health Sciences, Lahore, Pakistan
| | - Nadeem Afzal
- Nadeem Afzal Professor of Immunology, Akhtar Saeed Medical College, Lahore, Pakistan
| |
Collapse
|
8
|
Han B, Xie Q, Liang W, Yin P, Qu X, Hai Y. PLCG2 and IFNAR1: The Potential Biomarkers Mediated by Immune Infiltration and Osteoclast Differentiation of Ankylosing Spondylitis in the Peripheral Blood. Mediators Inflamm 2024; 2024:3358184. [PMID: 38223749 PMCID: PMC10787051 DOI: 10.1155/2024/3358184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Objectives Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease characterized by chronic spinal inflammation, arthritis, gut inflammation, and enthesitis. We aimed to identify the key biomarkers related to immune infiltration and osteoclast differentiation in the pathological process of AS by bioinformatic methods. Methods GSE25101 from the Gene Expression Omnibus was used to obtain AS-associated microarray datasets. We performed bioinformatics analysis using R software to validate different expression levels. The purpose of the GO and KEGG enrichment analyses of DEGs was to exclude key genes. Using weighted correlation network analysis (WGCNA), we examined all expression profile data and identified differentially expressed genes. The objective was to investigate the interaction between genetic and clinical features and to identify the essential relationships underlying coexpression modules. The CIBERSORT method was used to make a comparison of the immune infiltration in whole blood between the AS group and the control group. The WGCNA R program from Bioconductor was used to identify hub genes. RNA extraction reverse transcription and quantitative polymerase chain reaction were conducted in the peripheral blood collected from six AS patients and six health volunteers matched by age and sex. Results 125 DEGs were identified, consisting of 36 upregulated and 89 downregulated genes that are involved in the cell cycle and replication processes. In the WGCNA, modules of MCODE with different algorithms were used to find 33 key genes that were related to each other in a strong way. Immune infiltration analysis found that naive CD4+ T cells and monocytes may be involved in the process of AS. PLCG2 and IFNAR1 genes were obtained by screening genes meeting the conditions of immune cell infiltration and osteoclast differentiation in AS patients among IGF2R, GRN, SH2D1A, LILRB3, IFNAR1, PLCG2, and TNFRSF1B. The results demonstrated that the levels of PLCG2 mRNA expression in AS were considerably higher than those in healthy individuals (P=0.003). IFNAR1 mRNA expression levels were considerably lower in AS than in healthy individuals (P < 0.0001). Conclusions Dysregulation of PLCG2 and IFNAR1 are key factors in disease occurrence and development of AS through regulating immune infiltration and osteoclast differentiation. Explaining the differences in immune infiltration and osteoclast differentiation between AS and normal samples will contribute to understanding the development of spondyloarthritis.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Qiaobo Xie
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Yusef YN, Razumova IY, Godzenko AA, Surnina ZV, Agaeva LM. [Ocular manifestations of rheumatic diseases]. Vestn Oftalmol 2024; 140:104-109. [PMID: 39254398 DOI: 10.17116/oftalma2024140041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rheumatic diseases are a large group of conditions of various origins, predominantly systemic in nature, with persistent or transient joint syndrome and involvement of other organs and systems, including the eyes. Many rheumatic diseases are characterized by specific types of ocular inflammation, which manifests through its localization, symmetry, and clinical features.
Collapse
Affiliation(s)
- Yu N Yusef
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - I Yu Razumova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A A Godzenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Z V Surnina
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - L M Agaeva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
10
|
Soltani S, Jamshidi A, Mahmoudi M, Farhadi E. Potential Roles for B cells and Autoantibodies in Ankylosing Spondylitis. Curr Rheumatol Rev 2024; 20:157-164. [PMID: 37870058 DOI: 10.2174/0115733971243468231012044909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease that predominantly affects young males. AS is a condition in which the spine and sacroiliac joints become inflamed. More specifically, most AS patients experience spine malformations over time, resulting in functional incapability. The etiopathogenesis of AS is a complex combination of genetic predisposition and environmental factors. Extensive studies on AS have revealed the central role of genetics and immune reactions in its etiology. However, an utmost agreement has yet to be created. The available evidence suggests that both autoinflammation and T-cell-mediated autoimmune processes have significant roles in the disease process of AS. So far, B cells have obtained moderately little attention in AS pathogenesis, primarily because of the absence of disease-defining autoantibodies. However, against general dogma, evidence is mounting showing B cell involvement. Disruptions depict this in circulating B cell populations, the increased expression of immunoglobulin (Ig)G, IgA, and IgM, and B cell infiltration within the axial skeleton of AS patients. Meanwhile, compared to many other inflammatory autoimmune disorders, AS has no disease-specific autoantibodies that help disease diagnosis. This study has provided an overview of the B lymphocytes and antibodies' role in AS pathogenesis. It also introduces autoantibodies that can be the prognosis and diagnosis biomarkers of AS.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang J, Qi J, Li Y, Wang J, Jiang H, Sun Q, Gu Q, Ying Z. Association between type 1 diabetes mellitus and ankylosing spondylitis: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1289104. [PMID: 38173714 PMCID: PMC10762686 DOI: 10.3389/fimmu.2023.1289104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Objective The development of ankylosing spondylitis (AS) is closely related to autoimmune system dysfunction. Type 1 diabetes mellitus (T1DM) is an autoimmune disease that is a risk factor for many diseases. This study aimed to investigate the causal relationship between T1DM mellitus and AS genetically. Methods A genome-wide association study (GWAS) of causal relationships between exposure (T1DM) and outcome (AS) was performed using summary data from the GWAS database. We conducted a two-sample Mendelian randomization (MR) study of these two diseases. Inverse variance weighting (IVW) was used as the primary analysis method, with MR Egger, weighted median, and weighted mode used as supplementary methods. Sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept, MR-Pleiotropy RESidual Sum and outlier methods, leave-one-out analysis, and funnel plots. Results A total of 11 single nucleotide polymorphisms (SNPs)were identified for instrumental variables(IVs) for MR analysis.IVW found that T1DM was causally associated with AS ((IVW: OR = 1.0006 (95% CI 1.0001, 1.0011), p = 0.0057; MR-Egger: OR = 1.0003 (95% CI 0.9995, 1.0012), p = 0.4147; weighted median: OR = 1.0006 (95% CI 1.0003, 1.0008), p = 0.0001; weighted mode: OR = 1.0007 (95% CI 1.0005, 1.0009), p = 0.0001). No horizontal pleiotropy was found for the MR-Egger intercept, and leave -one-out analysis found that the results remained stable after the removal of individual SNPs. Conclusion The results of the two-sample MR analysis supported a causal relationship between T1DM and AS risk.
Collapse
Affiliation(s)
- Ju Zhang
- Jinzhou Medical University Graduate Training Base Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaping Qi
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Yixuan Li
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Huan Jiang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Qiong Sun
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Qinchen Gu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenhua Ying
- Jinzhou Medical University Graduate Training Base Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hang zhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Venerito V, Del Vescovo S, Lopalco G, Proft F. Beyond the horizon: Innovations and future directions in axial-spondyloarthritis. Arch Rheumatol 2023; 38:491-511. [PMID: 38125058 PMCID: PMC10728740 DOI: 10.46497/archrheumatol.2023.10580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease of the spine and sacroiliac joints. This review discusses recent advances across multiple scientific fields that promise to transform axSpA management. Traditionally, axSpA was considered an immune-mediated disease driven by human leukocyte antigen B27 (HLA-B27), interleukin (IL)-23/IL-17 signaling, biomechanics, and dysbiosis. Diagnosis relies on clinical features, laboratory tests, and imaging, particularly magnetic resonance imaging (MRI) nowadays. Management includes exercise, lifestyle changes, non-steroidal anti-inflammatory drugs and if this is not sufficient to achieve disease control also biological and targeted-synthetic disease modifying anti-rheumatic drugs. Beyond long-recognized genetic risks like HLA-B27, high-throughput sequencing has revealed intricate gene-environment interactions influencing dysbiosis, immune dysfunction, and aberrant bone remodeling. Elucidating these mechanisms promises screening approaches to enable early intervention. Advanced imaging is revolutionizing the assessment of axSpA's hallmark: sacroiliac bone-marrow edema indicating inflammation. Novel magnetic resonance imaging (MRI) techniques sensitively quantify disease activity, while machine learning automates complex analysis to improve diagnostic accuracy and monitoring. Hybrid imaging like synthetic MRI/computed tomography (CT) visualizes structural damage with new clarity. Meanwhile, microbiome analysis has uncovered gut ecosystem alterations that may initiate joint inflammation through HLA-B27 misfolding or immune subversion. Correcting dysbiosis represents an enticing treatment target. Moving forward, emerging techniques must augment patient care. Incorporating patient perspectives will be key to ensure innovations like genetics, microbiome, and imaging biomarkers translate into improved mobility, reduced pain, and increased quality of life. By integrating cutting-edge, multidisciplinary science with patients' lived experience, researchers can unlock the full potential of new technologies to deliver transformative outcomes. The future is bright for precision diagnosis, tightly controlled treatment, and even prevention of axSpA.
Collapse
Affiliation(s)
- Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Feng X, Qiao J, Xu W. Impact of immune regulation and differentiation dysfunction of mesenchymal stem cells on the disease process in ankylosing spondylitis and prospective analysis of stem cell transplantation therapy. Postgrad Med J 2023; 99:1138-1147. [PMID: 37689998 DOI: 10.1093/postmj/qgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
Ankylosing spondylitis (AS) is a rheumatic bone and joint disease caused by inflammation, erosion, and pathological bone formation. The pathological features of chronic inflammation, bone destruction, and pathological ossification occur due to the disruption of the body's immune regulation and altered bone remodeling balance. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential and immunomodulatory functions and play an important role in immune regulation and bone formation. The immune regulation and osteogenic capacity of MSCs in AS are altered by factors such as genetic background, internal environment, infection, and mechanical forces that drive disease development. This review further evaluates the role of MSCs dysfunction in inflammation and pathological bone formation by analyzing the effects of the above-mentioned factors on MSCs function and also looks forward to the prospects of MSCs in treating AS, providing some ideas for an in-depth study of inflammation and ectopic ossification. KEY MESSAGES
Collapse
Affiliation(s)
- Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Junjie Qiao
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
14
|
Lübbering D, Preti M, Schlott L, Schultheiß C, Weidemann S, Lohse AW, Binder M, Carambia A, Herkel J. Autoantigen-selected B cells are bystanders in spontaneous T cell-driven experimental autoimmune hepatitis. Immunology 2023; 170:214-229. [PMID: 37243425 DOI: 10.1111/imm.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Autoreactive B cells are considered pathogenic drivers in many autoimmune diseases; however, it is not clear whether autoimmune B cells are invariably pathogenic or whether they can also arise as bystanders of T cell-driven autoimmune pathology. Here, we studied the B cell response in an autoantigen- and CD4+ T cell-driven model of autoimmune hepatitis (AIH), the Alb-iGP_Smarta mouse in which expression of a viral model antigen (GP) in hepatocytes and its recognition by GP-specific CD4+ T cells causes spontaneous AIH-like disease. T cell-driven AIH in Alb-iGP_Smarta mice was marked by autoantibodies and hepatic infiltration of plasma cells and B cells, particularly of isotype-switched memory B cells, indicating antigen-driven selection and activation. Immunosequencing of B cell receptor repertoires confirmed B cell expansion selectively in the liver, which was most likely driven by the hepatic GP model antigen, as indicated by branched networks of connected sequences and elevated levels of IgG antibodies to GP. However, intrahepatic B cells did not produce increased levels of cytokines and their depletion with anti-CD20 antibody did not alter the CD4+ T cell response in Alb-iGP_Smarta mice. Moreover, B cell depletion did not prevent spontaneous liver inflammation and AIH-like disease in Alb-iGP_Smarta mice. In conclusion, selection and isotype-switch of liver-infiltrating B cells was dependent on the presence of CD4+ T cells recognizing liver antigen. However, recognition of hepatic antigen by CD4+ T cells and CD4+ T cell-mediated hepatitis was not dependent on B cells. Thus, autoreactive B cells can be bystanders and need not be drivers of liver inflammation in AIH.
Collapse
Affiliation(s)
- David Lübbering
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Max Preti
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Schlott
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Buitrago G, Harnett MM, Harnett W. Conquering rheumatic diseases: are parasitic worms the answer? Trends Parasitol 2023; 39:739-748. [PMID: 37487870 DOI: 10.1016/j.pt.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Despite the introduction of novel treatment strategies, management of rheumatic disorders remains associated with substantial unmet clinical need. Of interest therefore, it has recently become apparent that there is a global inverse relationship between the incidence of such conditions and parasitic helminth infection, with striking examples involving rheumatoid arthritis (RA)/systemic lupus erythematosus (SLE) patients and filarial nematode worm infection in studies in India. Such findings reflect that helminths are master manipulators of the immune system, particularly in being able to modulate proinflammatory responses. The aim of this article is thus to consider findings to date on this exciting and intriguing research area to form an opinion on whether parasitic worms may be exploited to generate novel therapies for rheumatic diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Margaret M Harnett
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
16
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
17
|
Fang X, Ye H, Xie Y, Wei C, Liu S, Yao H, Li Z, Jia Y, Hu F. B cell subsets in adult-onset Still's disease: potential candidates for disease pathogenesis and immunophenotyping. Arthritis Res Ther 2023; 25:104. [PMID: 37322557 PMCID: PMC10268358 DOI: 10.1186/s13075-023-03070-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disorder of unknown etiology. B cells are critical participants in different rheumatic diseases, and their roles in AOSD are rarely investigated. This study aimed to unveil the B cell subset features in AOSD and provide evidence for B cell-based diagnosis and targeted therapies of AOSD. METHODS B cell subsets in the peripheral blood of AOSD patients and healthy controls (HCs) were detected by flow cytometry. Firstly, the frequencies of B cell subsets were compared. Then, the correlation analysis was performed to explore the correlation between B cell subsets and clinical manifestations in AOSD. Finally, unbiased hierarchical clustering was performed to divide AOSD patients into three groups with different B cell subset features, and the clinical characteristics of the three groups were compared. RESULTS The frequencies of B cell subsets were altered in AOSD patients. Disease-promoting subsets (such as naïve B cells, double negative B cells (DN B cells), and plasmablasts) increased, and potential regulatory subsets (such as unswitched memory B cells (UM B cells) and CD24hiCD27+ B cells (B10 cells)) decreased in the peripheral blood of AOSD patients. In addition, the altered B cell subsets in AOSD correlated with the clinical and immunological features, such as immune cells, coagulation features, and liver enzymes. Intriguingly, AOSD patients could be divided into three groups with distinct B cell immunophenotyping: group 1 (naïve B cells-dominant), group 2 (CD27+ memory B cells-dominant), and group 3 (precursors of autoantibody-producing plasma cells-dominant). Moreover, these three group patients demonstrated differential manifestations, including immune cells, liver or myocardial enzymes, coagulation features, and systemic score. CONCLUSIONS B cell subsets are significantly altered in AOSD patients, potentially contributing to the disease pathogenesis. These findings would inspire B cell-based diagnosis and targeted therapies for this refractory disease.
Collapse
Affiliation(s)
- Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chaonan Wei
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shuyan Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Haihong Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
18
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
19
|
Starshinova A, Malkova A, Zinchenko Y, Kudryavtsev I, Serebriakova M, Akisheva T, Lapin S, Mazing A, Kudlay D, Glushkova A, Yablonskiy P, Shoenfeld Y. Identification of autoimmune markers in pulmonary tuberculosis. Front Immunol 2023; 13:1059714. [PMID: 36761174 PMCID: PMC9905676 DOI: 10.3389/fimmu.2022.1059714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Pathogenesis of many autoimmune diseases is mainly promoted by poorly regulated and/or wrong targeted immune response to pathogens including M. tuberculosis. Autoimmunity is one of the processes with are characteristics of tuberculosis (Tbc). The aim was to determine the autoimmune clinical and immunological features in patients with pulmonary Tbc. Materials and methods A prospective comparative study was performed in 2017 - 2019 with the inclusion of 46 patients with Tbc. The trigger factors and clinical manifestations, autoantibodies, peripheral blood B cell subsets were stained with fluorochrome-conjugated monoclonal antibodies. 40 healthy volunteers in the control group, were matched for age with no chronic diseases, contacts with TB patients and changes in their laboratory parameters. A statistical analysis was done with GraphPad Prism 6, Statistica 10 (Statsoft) and MedCalc - version 18.2.1 values. Results There were no significant ASIA triggers in Tbc patients and control group. 21.1% of Tbc patients had a high level of a rheumatoid factor and in 47.4% complement system factor C3 was high; anti-MCV was detected in 60.7% of Tbc patients. Relative and absolute frequencies of "naïve" Bm1 cells and eBm5 were significantly decreased and activated pre-germinal-center Bm2' cells were significantly increased in Tbc patients. The CD24++CD38++ B cells were increased in Tbc vs control group (10.25% vs 5.42%), p < 0.001, and 19 cell/1μL (10; 290 vs 11 cell/1μL (6; 20), p = 0.029, respectively). The frequency of CXCR3+CCR4- Tfh1 cells was significantly lower in Tbc vs control one (26.52% vs. 31.00%, p = 0.004), while CXCR3-CCR4+ Tfh2 cells were increased in Tbc (20.31% vs. controls (16.56%, p = 0.030). The absolute numbers of Tfh1 cells were decreased in the Tbc vs. control (24 cell/1μL vs. 37 cell/1μL p = 0.005). Conclusion The results of our study showed that the detection of a rheumatoid factor, the components of complement system and anti-MCV in complex with alterations in B cells and follicular Th cell subsets may indicate a presence of autoimmunity in the pathogenesis of tuberculosis, but they are not specific. The indicators of autoimmune-related provide new opportunities in the Tbc treatment.
Collapse
Affiliation(s)
- Anna Starshinova
- St. Petersburg State University, St. Petersburg, Russia,*Correspondence: Anna Starshinova,
| | - Anna Malkova
- St. Petersburg State University, St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg State University, St. Petersburg, Russia,St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, St. Petersburg, Russia
| | - Maria Serebriakova
- Department of Immunology, Institution of Experimental Medicine, St. Petersburg, Russia
| | - Tatiana Akisheva
- Department of Immunology, Institution of Experimental Medicine, St. Petersburg, Russia
| | - Sergey Lapin
- St. Petersburg State Medical University, St. Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Immunology, Moscow, Russia,Bekhterev Psychoneurological Institute, St. Petersburg, Russia
| | - Anzhela Glushkova
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | - Piotr Yablonskiy
- St. Petersburg State University, St. Petersburg, Russia,St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Yehuda Shoenfeld
- St. Petersburg State University, St. Petersburg, Russia,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
20
|
Fatica M, D'Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, Bergamini A, Perricone C, Chimenti MS. How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management. Curr Rheumatol Rep 2023; 25:12-33. [PMID: 36308677 PMCID: PMC9825525 DOI: 10.1007/s11926-022-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner. RECENT FINDINGS In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.
Collapse
Affiliation(s)
- Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
21
|
Shesternya PA, Savchenko AA, Gritsenko OD, Vasileva AO, Kudryavtsev IV, Masterova AA, Isakov DV, Borisov AG. Features of Peripheral Blood Th-Cell Subset Composition and Serum Cytokine Level in Patients with Activity-Driven Ankylosing Spondylitis. Pharmaceuticals (Basel) 2022; 15:ph15111370. [PMID: 36355542 PMCID: PMC9695783 DOI: 10.3390/ph15111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Th cells may exhibit pathological activity depending on the regulatory and functional signals sensed under a wide range of immunopathological conditions, including ankylosing spondylitis (AS). The relationship between Th cells and cytokines is important for diagnoses and for determining treatment. Accordingly, the aim of this study was to investigate the relationship between Th-cell subset composition and serum cytokine profile for patients with activity-driven AS. In our study, patients were divided into two groups according to disease activity: low-activity AS (ASDAS-CRP < 2.1) and high-activity AS (ASDAS-CRP > 2.1). The peripheral blood Th cell subset composition was studied by flow cytometry. Using multiplex analysis, serum cytokine levels were quantified and investigated. It was found that only patients with high-activity AS had reduced central memory (CM) Th1 cells (p = 0.035) but elevated numbers of CM (p = 0.014) and effector memory (EM) Th2 cells (p < 0.001). However, no activity-driven change in the Th17 cell subset composition was observed in AS patients. Moreover, low-AS activity patients had increased numbers of Tfh17 EM cells (p < 0.001), whereas high-AS activity was associated with elevated Tfh2 EM level (p = 0.031). The serum cytokine profiles in AS patients demonstrated that cues stimulating cellular immunity were increased, but patients with high-AS activity reveled increased IL-5 level (p = 0.017). Analyzing the data obtained from AS patients allowed us to conclude that Th cell subset differentiation was mainly affected during the CM stage and characterized the IL-23/IL-17 regulatory axis, whereas increased humoral immunity was observed in the high-AS activity group.
Collapse
Affiliation(s)
- Pavel A. Shesternya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Correspondence:
| | - Andrei A. Savchenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Olga D. Gritsenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | - Alexandra O. Vasileva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | | | - Alena A. Masterova
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Isakov
- Academician I.P. Pavlov First St. Petersburg State Medical University, Ministry of Healthcare, 197022 St. Peterburg, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
22
|
Editorial for Special Issue “Advances in the Pathogenesis and Treatment of Immune-Mediated Inflammatory Diseases”. Int J Mol Sci 2022; 23:ijms23158415. [PMID: 35955550 PMCID: PMC9369144 DOI: 10.3390/ijms23158415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
This Special Issue focuses on the rapidly evolving field of immune-mediated inflammatory diseases (IMIDs) and the achievements that were made over the last 10 years [...]
Collapse
|
23
|
Dou B, Ma F, Jiang Z, Zhao L. Blood HDAC4 Variation Links With Disease Activity and Response to Tumor Necrosis Factor Inhibitor and Regulates CD4+ T Cell Differentiation in Ankylosing Spondylitis. Front Med (Lausanne) 2022; 9:875341. [PMID: 35602496 PMCID: PMC9121817 DOI: 10.3389/fmed.2022.875341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose Histone deacetylase 4 (HDAC4) regulates the progression of autoimmune diseases. This study aimed to further investigate the correlation between HDAC4 and Th cells, inflammation, disease activity, and treatment response in patients with ankylosing spondylitis (AS). Methods A total of 132 active patients with AS were enrolled, of whom 54 patients received TNF inhibitor (TNFi) and 78 patients received NSAID. Serum HDAC4 was measured by ELISA in patients with AS before treatment (W0) and at week (W)4, W8, and W12 after treatment. Meanwhile, serum HDAC4 was detected in 30 patients with osteoarthritis and in 30 healthy controls (HCs) by ELISA. Besides, naïve CD4+ T cells from patients with AS were isolated, followed by modulation of HDAC4 and then polarization toward Th1, Th2, and Th17. Results Histone deacetylase 4 was reduced in patients with AS compared with HCs and patients with osteoarthritis (both P < 0.01). In patients with AS, HDAC4 was negatively correlated with TNF (P < 0.001), IL-1β (P = 0.003), Th17 proportion (P = 0.008), C-reactive protein (P < 0.001), and ASDAS (P = 0.038), but not with IL-6, Th1 proportion, or other characteristics. Meanwhile, HDAC4 increased from W0 to W12 (P < 0.001); HDAC4 at W8 (P = 0.014) and W12 (P = 0.006) was raised in ASAS40-response patients than ASAS40-non-response patients; further subgroup analysis showed that HDAC4 at W12 was higher in ASAS40-response patients than ASAS40-non-response patients (P = 0.016) in the TNFi-treated group, but not in the NSAID-treated group. In addition, HDAC4 negatively regulated the polarization of naïve CD4+ T cells toward Th17 (P < 0.01), but not Th1 or Th2. Conclusion Histone deacetylase 4 is associated with lower inflammation, and the disease activity negatively regulates Th17 polarization, whose increment after treatment reflects favorable outcomes in patients with AS.
Collapse
Affiliation(s)
- Bin Dou
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenyu Jiang
| | - Ling Zhao
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
- Ling Zhao
| |
Collapse
|