1
|
Peng M, Lu C, Ni L, Wen X, Chen T, Liang Y, Ruan G, Chen R. Preeminent Terminator of Oxygen Free Radicals─Mineralized Reduced Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70205-70217. [PMID: 39670325 DOI: 10.1021/acsami.4c13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Drinking water is an essential daily intake to hydrate the body. It is conceivable that water, when endowed with antioxidant properties, will be the most natural radical terminator surpassing conventional pill-based or food-derived antioxidants. However, current end-of-pipe purification of municipal water generally depletes minerals pivotal for antioxidant potency. To surmount this dilemma, we assemble a multistage and multifunctional water treatment system using various filter materials that dislodge contaminants, mineralize water and impart reductive attributes. The mineralized reduced water (MRW) generated by this system possesses an ideal antioxidant water quality with weak alkalinity, negative oxidation-reduction potential and rich minerals including calcium, magnesium, zinc and silicon. This water decreases oxidative products in vivo via counteracting reactive oxygen species and activating the endogenous antioxidant system governed by nuclear factor erythroid 2-related factor 2. Moreover, long-term intake of MRW effectively retards xenografted tumor growth without any discernible hematologic and organic toxicity. These findings portend enormous promise for MRW in the prevention and treatment of oxidative stress-related maladies and even antiaging.
Collapse
Affiliation(s)
- Minmin Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chan Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Linjie Ni
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinan Wen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Tao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiying Liang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guohong Ruan
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Babiloni-Lopez C, Gargallo P, Juesas A, Gene-Morales J, Saez-Berlanga A, Jiménez-Martínez P, Casaña J, Benitez-Martinez JC, Sáez GT, Fernández-Garrido J, Alix-Fages C, Colado JC. Long-Term Effects of Microfiltered Seawater and Resistance Training with Elastic Bands on Hepatic Parameters, Inflammation, Oxidative Stress, and Blood Pressure of Older Women: A 32-Week, Double-Blinded, Randomized, Placebo-Controlled Trial. Healthcare (Basel) 2024; 12:204. [PMID: 38255091 PMCID: PMC10815454 DOI: 10.3390/healthcare12020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The bulk of research on microfiltered seawater (SW) is based on its short-term effects. However, the long-term physiological adaptations to combining SW and resistance training (RT) are unknown. This study aimed to analyse the impact of an RT program using elastic bands combined with SW intake on hepatic biomarkers, inflammation, oxidative stress, and blood pressure in post-menopausal women. Ninety-three women voluntarily participated (age: 70 ± 6.26 years; body mass index: 22.05 ± 3.20 kg/m2; Up-and-Go Test: 6.66 ± 1.01 s). RT consisted of six exercises (32 weeks, 2 days/week). Nonsignificant differences were reported for hepatic biomarkers except for a reduction in glutamic-pyruvic transaminase (GPT) in both RT groups (RT + SW: p = 0.003, ES = 0.51; RT + Placebo: p = 0.012, ES = 0.36). Concerning oxidative stress, vitamin D increased significantly in RT + SW (p = 0.008, ES = 0.25). Regarding inflammation, interleukin 6 significantly decreased (p = 0.003, ES = 0.69) in RT + SW. Finally, systolic blood pressure significantly decreased in both RT groups (RT + placebo: p < 0.001, ES = 0.79; RT + SW: p < 0.001, ES = 0.71) as did diastolic blood pressure in both SW groups (RT + SW: p = 0.002, ES = 0.51; CON + SW: p = 0.028, ES = 0.50). Therefore, RT + SW or SW alone are safe strategies in the long term with no influences on hepatic and oxidative stress biomarkers. Additionally, SW in combination with RT positively influences vitamin D levels, inflammation, and blood pressure in older women.
Collapse
Affiliation(s)
- Carlos Babiloni-Lopez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Pedro Gargallo
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Alvaro Juesas
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Javier Gene-Morales
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Angel Saez-Berlanga
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
- ICEN Institute, 28840 Madrid, Spain
| | - Jose Casaña
- Exercise Intervention for Health Research Group (EXINH-RG), University of Valencia, 46010 Valencia, Spain;
| | - Josep C. Benitez-Martinez
- Research Group in Physiotherapy Technology and Recovering (FTR), University of Valencia, 46010 Valencia, Spain;
| | - Guillermo T. Sáez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
- Service of Clinical Analysis, University Hospital Dr. Peset—FISABIO, 46017 Valencia, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Julio Fernández-Garrido
- Nursing Department, Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain;
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
- ICEN Institute, 28840 Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Department of Physical Education, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain; (C.B.-L.); (P.G.); (A.J.); (A.S.-B.); (P.J.-M.); (G.T.S.); (C.A.-F.); (J.C.C.)
| |
Collapse
|
3
|
Shimada S, Hoffmann BR, Yang C, Kurth T, Greene AS, Liang M, Dash RK, Cowley AW. Metabolic Responses of Normal Rat Kidneys to a High Salt Intake. FUNCTION 2023; 4:zqad031. [PMID: 37575482 PMCID: PMC10413938 DOI: 10.1093/function/zqad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague-Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.
Collapse
Affiliation(s)
- Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian R Hoffmann
- Mass Spectrometry and Protein Chemistry, Protein Sciences, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew S Greene
- Mass Spectrometry and Protein Chemistry, Protein Sciences, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53226, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Hidayangsih PS, Tjandrarini DH, Sukoco NEW, Sitorus N, Dharmayanti I, Ahmadi F. Chronic kidney disease in Indonesia: evidence from a national health survey. Osong Public Health Res Perspect 2023; 14:23-30. [PMID: 36944342 DOI: 10.24171/j.phrp.2022.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVES Several previous studies have stated that consuming certain foods and beverages might increase the risk of chronic kidney disease (CKD). This study aimed to examine the relationships of food and beverage consumption with other risk factors for CKD. METHODS Data sources included the 2018 Basic Health Research (Riskesdas) and the National Socio-Economic Survey (Susenas), which were analyzed using a cross-sectional design. The study samples were households from 34 provinces in Indonesia, and the analysis was performed with provincial aggregates. Data were analyzed using risk factor analysis followed by linear regression to identify relationships with CKD. RESULTS The prevalence of CKD in Indonesia was 0.38%. The province with the highest prevalence was North Kalimantan (0.64%), while the lowest was found in West Sulawesi (0.18%). Five major groups were formed from 15 identified risk factors using factor analysis. A linear regression model presented 1 significant selected factor (p=0.006, R2 =31%). The final model of risk factors included water quality, consumption of fatty foods, and a history of diabetes. CONCLUSIONS Drinking water quality, fatty food consumption, and diabetes are associated with CKD. There is a need to monitor drinking water, as well as to promote health education and provide comprehensive services for people with diabetes, to prevent CKD.
Collapse
Affiliation(s)
- Puti Sari Hidayangsih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Dwi Hapsari Tjandrarini
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Noor Edi Widya Sukoco
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Nikson Sitorus
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Ika Dharmayanti
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| | - Feri Ahmadi
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia
| |
Collapse
|
5
|
Shimada S, Hoffmann BR, Yang C, Kurth T, Greene AS, Liang M, Dash RK, Cowley AW. Metabolic responses of normal rat kidneys to a high salt intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524636. [PMID: 36711564 PMCID: PMC9882299 DOI: 10.1101/2023.01.18.524636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, novel methods were developed which allowed continuous (24/7) measurement of blood pressure (BP) and renal blood flow (RBF) in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O 2 and metabolites. The study determined the effects of a high salt (HS) diet upon whole kidney O 2 consumption and the metabolomic profiles of normal Sprague Dawley (SD) rats. A separate group of rats was studied to determine changes in the cortex (Cx) and outer medulla (OM) tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to a 4.0% NaCl diet. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O 2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. Increased glycolysis was evident with the elevation of mRNA expression encoding key glycolytic enzymes and release of pyruvate and lactate from the kidney in the renal venous blood. Glycolytic production of NADH is used in either the production of lactate or oxidized via the malate aspartate shuttle. Aerobic glycolysis (e.g., Warburg-effect) may account for the needed increase in cellular energy. The study provides evidence that kidney metabolism responds to a HS diet enabling enhanced energy production while protecting from oxidate stress and injury.
Collapse
|