1
|
Glover F, Eisenberg M, Del Giudice F, Belladelli F, Ha A, Scott M, Filson C. Exposure to the herbicide 2,4-dichlorophenoxyacetic acid and prostate cancer among U.S. adult men. World J Urol 2024; 42:611. [PMID: 39482554 DOI: 10.1007/s00345-024-05336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
PURPOSE Prostate cancer is the second most diagnosed male malignancy in the U.S. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a commonly used herbicide and potential carcinogen. The researchers evaluated the association between prostate cancer and 2,4-D. METHODS Data was leveraged from the National Health and Nutrition Examination Survey (NHANES), a population-based, cross-sectional study of men and women in the U.S. Our cohort of interest was men aged 50 years and over. Urinary 2,4-D served as the measure of exposure. Our primary outcome was history of prostate cancer based on an individual's reply of "yes" to either ever having been diagnosed with prostate cancer and/or having received treatment for prostate cancer. Chi-square, one-way analysis of variance (ANOVA), and multivariable, weighted logistic regression were used to analyze the relationship between 2,4-D and prostate cancer. RESULTS We identified 1,788 eligible men, representing an estimated 691,709 men after survey weighting. The median 2,4-D level was 0.28 µg/L (IQR: 0.26-0.53), and the geometric mean was 0.38 µg/L. Increasing exposure of 2,4-D was associated with prostate cancer (OR 1.72, 95% CI [1.2,2.4]). Individuals in the highest quartile of 2,4-D exposure had a higher odds of a prostate cancer diagnosis compared to the lowest quartile (OR = 3.46 95% CI [1.11,10.72]). Age stratification revealed statistically significant associations between 2,4-D and prostate cancer in men age 70 + who were in the highest quartile of exposure (OR = 3.79 95% CI [1.51,9.52]). CONCLUSIONS These findings implicate 2,4-D exposure in the risk of prostate cancer. Future studies are warranted to corroborate these findings and elucidate potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- Frank Glover
- Department of Urology, Emory University, 1365 Clifton Road NE, Building B, Suite 1400, Atlanta, GA, 30322, USA.
| | - Michael Eisenberg
- Department of Urology, Stanford University School of Medicine, 450 Jane Stanford Way, Palo Alto, CA, 94305, USA
| | - Francesco Del Giudice
- Department of Urology, Stanford University School of Medicine, 450 Jane Stanford Way, Palo Alto, CA, 94305, USA
| | - Federico Belladelli
- Department of Urology, Stanford University School of Medicine, 450 Jane Stanford Way, Palo Alto, CA, 94305, USA
| | - Albert Ha
- Department of Urology, Stanford University School of Medicine, 450 Jane Stanford Way, Palo Alto, CA, 94305, USA
| | - Michael Scott
- Department of Urology, Stanford University School of Medicine, 450 Jane Stanford Way, Palo Alto, CA, 94305, USA
| | - Christopher Filson
- Department of Urology, Emory University, 1365 Clifton Road NE, Building B, Suite 1400, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
3
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
4
|
Vitku J, Varausova A, Skodova T, Kolatorova L, Vosatkova M, Vcelak J, Vrbikova J, Simkova M, Svojtkova M. The Role of 11-Oxygenated Androgens and Endocrine Disruptors in Androgen Excess Disorders in Women. Int J Mol Sci 2024; 25:9691. [PMID: 39273637 PMCID: PMC11395667 DOI: 10.3390/ijms25179691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) and idiopathic hirsutism (IH) are androgen excess disorders requiring the determination of classic androgen levels for diagnosis. 11-oxygenated androgens have high androgenic potential, yet their clinical value in those disorders is not clear. Additionally, the role of endocrine disruptors (EDs), particularly in IH, remains understudied. We analyzed 25 steroids and 18 EDs in plasma samples from women with IH, PCOS, and controls using LC-MS/MS. Cytokine levels and metabolic parameters were assessed. Comparisons included non-obese women with PCOS (n = 10), women with IH (n = 12) and controls (n = 20), and non-obese versus obese women with PCOS (n = 9). Higher levels of 11-oxygenated androgens were observed in women with PCOS compared to those with IH, but not controls. Conversely, 11-oxygenated androgen levels were lower in women with IH compared to controls. Cytokine levels did not differ between women with IH and controls. Bisphenol A (BPA) levels were higher in obese women with PCOS compared to non-obese women with PCOS. Bisphenol S occurrence was higher in women with PCOS (90%) compared to controls (65%) and IH (50%). Significant correlations were found between androgens (11-ketotestosterone, androstenedione, testosterone) and insulin and HOMA-IR, as well as between immunomodulatory 7-oxygenated metabolites of DHEA and nine interleukins. Our data confirms that PCOS is a multiendocrine gland disorder. Higher BPA levels in obese women might exacerbate metabolic abnormalities. IH was not confirmed as an inflammatory state, and no differences in BPA levels suggest BPA does not play a role in IH pathogenesis.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Anezka Varausova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Tereza Skodova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Michala Vosatkova
- Department of Clinical Biochemistry, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Josef Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Jana Vrbikova
- Department of Clinical Endocrinology, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Marketa Simkova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Michaela Svojtkova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| |
Collapse
|
5
|
Sivaganesh V, Ta TM, Peethambaran B. Pentagalloyl Glucose (PGG) Exhibits Anti-Cancer Activity against Aggressive Prostate Cancer by Modulating the ROR1 Mediated AKT-GSK3β Pathway. Int J Mol Sci 2024; 25:7003. [PMID: 39000112 PMCID: PMC11241829 DOI: 10.3390/ijms25137003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.
Collapse
Affiliation(s)
- Vignesh Sivaganesh
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA 19131, USA
| | - Tram M. Ta
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| | - Bela Peethambaran
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| |
Collapse
|
6
|
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F, Xu Q. Role of N 6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 2024; 51:88. [PMID: 38757383 PMCID: PMC11110010 DOI: 10.3892/or.2024.8747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6‑methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro‑molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Meng M, Yang Y, Song L, Peng J, Li S, Gao Z, Bu Y, Gao J. Association between urinary phthalates and phthalate metabolites and cancer risk: A systematic review and meta-analysis. Heliyon 2024; 10:e29684. [PMID: 38665549 PMCID: PMC11044039 DOI: 10.1016/j.heliyon.2024.e29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phthalates, widely utilized in industrial products, are classified as endocrine-disrupting chemicals (EDCs). Although certain phthalate and their metabolites have been implicated in cancer development, the reported findings have exhibited inconsistencies. Therefore, we conducted the comprehensive literature search to assess the association between phthalate and their metabolites and cancer risk by identifying original studies measuring phthalates or their metabolites and reporting their correlation with cancer until July 4, 2023. The Odds Ratios (ORs) and corresponding 95% confidence intervals (CIs) were extracted and analyzed to estimate the risk. Pooled data from eleven studies, including 3101 cancer patients and 6858 controls, were analyzed using a fixed- or random-effects model based on heterogeneity tests. When comparing extreme categories of different phthalates and their metabolites, we observed a significant association between urinary phthalates and phthalate metabolites (MEHHP, MECPP, DBP and MBzP) and cancer risk. The findings of our meta-analysis reinforce the existing evidence that urinary phthalates and phthalate metabolites is strongly associated with cancer development. Further investigations are warranted to elucidate the underlying mechanisms of this association. These results may offer novel insights into cancer development.
Collapse
Affiliation(s)
- Meng Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Liang Song
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jian Peng
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhengjun Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
8
|
Basini G, Bussolati S, Grolli S, Berni P, Grasselli F. Are the new phthalates safe? Evaluation of Diisononilphtalate (DINP) effects in porcine ovarian cell cultures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104384. [PMID: 38331371 DOI: 10.1016/j.etap.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Phthalates are plasticizing chemicals, widely used in packaging materials and consumer products for several decades. These molecules have raised concerns because of their toxicity and their use have been restricted in several countries. Therefore, novel phthalates have been introduced. Among these, diisononilphtalate (DINP) is widely employed. However, its safety has not been properly addressed. Therefore, using a well validated granulosa cell model, collected from swine ovaries with a translational value, we studied potential DINP effects on important cellular functional parameters. In particular, we studied cell growth, steroidogenesis and redox status. Collected data showed that DINP stimulates (p < 0.05) cell growth, increases estrogen and inhibits progesterone production (p < 0.05), disrupts redox balance stimulating free radicals (p < 0.05) while reducing scavenger activities (p< 0.05). Taken together, DINP's impact on cultured swine granulosa cells provides cause for concern regarding its potential adverse effects on reproductive and endocrine functions.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
9
|
Elkin ER, Campbell KA, Lapehn S, Harris SM, Padmanabhan V, Bakulski KM, Paquette AG. Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology. Mol Cell Endocrinol 2023; 578:112066. [PMID: 37690473 PMCID: PMC10591899 DOI: 10.1016/j.mce.2023.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The placenta performs essential biologic functions for fetal development throughout pregnancy. Placental dysfunction is at the root of multiple adverse birth outcomes such as intrauterine growth restriction, preeclampsia, and preterm birth. Exposure to endocrine disrupting chemicals during pregnancy can cause placental dysfunction, and many prior human studies have examined molecular changes in bulk placental tissues. Placenta-specific cell types, including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and placental resident macrophage Hofbauer cells play unique roles in placental development, structure, and function. Toxicant-induced changes in relative abundance and/or impairment of these cell types likely contribute to placental pathogenesis. Although gene expression insights gained from bulk placental tissue RNA-sequencing data are useful, their interpretation is limited because bulk analysis can mask the effects of a chemical on individual populations of placental cells. Cutting-edge single cell RNA-sequencing technologies are enabling the investigation of placental cell-type specific responses to endocrine disrupting chemicals. Moreover, in situ bioinformatic cell deconvolution enables the estimation of cell type proportions in bulk placental tissue gene expression data. These emerging technologies have tremendous potential to provide novel mechanistic insights in a complex heterogeneous tissue with implications for toxicant contributions to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Elana R Elkin
- School of Public Health, San Diego State University, San Diego, CA, USA.
| | - Kyle A Campbell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Badshah M, Ibrahim J, Su N, Whiley P, Whittaker M, Exintaris B. The Effects of Age on Prostatic Responses to Oxytocin and the Effects of Antagonists. Biomedicines 2023; 11:2956. [PMID: 38001957 PMCID: PMC10669827 DOI: 10.3390/biomedicines11112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related enlargement of the prostate with urethral obstruction that predominantly affects the middle-aged and older male population, resulting in disruptive lower urinary tract symptoms (LUTS), thus creating a profound impact on an individual's quality of life. The development of LUTS may be linked to overexpression of oxytocin receptors (OXTR), resulting in increased baseline myogenic tone within the prostate. Thus, it is hypothesised that targeting OXTR using oxytocin receptor antagonists (atosiban, cligosiban, and β-Mercapto-β,β-cyclopentamethylenepropionyl1, O-Me-Tyr2, Orn8]-Oxytocin (ßMßßC)), may attenuate myogenic tone within the prostate. Organ bath and immunohistochemistry techniques were conducted on prostate tissue from young and older rats. Our contractility studies demonstrated that atosiban significantly decreased the frequency of spontaneous contractions within the prostate of young rats (**** p < 0.0001), and cligosiban (* p < 0.05), and ßMßßC (**** p < 0.0001) in older rats. Additionally, immunohistochemistry findings revealed that nuclear-specific OXTR was predominantly expressed within the epithelium of the prostate of both young (*** p < 0.001) and older rats (**** p < 0.0001). In conclusion, our findings indicate that oxytocin is a key modulator of prostate contractility, and targeting OXTR is a promising avenue in the development of novel BPH drugs.
Collapse
Affiliation(s)
- Masroor Badshah
- Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia;
| | - Jibriil Ibrahim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| | - Nguok Su
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| | - Penny Whiley
- Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia;
| | - Michael Whittaker
- Drug, Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia;
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| |
Collapse
|
12
|
Kim J, Freeman K, Ayala A, Mullen M, Sun Z, Rhee JW. Cardiovascular Impact of Androgen Deprivation Therapy: from Basic Biology to Clinical Practice. Curr Oncol Rep 2023; 25:965-977. [PMID: 37273124 PMCID: PMC10474986 DOI: 10.1007/s11912-023-01424-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF THE REVIEW There have been increasing reports of cardiovascular complications of androgen deprivation therapy (ADT) leading to worse outcomes among patients with prostate cancer. While this may result from the direct effects of androgen suppression in the cardiovascular systems, there are ADT-type-specific distinct cardiovascular complications suggestive of mechanisms beyond androgen-mediated. Thus, it is critical to understand the biological and clinical impact of ADT on the cardiovascular system. RECENT FINDINGS Gonadotropin-releasing hormone (GnRH) agonists cause increased cardiovascular events compared to GnRH antagonists. Androgen receptor antagonists are linked to an increased risk of long QT syndrome, torsades de pointes, and sudden cardiac death. Androgen synthesis inhibitors are associated with increased rates of hypertension, atrial tachyarrhythmia, and, in rare incidences, heart failure. ADT increases the risk of cardiovascular disease. The risk among ADT drugs differs and must be evaluated to develop a medically optimal plan for prostate cancer patients.
Collapse
Affiliation(s)
- Janice Kim
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Kendall Freeman
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Alyssa Ayala
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Zijie Sun
- Department of Cancer Biology and Molecular Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
13
|
Quintino-Ottonicar GG, da Silva LR, Maria VLRDS, Pizzo EM, de Santana ACP, Lenharo NR, Pinho CF, Pereira S. Exposure to Dichlorvos pesticide alters the morphology of and lipid metabolism in the ventral prostate of rats. FRONTIERS IN TOXICOLOGY 2023; 5:1207612. [PMID: 37469457 PMCID: PMC10352615 DOI: 10.3389/ftox.2023.1207612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Organophosphate pesticides are widely used in agriculture, leading to soil, water, and food contamination. Among these compounds is Dichlorvos [O,O-dimethyl O-(2,2-dichlorovinyl)phosphate, DDVP], which is listed as a highly toxic compound by the Environmental Protection Agency and World Health Organization. Exposure to DDVP can result in nervous, respiratory, hepatic, and reproductive abnormalities, in addition to endocrine disrupting, mutagenic, and carcinogenic effects. Little is known about the impacts of DDVP on the reprogramming of lipid metabolism, which is also associated with the development and progression of cancer, since the tumor cells need to recruit, capture, and use fatty acids to compose their building membranes. This study aimed to evaluate the influence of the pesticide DDVP on lipid metabolism in the prostate, after chemical induction by the carcinogen N-methyl-N-nitrosourea (MNU). For this, 32 Fischer rats aged 90 days were randomly divided into four experimental groups: Control, DDVP, MNU, and MNU + DDVP. The MNU and MNU + DDVP groups underwent chemical induction with MNU (15 mg/kg) and the DDVP and MNU + DDVP groups received a diet supplemented with DDVP (10 mg/kg). Histopathological analyses of the rat ventral prostate showed 100% incidence of epithelial hyperplasia in the MNU and MNU + DDVP groups. This finding was accompanied by an increase of the epithelial compartment in the MNU + DDVP group. Immunolocalization of important proteins linked to lipid metabolism has been established. In the MNU + DDVP group, Western blotting analyses pointed out an increased expression of the protein LIMP II (Lysosomal Integral Membrane Protein-II), which is correlated with the capture and distribution of lipids in tumor cells. Together, these results indicate that the association of a low dose of DDVP with MNU was able to promote alterations in the morphology and lipid metabolism of the rat ventral prostate, which may be related to tumor progression in this organ.
Collapse
|
14
|
Tassinari V, Smeriglio A, Stillittano V, Trombetta D, Zilli R, Tassinari R, Maranghi F, Frank G, Marcoccia D, Di Renzo L. Endometriosis Treatment: Role of Natural Polyphenols as Anti-Inflammatory Agents. Nutrients 2023; 15:2967. [PMID: 37447296 DOI: 10.3390/nu15132967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endometriosis is an estrogen-dependent common chronic inflammatory disease defined by the presence of extrauterine endometrial tissue that promotes pelvic pain and fertility impairment. Its etiology is complex and multifactorial, and several not completely understood theories have been proposed to describe its pathogenesis. Indeed, this disease affects women's quality of life and their reproductive system. Conventional therapies for endometriosis treatment primarily focus on surgical resection, lowering systemic levels of estrogen, and treatment with non-steroidal anti-inflammatory drugs to counteract the inflammatory response. However, although these strategies have shown to be effective, they also show considerable side effects. Therefore, there is a growing interest in the use of herbal medicine for the treatment of endometriosis; however, to date, only very limited literature is present on this topic. Polyphenols display important anti-endometriotic properties; in particular, they are potent phytoestrogens that in parallel modulates estrogen activity and exerts anti-inflammatory activity. The aim of this review is to provide an overview on anti-inflammatory activity of polyphenols in the treatment of endometriosis.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Virgilio Stillittano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Laura Di Renzo
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
17
|
Macedo S, Teixeira E, Gaspar TB, Boaventura P, Soares MA, Miranda-Alves L, Soares P. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114869. [PMID: 36460069 DOI: 10.1016/j.envres.2022.114869] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) are exogenous substances recognised as relevant tumourigenic chemicals. Studies show that even EDCs which were long abolished are still contributing to the increasing incidence of neoplasia. AIM To investigate the association between human exposure to EDCs and the risk of endocrine-related tumours: breast, prostate, thyroid, uterus, testis, and ovary. METHODS A systematic review using PubMed, Scopus, and Embase was conducted, searching for original observational studies published between 1980 and 2020, approaching EDCs exposure and endocrine tumourigenic risk in humans. We comprised neoplasia of six endocrine organs. We included all the studies on EDCs reporting tumour odds ratio, risk ratio, or hazard ratio. Study levels of confidence and risk of bias were accessed applying accredited guidelines. Human-made accidents and natural EDCs were not considered in the present study. RESULTS Our search returned 3271 papers. After duplicate removal and screening, only 237 papers were included (corresponding to 268 records). EDCs were grouped from the most frequently (pesticides) to the least frequently studied (salts). The most tumourigenic EDC groups were phthalates (63%), heavy metals (54%), particulate matter (47%), and pesticides (46%). Pesticides group comprised the highest number of retrieved studies (n = 133). Increased neoplasia risk was found in 43-67% of the studies, with a lower value for ovary (43%) and a higher value for thyroid (67%). CONCLUSIONS The innovative nature of our review comes from including human studies of six endocrine-related neoplasia aiming to understand the contribution of specific EDCs groups to each organ's tumourigenesis. Thyroid was the organ presenting the highest cancer risk after EDC exposure which may explain the increasing thyroid cancer incidence. However, detailed and controlled works reporting the effects of EDCs are scarce, probably justifying conflicting results. Multinational and multicentric human studies with biochemical analysis are needed to achieve stronger and concordant evidence.
Collapse
Affiliation(s)
- Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Elisabete Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Paula Boaventura
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Postgraduate Endocrinology Program, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Postgraduate Endocrinology Program, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
18
|
Liu X, Chen L, Yang Y, Xu L, Sun J, Gan T. MXene-reinforced octahedral PtCu nanocages with boosted electrocatalytic performance towards endocrine disrupting pollutants sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130000. [PMID: 36137886 DOI: 10.1016/j.jhazmat.2022.130000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Rational tailoring of hollow and porous bimetallic structures with excellent electrocatalytic performance is appealing yet challenging. Further, combining independent bimetallic nanoparticles with flexible two-dimensional substrate by forming stable heterocomplex is still highly desired for electrocatalysis. Herein, hierarchical PtCu alloy octahedrons with hollow interiors and nanosheet-assembled nanoshells were synthesized by a facile and efficient chemical transformation strategy using Cu2O as sacrificial templates. Such octahedral PtCu nanocages displayed significantly enhanced electrocatalytic activity owing to their unique hollow and porous architectures which provided easy access for analytes to the catalyst surface. Thereafter, introduction of Ti3C2Tx MXene was realized via simple incubation of Ti3C2Tx in solution containing the 3-aminopropyltriethoxysilane-capped PtCu, and their electrostatic interaction guaranteed the firm adsorption of PtCu nanocages on Ti3C2Tx nanosheets. It turned out that the sensitivity of the hybrid sensor was remarkably improved for electrochemical monitoring of endocrine disrupting pollutants in water, exhibiting ultrawide linear ranges and sub-nanomole detection limits. The eminent electrode performance is attributed to the high specific area, fast electrochemical kinetics, decent electrical catalytic ability, and the synergistic effect between Pt, Cu, and MXene.
Collapse
Affiliation(s)
- Xian Liu
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Like Chen
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Yang Yang
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Liping Xu
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Junyong Sun
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China; Fujian Provincial University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, PR China
| | - Tian Gan
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
19
|
Chen L, Wang Y, Zhang B. Hypermethylation in the promoter region inhibits AJAP1 expression and activates the JAK/STAT pathway to promote prostate cancer cell migration and stem cell sphere formation. Pathol Res Pract 2023; 241:154224. [PMID: 36566599 DOI: 10.1016/j.prp.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND AJAP1 is down-regulated in multiple cancer types and plays a suppressive role in cancer progression. However, its molecular regulatory mechanism in prostate cancer has not been reported. METHODS Bioinformatics methods were employed to analyze AJAP1 expression in prostate cancer tissues and its association with TNM staging. MSP and qRT-PCR were used to quantify promoter methylation and AJAP1 expression after 5-aza-20-deoxycytidine (5-AzaC) treatment. Scratch healing assay and Transwell method were adopted to analyze the effects of aberrant AJAP1 expression, 5-AzaC and AG490 on cell migration and invasion. The levels of AJAP1 protein, EMT-related and JAK/STAT pathway-related proteins were determined by Western blot. The effects of AJAP1 aberrant expression and AG490 treatment on the sphere forming ability of prostate cancer cells were analyzed by sphere formation assay. RESULTS This study confirmed the significant down-regulation of AJAP1 expression in prostate cancer tissues and cells, and its negative correlation with TNM staging. 5-AzaC treatment led to a significant reduction of AJAP1 methylation level and a significant upregulation of AJAP1 expression, indicating that the methylation level of AJAP1 promoter may affect the expression of AJAP1. Cell function experiments found that overexpression or decreased methylation of AJAP1 inhibited epithelial mesenchymal transition (EMT), migration, and invasion, while silencing or increased methylation of AJAP1 had the opposite functions. JAK2/STAT3 pathway inhibiting assay found that inhibition of JAK2/STAT3 pathway significantly reduced EMT, cell migration, and stem cell sphere formation in prostate cancer. SIGNIFICANCE Therefore, investigating the influence of aberrant AJAP1 expression on functions of prostate cancer cells is conducive to our in-depth understanding of the mechanism of prostate cancer genesis and development.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology,The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Wang
- Department of Urology Surgery, The People's Hospital, Tongliang District, Chongqing City 402560, China
| | - Banglin Zhang
- Department of Urology Surgery, The People's Hospital, Tongliang District, Chongqing City 402560, China.
| |
Collapse
|
20
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
21
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|