1
|
Dong R, Li J, Jiang G, Tian Y, Bi W. Allograft inflammatory Factor-1 induces the dedifferentiation of Vascular Smooth Muscle cells into a macrophage-like phenotype both in vivo and in vitro. Exp Cell Res 2025; 446:114475. [PMID: 39978719 DOI: 10.1016/j.yexcr.2025.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Atherosclerosis, a chronic lipid-driven vascular inflammatory disease involving multiple cell types, is the primary cause of cardiovascular disease-related morbidity and mortality. Allograft inflammatory factor 1 (AIF-1) contributes to atherosclerosis development by affecting vascular smooth muscle cells (VSMCs). Increasing research indicates that VSMCs are pivotal in atherosclerosis progression, particularly in macrophage-like phenotypic switching, though the mechanism of AIF-1 VSMCs phenotypic switching is not well understood. This study aims to correlate AIF-1 expression with atherosclerosis development and VSMCs phenotypic switching. AIF-1 was expressed in the atherosclerotic plaques of patients with carotid artery narrowing and atherosclerosis mice. AIF-1 was expressed in ox-LDL treated VSMCs and promoted the apoptosis of VSMCs. AIF-1 significantly influenced macrophage-like VSMC numbers through the AIF-1/NF-κB pathway, enhancing lipid uptake and TNF-α and IL-6 secretion. This study showed increased AIF-1 expression in atherosclerotic plaques in both patients with carotid stenosis and an atherosclerosis animal model. AIF-1 facilitated VSMC dedifferentiation into macrophage-like cells, enhancing lipid uptake and inflammatory factor release through the AIF-1/NF-κB pathway.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Humans
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Macrophages/metabolism
- Mice
- Microfilament Proteins/metabolism
- Microfilament Proteins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Dedifferentiation
- Male
- Phenotype
- NF-kappa B/metabolism
- Mice, Inbred C57BL
- Cells, Cultured
- Apoptosis
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Signal Transduction
- Lipoproteins, LDL/metabolism
- Apoptosis Inducing Factor
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China; Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Jikuan Li
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Guangwei Jiang
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Yunjie Tian
- Department of Gynecology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Kullaya VI, Temba GS, Vadaq N, Njau J, Boahen CK, Nkambule BB, Thibord F, Chen MH, Pecht T, Lyamuya F, Kumar V, Netea MG, Mmbaga BT, van der Ven A, Johnson AD, de Mast Q. Genetic and nongenetic drivers of platelet reactivity in healthy Tanzanian individuals. J Thromb Haemost 2024; 22:805-817. [PMID: 38029856 DOI: 10.1016/j.jtha.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. OBJECTIVES We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. METHODS Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. RESULTS Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P < 5 × 10-8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. CONCLUSION Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.
Collapse
Affiliation(s)
- Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Godfrey S Temba
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith Njau
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Collins K Boahen
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Furaha Lyamuya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Vinod Kumar
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
English CJ, Jones M, Lohning AE, Mayr HL, MacLaughlin H, Reidlinger DP. Associations between healthy food groups and platelet-activating factor, lipoprotein-associated phospholipase A 2 and C-reactive protein: a cross-sectional study. Eur J Nutr 2024; 63:445-460. [PMID: 38063929 PMCID: PMC10899352 DOI: 10.1007/s00394-023-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE To investigate the association between pro-inflammatory markers platelet-activating factor (PAF), lipoprotein-associated phospholipase A2 (Lp-PLA2), hsCRP, and intake of core food groups including fruit, cruciferous and other vegetables, grains, meat and poultry, fish and seafood, nuts and legumes, and dairy. METHODS A cross-sectional study was conducted. 100 adults (49 ± 13 years, 31% male) with variable cardiovascular disease risk were recruited. Data were collected in 2021 and 2022. Fasting PAF, Lp-PLA2 activity, hsCRP and usual dietary intake (via a validated food frequency questionnaire) were measured. Intake of foods were converted into serves and classified into food groups. Correlations and multiple regressions were performed with adjustment for confounders. RESULTS A one-serve increase in cruciferous vegetables per day was associated with 20-24% lower PAF levels. An increase of one serve per day of nuts and legumes was associated with 40% lower hsCRP levels. There were small correlations with PAF and Lp-PLA2 and cheese, however, these were not significant at the Bonferroni-adjusted P < 0.005 level. CONCLUSION The lack of associations between PAF and Lp-PLA2 and other healthy foods may be due to confounding by COVID-19 infection and vaccination programs which prevents any firm conclusion on the relationship between PAF, Lp-PLA2 and food groups. Future research should aim to examine the relationship with these novel markers and healthy food groups in a non-pandemic setting.
Collapse
Affiliation(s)
- Carolyn J English
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Mark Jones
- Faculty of Health Sciences and Medicine, Institute of Evidence-Based Healthcare, Bond University, Robina, QLD, Australia
| | - Anna E Lohning
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Hannah L Mayr
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Centre for Functioning and Health Research, Metro South Hospital and Health Service, Brisbane, QLD, Australia
| | - Helen MacLaughlin
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- Nutrition Research Collaborative, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Dianne P Reidlinger
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.
| |
Collapse
|
4
|
Bozkurt O, Kocaadam-Bozkurt B, Yildiran H. Effects of curcumin, a bioactive component of turmeric, on type 2 diabetes mellitus and its complications: an updated review. Food Funct 2022; 13:11999-12010. [PMID: 36367124 DOI: 10.1039/d2fo02625b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a substantial issue in public health. Recently, there has been considerable interest in the effectiveness of using herbal supplements for T2DM. Among the herbal supplements, turmeric (Curcuma longa L.) has been attracting an avalanche of attention owing to its main component, curcumin. This review examines the physiological activities and mechanisms of action of curcumin associated with T2DM and its complications. The literature indicates that pro-inflammatory cytokines along with oxidative stress play a very important role in diabetes pathogenesis. Since inflammation is a main cause of disruption of the β cell structure, the anti-diabetic characteristic of curcumin is mainly attributed to its anti-inflammatory as well as anti-oxidant activities. In addition to these activities, curcumin has been developed as a promising prevention/treatment choice for diabetes complications by modulating various critical signal steps owing to the anti-hyperglycemic and anti-hyperlipidemic activities of curcumin. Studies on diabetic humans and animals have revealed that curcumin may have positive effects on oxidative stress and inflammation and may reduce fasting blood glucose levels, increase insulin sensitivity/secretion and regulate the lipid profile. Thus, it may prevent and treat diabetes by affecting various molecular targets.
Collapse
Affiliation(s)
- Osman Bozkurt
- Erzurum Technical University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Erzurum, 25050, Turkey.
| | - Betül Kocaadam-Bozkurt
- Erzurum Technical University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Erzurum, 25050, Turkey.
| | - Hilal Yildiran
- Gazi University Faculty of Health Sciences, Department of Nutrition and Dietetics, Emek Bişkek Cad. 6. Sokak, 06490, Ankara, Turkey.
| |
Collapse
|
5
|
Spanakis M, Patelarou E, Patelarou A. Drug-Food Interactions with a Focus on Mediterranean Diet. APPLIED SCIENCES 2022; 12:10207. [DOI: 10.3390/app122010207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
There is a growing interest among people in western countries for adoption of healthier lifestyle habits and diet behaviors with one of the most known ones to be Mediterranean diet (Med-D). Med-D is linked with daily consumption of food products such as vegetables, fruits, whole grains, seafood, beans, nuts, olive oil, low-fat food derivatives and limited consumption of meat or full fat food products. Med-D is well-known to promote well-being and lower the risk of chronic conditions such as cardiovascular diseases, diabetes, and metabolic syndrome. On the other hand bioactive constituents in foods may interfere with drugs’ pharmacological mechanisms, modulating the clinical outcome leading to drug-food interactions (DFIs). This review discusses current evidence for food products that are included within the Med-Dand available scientific data suggest a potential contribution in DFIs with impact on therapeutic outcome. Most cases refer to potential modulation of drugs’ absorption and metabolism such as foods’ impact on drugs’ carrier-mediated transport and enzymatic metabolism as well as potential synergistic or antagonistic effects that enhance or reduce the pharmacological effect for some drugs. Adherence to Med-D can improve disease management and overall well-being, but specific foods should be consumed with caution so as to not hinder therapy outcome. Proper patient education and consultation from healthcare providers is important to avoid any conflicts and side effects due to clinically significant DFIs.
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Nursing, School of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Evridiki Patelarou
- Department of Nursing, School of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| | - Athina Patelarou
- Department of Nursing, School of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Crete, Greece
| |
Collapse
|