1
|
Carneiro FS, Katashima CK, Dodge JD, Cintra DE, Pauli JR, Da Silva ASR, Ropelle ER. Tissue-specific roles of mitochondrial unfolded protein response during obesity. Obes Rev 2024; 25:e13791. [PMID: 38880974 DOI: 10.1111/obr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Obesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPRmt), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPRmt signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified. Therefore, this review discusses the most recent findings regarding UPRmt signaling during obesity, bringing an overview of UPRmt across different metabolic tissues.
Collapse
Affiliation(s)
- Fernanda S Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joshua D Dodge
- Department of Biology, The University of Texas at Arlington (UTA), Arlington, Texas, USA
| | - Dennys E Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R Da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Barbagallo F, Bosoni D, Perone V, Cucinella L, Dealberti D, Cannarella R, Calogero AE, Nappi RE. Gene-environment interaction in functional hypothalamic amenorrhea. Front Endocrinol (Lausanne) 2024; 15:1423898. [PMID: 39268244 PMCID: PMC11390525 DOI: 10.3389/fendo.2024.1423898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Functional hypothalamic amenorrhea (FHA) is a common cause of amenorrhea and chronic anovulation in adolescent girls and young women, diagnosed after excluding other organic causes. It is commonly associated with calorie restriction, excessive physical exercise, and psychosocial stress. These stressors alter the pulsatile secretion of gonadotropin-releasing hormone, leading to a chronic condition of hypoestrogenism and significant health consequences. Recent evidence has highlighted a genetic predisposition to FHA that could explain interindividual variability in stress response. Indeed, not all women experience FHA in response to stress. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism have been identified in women with FHA, suggesting that these mutations may contribute to an increased susceptibility of women to the trigger of stress exposure. FHA appears today as a complex disease resulting from the combination of genetic predisposition, environmental factors, and epigenetic changes. Furthermore, the genetic background of FHA allows for the hypothesis of a male counterpart. Despite the paucity of data, preliminary findings indicate that an equivalent condition of FHA exists in men, warranting further investigation. This narrative review aims to summarize the recent genetic evidence contributing to the pathophysiology of FHA and to raise awareness on a possible male counterpart.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - David Bosoni
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Valeria Perone
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Davide Dealberti
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
3
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): a novel therapeutic target for metabolic syndrome. Front Pharmacol 2024; 15:1410479. [PMID: 38919254 PMCID: PMC11196770 DOI: 10.3389/fphar.2024.1410479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
4
|
Martín-Hidalgo D, Solar-Málaga S, González-Fernández L, Zamorano J, García-Marín LJ, Bragado MJ. The compound YK 3-237 promotes pig sperm capacitation-related events. Vet Res Commun 2024; 48:773-786. [PMID: 37906355 PMCID: PMC10998788 DOI: 10.1007/s11259-023-10243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.
Collapse
Affiliation(s)
- David Martín-Hidalgo
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España.
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España.
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain.
| | - Soraya Solar-Málaga
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - Lauro González-Fernández
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - José Zamorano
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain
| | - Luis Jesús García-Marín
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - María Julia Bragado
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| |
Collapse
|
5
|
Ozturk Öztürk DA, Erden Y, Tekin S. Central MOTS-c infusion affects reproductive hormones in obese and non-obese rats. Neurosci Lett 2024; 826:137722. [PMID: 38462167 DOI: 10.1016/j.neulet.2024.137722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and MOTS-c level is inversely correlated with markers of obesity. Obesity is a risk factor for male reproductive physiology and is expressed as an important cause of infertility. In this study, we aimed to determine the effects of MOTS-c, which has been proven in the hypothalamus and testicles, on the actors involved in the reproductive axis. In the study, 80 male Wistar-Albino rats were divided into two main groups, obese and non-obese (n = 40). Rats in the first main group were fed with fatty diet feed and obesity was induced. The second main group was fed with normal diet feed. Each main group was divided into 4 subgroups (Control, Sham, 10 and 100 µM MOTS-c). The lateral ventricles of the animals in the treatment groups were infused with 10 and 100 µM MOTS-c (solvent in Sham group) for 14 days. At the end of the experiment, hypothalamic Gonadotropin-Releasing Hormone (GnRH) gene expression level, serum testosterone, Luteinizing hormone (LH) and Follicle stimulating hormone (FSH) levels were determined. MOTS-c infusion caused an increase in GnRH mRNA, protein expression levels and serum testosterone, LH and FSH levels in obese and non-obese rats (p < 0.05). MOTS-c administration more significantly upregulated hormone levels in non-obese rats (p < 0.05). MOTS-c administration increases these hormones, suggesting that MOTS-c may stimulate the reproductive axis. Our results reveal that MOTS-c plays a role in the central regulation of reproduction, as well as causes increased LH, FSH and testosterone release.
Collapse
Affiliation(s)
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey.
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
6
|
Zhang X, Wu S, Qi X, Gao S, Qi J, Zhang S, Tan J. Effect of Paternal Body Mass Index on In Vitro Fertilization and Neonatal Outcomes among Oligozoospermia and Asthenospermia Patients. World J Mens Health 2024; 42:216-228. [PMID: 37382283 PMCID: PMC10782126 DOI: 10.5534/wjmh.220286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE Male overweight and obesity could affect sperm quality and reproductive health. However, the impact of body mass index (BMI) on assisted reproductive technology (ART) outcomes in oligospermia and/or asthenospermia patients is yet lacking. This study aims to assess the impact of paternal BMI on ART and neonatal outcomes among oligozoospermia and/or asthenospermia patients undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS In this study, 2,075 couples undergoing their first fresh embryo transfer between January 2015 and June 2022 were recruited. Following the World Health Organization's (WHO's) categories, couples were stratified into three cohorts based on paternal BMI: normal weight (18.5-24.9 kg/m²), overweight (25.0-29.9 kg/m²), and obese (≥30.0 kg/m²). Modified Poisson regression models were used to assess the associations of paternal BMI with fertilization, in vitro embryonic development, and pregnancy outcomes. Logistic regression models were performed to investigate the associations of paternal BMI with pregnancy loss and neonatal outcomes. Furthermore, stratified analyses were performed based on fertilization methods, male infertility cause, and maternal BMI. RESULTS Higher paternal BMI is associated with a lower likelihood of achieving normal fertilized (p-trend=0.002), Day 3 transferable (p-trend=0.007), and high-quality embryos (p-trend=0.046) in IVF cycles, rather than in ICSI cycles. Paternal BMI of oligospermia or asthenospermia was negatively correlated with day 3 transferable (p-trend=0.013 and 0.030) and high-quality embryos (p-trend=0.024 and 0.027). Moreover, for neonatal outcomes, paternal BMI was positively associated with macrosomia (p-trend=0.019), large for gestational age (LGA) (p-trend=0.031), and very LGA (p-trend=0.045). CONCLUSIONS Our data suggested that higher paternal BMI was associated with fetal overgrowth, reduced fertilization, and embryonic development potential. Among males with oligospermia and/or asthenospermia, the impact of overweight and obesity on the choice of fertilization method and the long-term effects on their offspring need to be further investigated.
Collapse
Affiliation(s)
- Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Xiaohan Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shan Gao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
7
|
George BT, Jhancy M, Dube R, Kar SS, Annamma LM. The Molecular Basis of Male Infertility in Obesity: A Literature Review. Int J Mol Sci 2023; 25:179. [PMID: 38203349 PMCID: PMC10779000 DOI: 10.3390/ijms25010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The rising incidence of obesity has coincided with rising levels of poor reproductive outcomes. The molecular basis for the association of infertility in obese males is now being explained through various mechanisms. Insulin resistance, hyperglycemia, and changes in serum and gonadal concentrations of adipokines, like leptin, adiponectin, resistin, and ghrelin have been implicated as causes of male infertility in obese males. The effects of obesity and hypogonadism form a vicious cycle whereby dysregulation of the hypothalamic-pituitary-testicular axis-due to the effect of the release of multiple mediators, thus decreasing GnRH release from the hypothalamus-causes decreases in LH and FSH levels. This leads to lower levels of testosterone, which further increases adiposity because of increased lipogenesis. Cytokines such as TNF-α and interleukins, sirtuins, and other inflammatory mediators like reactive oxygen species are known to affect fertility in obese male adults. There is evidence that parental obesity can be transferred through subsequent generations to offspring through epigenetic marks. Thus, negative expressions like obesity and infertility have been linked to epigenetic marks being altered in previous generations. The interesting aspect is that these epigenetic expressions can be reverted by removing the triggering factors. These positive modifications are also transmitted to subsequent generations.
Collapse
Affiliation(s)
- Biji Thomas George
- Department of Surgery, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Malay Jhancy
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Lovely Muthiah Annamma
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
8
|
Baharun A, Rahmi A, Handarini R, Maulana T, Said S, Iskandar H, Darussalam I, Nalley WMM, Arifiantini RI. Semen quality and frozen semen production in Pasundan bulls: A molecular weight perspective on seminal plasma and spermatozoa protein. J Adv Vet Anim Res 2023; 10:730-737. [PMID: 38370900 PMCID: PMC10868702 DOI: 10.5455/javar.2023.j728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/20/2024] Open
Abstract
Objective To determine the correlation between the molecular weight (MW) of proteins in seminal plasma and spermatozoa and the quality of fresh and frozen semen production in Pasundan bulls. Materials and methods Nine selected Pasundan bulls, aged 5-10 years, from the Regional Artificial Insemination Center at Ciamis, West Java, Indonesia, were used in the study, with fresh semen sperm motility ≥70% and <70%. We analyzed the motility, viability, integrity of the intact plasma membrane (IPM), and the morphological characteristics of spermatozoa. 1D-SDS-PAGE analysis was performed to determine the protein profile by assessing MW, depicted as bands on the gel. Results The motility, viability, and IPM of spermatozoa had lower values (p < 0.05) in Pasundan bulls named Bagaskara and Kertarajasa compared to the other bulls. Proteins with MW 35-50 kDa were not detected in the seminal plasma of Pasundan bulls, exhibiting low quality in fresh semen. The correlation analysis showed that the non-detected proteins with MW 35-50 kDa in seminal plasma correlated with spermatozoa motility (r = 0.421), viability (r = 0.424), and IPM (r = 0.428) so that fresh semen quality was low in both Pasundan bulls. Analysis of semen volume, spermatozoa concentration, and spermatozoa motility showed that the average frozen semen production of Pasundan bulls per ejaculate was 128.73 ± 15.35 straws. Conclusion Protein analysis based on MW is a predictive indicator for the quality of fresh semen and the production of frozen semen in Pasundan bulls. Evaluation parameters of fresh semen quality by MW analysis can be used to select Pasundan bulls in Indonesia.
Collapse
Affiliation(s)
- Abdullah Baharun
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Annisa Rahmi
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Ristika Handarini
- Department of Animals Science, Faculty of Agriculture, Djuanda University, Bogor, Indonesia
| | - Tulus Maulana
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Hikmayani Iskandar
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Imam Darussalam
- Technical Unit of Beef Cattle Breeding and Artificial Insemination Development Ciamis, West Java Province Departement of Food Security and Livestock, Ciamis, Indonesia
| | | | - Raden Iis Arifiantini
- Division of Veterinary Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
9
|
Falvo S, Minucci S, Santillo A, Senese R, Chieffi Baccari G, Venditti M. A short-term high-fat diet alters rat testicular activity and blood-testis barrier integrity through the SIRT1/NRF2/MAPKs signaling pathways. Front Endocrinol (Lausanne) 2023; 14:1274035. [PMID: 38027181 PMCID: PMC10643185 DOI: 10.3389/fendo.2023.1274035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Overweight/obesity are metabolic disorder resulting from behavioral, environmental, and heritable causes. WHO estimates that 50% of adults and 30% of children and adolescents are overweight or obese, and, in parallel, an ongoing decline in sperm quality and male fertility has been described. Numerous studies demonstrated the intimate association between overweight/obesity and reproductive dysfunction due to a highly intricate network of causes not yet completely understood. This study expands the knowledge on the impact of a short-term high-fat diet (st-HFD) on rat testicular activity, specifically on steroidogenesis and spermatogenesis, focusing on the involved molecular mechanisms related to mitochondrial dynamics, blood-testis barrier (BTB) integrity, and SIRT1/NRF2/MAPKs pathways. Methods Ten adult Male Wistar rats were divided into two groups of five and treated with a standard diet or an HFD for five weeks. At the end of the treatment, rats were anesthetized and sacrificed by decapitation. Blood was collected for serum sex hormone assay; one testis was stored at -80ÅãC for western blot analysis, and the other, was fixed for histological and immunofluorescence analysis. Results Five weeks of HFD results in reduced steroidogenesis, increased apoptosis of spermatogenic cells, and altered spermatogenesis, as highlighted by reduced protein levels ofmeiotic and post-meiotic markers. Further, we evidenced the compromission of the BTB integrity, as revealed by the downregulation of structural proteins (N-Cadherin, ZO-1, occludin, connexin 43, and VANGL2) other than the phosphorylation of regulative kinases (Src and FAK). At the molecular level, the impairment of mitochondrial dynamics (fission, fusion, andbiogenesis), and the dysregulation of the SIRT1/NRF2/MAPKs signaling pathways, were evidenced. Interestingly, no change was observed in the levels of pro-inflammatory markers (TNFα, NF-kB, and IL-6). Conclusions The combined data led us to confirm that overweight is a less severe state than obesity. Furthermore, understanding the molecular mechanisms behind the association between metabolic disorders and male fertility could improve the possibility of identifying novel targets to prevent and treat fertility disorders related to overweight/obesity.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania ‘Luigi Vanvitelli’, Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania ‘Luigi Vanvitelli’, Napoli, Italy
| |
Collapse
|
10
|
Ali MA, Qin Z, Dou S, Huang A, Wang Y, Yuan X, Zhang Y, Ni Q, Azmat R, Zeng C. Cryopreservation Induces Acetylation of Metabolism-Related Proteins in Boar Sperm. Int J Mol Sci 2023; 24:10983. [PMID: 37446160 DOI: 10.3390/ijms241310983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Dou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rameesha Azmat
- Department of Biochemistry, Faculty of Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Rizk FH, Soliman NA, Abo-Elnasr SE, Mahmoud HA, Abdel Ghafar MT, Elkholy RA, ELshora OA, Mariah RA, Amin Mashal SS, El Saadany AA. Fisetin ameliorates oxidative glutamate testicular toxicity in rats via central and peripheral mechanisms involving SIRT1 activation. Redox Rep 2022; 27:177-185. [PMID: 36047349 PMCID: PMC9448439 DOI: 10.1080/13510002.2022.2116551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives This study aimed to evaluate the potential mitigating effect of fisetin on monosodium glutamate (MSG)-induced testicular toxicity and investigate the possible involvement of silent mating type information regulation 2 homolog 1 (SIRT1) in this effect. Methods Forty male rats were divided into normal control, fisetin-treated, MSG-treated, and fisetin + MSG-treated groups. Testosterone, GnRH, FSH, and LH were measured in plasma, as well as SIRT1 and phosphorylated AMP-activated protein kinase (pAMPK) levels in testicular tissues using ELISA. Hydrogen peroxide (H2O2), nitric oxide (NO), and reduced glutathione (GSH) were measured colorimetrically, while Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression was relatively quantified using RT–PCR in testicular tissues. Results After 30 days, fisetin could ameliorate MSG-induced testicular toxicity by acting centrally on the hypothalamic-pituitary-gonadal axis, increasing plasma levels of GnRH, FSH, LH, and testosterone. Peripheral actions of fisetin on the testis were indicated as it increased testicular SIRT1 and pAMPK. Furthermore, it antagonized glutamate-induced oxidative stress by significantly lowering H2O2, NO, and relative NOX4 expression while significantly increasing reduced GSH levels. It also improved the architecture of the seminiferous tubules, reduced sperm abnormality, and increased sperm count. Discussion Fisetin ameliorates MSG-induced testicular toxicity via central and peripheral mechanisms making it a promising therapeutic target for male infertility.
Collapse
Affiliation(s)
- Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Suzan E Abo-Elnasr
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba A Mahmoud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Rasha A Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ola A ELshora
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham A Mariah
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Latino D, Chieffi Baccari G, Di Fiore MM, Cioffi F, Venditti M, Giacco A, Santillo A. Autophagy and mitochondrial damage in the testis of high-fat diet fed rats. Gen Comp Endocrinol 2022; 328:114104. [PMID: 35973585 DOI: 10.1016/j.ygcen.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
High-fat diet (HFD) affects the physiology of reproduction in males, and many studies have investigated its detrimental effects. In this study, we investigated the cellular response induced by an HFD in the rat testis, focusing on the mitochondrial compartment. After five weeks of HFD, an increase in the levels of malondialdehyde and of reduced form of glutathione in the rat testis indicated an increase in lipid peroxidation. The results showed an increase in autophagy, apoptosis, and mitochondrial damage in the testis of HFD rats. We found a decrease in the protein expression of mitochondrial antioxidant enzymes, such as catalase and SOD2. Immunohistochemical analysis revealed a decrease in the immunofluorescent signal of SOD2, mainly in the spermatogonia and spermatocytes of HFD rats. HFD-induced mitochondrial damage caused a reduction in mitochondria, as evidenced by a decrease in the protein expression of TOM20, a mitochondrial outer membrane receptor. Consistently, HFD enhanced the levels of the PINK1 protein, a mitophagy marker, suggesting the removal of damaged mitochondria under these conditions. Induction of mtDNA damage and repair was stronger in the HFD rat testis. Finally, we found a decrease in the mtDNA copy number and expression of the POLG enzyme, which is involved in mtDNA replication. In conclusion, our results showed that autophagy and apoptosis are activated in the testis of HFD rats as a survival strategy to cope with oxidative stress. Furthermore, HFD-induced oxidative stress affects the mitochondria, inducing mtDNA damage and mtDNA copy number reduction. Mitophagy and mtDNA repair mechanisms might represent a mitochondrial adaptive response.
Collapse
Affiliation(s)
- Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Benevento, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Benevento, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
13
|
Abstract
The dramatic rise in obesity has recently made it a global health issue. About 1.9 billion were overweight, and 650 million global populations were obese in 2016. Obese women suffer longer conception time, lowered fertility rates, and greater rates of miscarriage. Obesity alters hormones such as adiponectin and leptin, affecting all levels within the hypothalamic-pituitary-gonadal axis. Advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are inflammatory cytokines that may play an important role in the pathophysiology of ovarian dysfunction in obesity. In obese males, there are altered sperm parameters, reduced testosterone, increased estradiol, hypogonadism, and epigenetic modifications transmitted to offspring. The focus of this article is on the possible adverse effects on reproductive health resulting from obesity and sheds light on different molecular pathways linking obesity with infertility in both female and male subjects. Electronic databases such as Google Scholar, Embase, Science Direct, PubMed, and Google Search Engine were utilized to find obesity and infertility-related papers. The search strategy is detailed in the method section. Even though multiple research work has shown that obesity impacts fertility in both male and female negatively, it is significant to perform extensive research on the molecular mechanisms that link obesity to infertility. This is to find therapeutics that may be developed aiming at these mechanisms to manage and prevent the negative effects of obesity on the reproductive system.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|