1
|
Zouaoui Z, Ennoury A, El Asri S, Laabar A, Kabach I, Laganà Vinci R, Cacciola F, Mondello L, Taghzouti K, Nhiri M. Polyphenols from rose pepper spice: LC-MS/MS characterization and therapeutic potential in diabetes mellitus management. FOOD BIOSCI 2025; 63:105644. [DOI: 10.1016/j.fbio.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Chu DBK, González-Narváez DA, Meyer R, Nandy A, Kulik HJ. Ligand Many-Body Expansion as a General Approach for Accelerating Transition Metal Complex Discovery. J Chem Inf Model 2024; 64:9397-9412. [PMID: 39606954 DOI: 10.1021/acs.jcim.4c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Methods that accelerate the evaluation of molecular properties are essential for chemical discovery. While some degree of ligand additivity has been established for transition metal complexes, it is underutilized in asymmetric complexes, such as the square pyramidal coordination geometries highly relevant to catalysis. To develop predictive methods beyond simple additivity, we apply a many-body expansion to octahedral and square pyramidal complexes and introduce a correction based on adjacent ligands (i.e., the cis interaction model). We first test the cis interaction model on adiabatic spin-splitting energies of octahedral Fe(II) complexes, predicting DFT-calculated values of unseen binary complexes to within an average error of 1.4 kcal/mol. Uncertainty analysis reveals the optimal basis, comprising the homoleptic and mer symmetric complexes. We next show that the cis model (i.e., the cis interaction model solved for the optimal basis) infers both DFT- and CCSD(T)-calculated model catalytic reaction energies to within 1 kcal/mol on average. The cis model predicts low-symmetry complexes with reaction energies outside the range of binary complex reaction energies. We observe that trans interactions are unnecessary for most monodentate systems but can be important for some combinations of ligands, such as complexes containing a mixture of bidentate and monodentate ligands. Finally, we demonstrate that the cis model may be combined with Δ-learning to predict CCSD(T) reaction energies from exhaustively calculated DFT reaction energies and the same fraction of CCSD(T) reaction energies needed for the cis model, achieving around 30% of the error from using the CCSD(T) reaction energies in the cis model alone.
Collapse
Affiliation(s)
- Daniel B K Chu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David A González-Narváez
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralf Meyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Esfandiari Z, Soleimani RA, Eshaghi R, Samani FS, Kazerooni M, Madani A, Mohamadi S. Measurement of Iron in Flour and Commonly-Used Breads Baked in Isfahan, Iran: A Risk Assessment Study with Monte Carlo Simulation. Biol Trace Elem Res 2024; 202:5288-5295. [PMID: 38334840 DOI: 10.1007/s12011-023-04047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Fortification of highly-consumed foods such as bread is an easy and cheap strategy to combat the iron deficiency anemia. However, there have sometimes been some side effects such as iron overload and digestive problems. Accordingly, this study aimed to examine the amount of iron as well as its non-carcinogenic risks in commonly-used types of Iranian flour and breads (Barbary, Lavash, and Tafton) in Isfahan, Iran. Iron concentration of 100 samples of flour and breads were measured by Inductively Coupled Plasma Optical Emission Spectrometer. Moreover, the non-carcinogenic health risk of iron in fortified breads was estimated by Target Hazard Quotient (THQ) in Monte Carlo Simulation technique. The limit of detection (LOD) and limit of quantification (LOQ), with a recovery level of 95%, were 1.8 × 10-5 and 5.9 × 10-5 mg/kg, respectively. The total mean concentration of iron in flour (53.48 ± 22.49 mg/kg) and bread (39.02 ± 22.63 mg/kg) samples was within the standard recommended range (40-85 mg/kg) in Iran. THQ for adults and children was equal to 0.53 and 2.48. respectively. Hence, non-carcinogenic risk of iron through bread consumption was acceptable for adults, while it was not acceptable for children as a sensitive group. Consequently, it is required to rescreen the flour and bread fortification program in Iran according to the comprehensive risk assessment studies.
Collapse
Affiliation(s)
- Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Abdei Soleimani
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Raziyeh Eshaghi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Kazerooni
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arghavan Madani
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-kord University, Shahre-kord, Iran.
| |
Collapse
|
4
|
Gudkov SV, Burmistrov DE, Fomina PA, Validov SZ, Kozlov VA. Antibacterial Properties of Copper Oxide Nanoparticles (Review). Int J Mol Sci 2024; 25:11563. [PMID: 39519117 PMCID: PMC11547097 DOI: 10.3390/ijms252111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The use of metal and metal oxide nanoparticles is frequently regarded as a potential solution to the issue of bacterial antibiotic resistance. Among the proposed range of nanoparticles with antibacterial properties, copper oxide nanoparticles are of particular interest. Although the antibacterial properties of copper have been known for a considerable period of time, studies on the effects of copper oxide nanomaterials with respect to biological systems have attracted considerable attention in recent years. This review presents a summary of the antibacterial properties of copper oxide nanoparticles, the mechanisms by which the antibacterial effect is realized, and the key reported methods of modifying these nanoparticles to improve their antibacterial activity. A comparative analysis of the effectiveness of these nanoparticles is presented depending on the type of microorganism, the shape of the nanoparticles, and the Gram classification of bacteria based on data from published sources. In addition, the review addresses the biological activities of copper oxide nanoparticles, including their antifungal and cytotoxic properties, as well as their "antioxidant" activity. According to the conducted analysis of the literature data, it can be concluded that copper oxide nanoparticles have a significant bacteriostatic potential with respect to a wide range of microorganisms and, in some cases, contribute to the inhibition of fungal growth. At the same time, the sensitivity of Gram-positive bacteria to the effect of copper oxide nanoparticles was often higher than that of Gram-negative bacteria.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin Av. 23, 603105 Nizhny Novgorod, Russia
| | - Dmitry E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
| | - Polina A. Fomina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
| | - Shamil Z. Validov
- Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, ul. Lobachevskogo 2/31, Tatarstan, 420088 Kazan, Russia;
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.E.B.); (P.A.F.); (V.A.K.)
| |
Collapse
|
5
|
Edo GI, Nwachukwu SC, Ali AB, Yousif E, Jikah AN, Zainulabdeen K, Ekokotu HA, Isoje EF, Igbuku UA, Opiti RA, Akpoghelie PO, Owheruo JO, Essaghah AEA. A review on the composition, extraction and applications of phenolic compounds. ECOLOGICAL FRONTIERS 2024. [DOI: 10.1016/j.ecofro.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
7
|
Lv Q, Lin J, Huang H, Ma B, Li W, Chen J, Wang M, Wang X, Fu G, Xiao Y. Nanosponge for Iron Chelation and Efflux: A Ferroptosis-Inhibiting Approach for Myocardial Infarction Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305895. [PMID: 38671590 PMCID: PMC11220697 DOI: 10.1002/advs.202305895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Myocardial infarction (MI), a consequence of coronary artery occlusion, triggers the degradation of ferritin, resulting in elevated levels of free iron in the heart and thereby inducing ferroptosis. Targeting myocardial ferroptosis through the chelation of excess iron has therapeutic potential for MI treatment. However, iron chelation in post ischemic injury areas using conventional iron-specific chelators is hindered by ineffective myocardial intracellular chelation, rapid clearance, and high systemic toxicity. A chitosan-desferrioxamine nanosponge (CDNS) is designed by co-crosslinking chitosan and deferoxamine through noncovalent gelation to address these challenges. This architecture facilitates direct iron chelation regardless of deferoxamine (DFO) release due to its sponge-like porous hydrogel structure. Upon cellular internalization, CDNS can effectively chelate cellular iron and facilitate the efflux of captured iron, thereby inhibiting ferroptosis and associated oxidative stress and lipid peroxidation. In MI mouse models, myocardial injection of CDNS promotes sustainable retention and the suppression of ferroptosis in the infarcted heart. This intervention improves cardiac function and alleviates adverse cardiac remodeling post-MI, leading to decreased oxidative stress and the promotion of angiogenesis due to ferroptosis inhibition by CDNS in the infarcted heart. This study reveals a nanosponge-based nanomedicine targeting myocardial ferroptosis with efficient iron chelation and efflux, offering a promising MI treatment.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Jun Lin
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
- Department of Cardiovascular SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Boxuan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Wujiao Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Jiawen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310058China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| |
Collapse
|
8
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
9
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
10
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Helena ES, De Falco A, Cukierman DS, Gioda A, Gioda CR, Rey NA. Cardiotoxicity and ROS Protection Assessment of three Structure-Related N-Acylhydrazones with Potential for the Treatment of Neurodegenerative Diseases. Chem Biodivers 2024; 21:e202400356. [PMID: 38353670 DOI: 10.1002/cbdv.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
The senescence process is associated with accumulated oxidative damage and increased metal concentration in the heart and brain. Besides, abnormal metal-protein interactions have also been linked with the development of several conditions, including Alzheimer's and Parkinson's diseases. Over the years we have described a series of structure-related compounds with different activities towards models of such diseases. In this work, we evaluated the potential of three N-acylhydrazones (INHHQ: 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone, HPCIH: pyridine-2-carboxaldehyde isonicotinoyl hydrazone and X1INH: 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone) to prevent oxidative stress in cellular models, with the dual intent of being active on this pathway and also to confirm their lack of cardiotoxicity as an important step in the drug development process, especially considering that the target population often presents cardiovascular comorbidity. The 8-hydroxyquinoline-contaning compound, INHHQ, exhibits a significant cardioprotective effect against hydrogen peroxide and a robust antioxidant activity. However, this compound is the most toxic to the studied cell models and seems to induce oxidative damage on its own. Interestingly, although not possessing a phenol group in its structure, the new-generation 1-methylimidazole derivative X1INH showed a cardioprotective tendency towards H9c2 cells, demonstrating the importance of attaining a compromise between activity and intrinsic cytotoxicity when developing a drug candidate.
Collapse
Affiliation(s)
- Eduarda Santa Helena
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 22451-900, Brazil Tel
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, 96230-000, Brazil
| | - Anna De Falco
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 22451-900, Brazil Tel
| | - Daphne S Cukierman
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 22451-900, Brazil Tel
- Departamento de Química Geral e Inorgânica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 22451-900, Brazil Tel
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, 96230-000, Brazil
| | - Nicolás A Rey
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 22451-900, Brazil Tel
| |
Collapse
|
12
|
Crnich E, Sanchez E, Havens MA, Kissel DS. Sulfur-bridging the gap: investigating the electrochemistry of novel copper chelating agents for Alzheimer's disease applications. J Biol Inorg Chem 2023; 28:643-653. [PMID: 37594567 DOI: 10.1007/s00775-023-02013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
There is currently an unmet demand for multi-functional precision treatments for Alzheimer's disease (AD) after several failed attempts at designing drugs based on the amyloid hypothesis. The focus of this work is to investigate sulfur-bridged quinoline ligands that could potentially be used in chelation therapies for a subpopulation of AD patients presenting with an overload of labile copper ions, which are known to catalyze the production of reactive oxygen species (ROS) and exacerbate other markers of AD progression. The ligands 1-(2'-thiopyridyl)isoquinoline (1TPIQ) and 2-(2'-thiopyridyl)quinoline (2TPQ) were synthesized and characterized before being electrochemically investigated in the presence of different oxidizing and reducing agents in solution with a physiological pH relevant to the brain. The electrochemical response of each compound with copper was studied by employing both hydrogen peroxide (H2O2) as an oxidizing agent and ascorbic acid (AA) as an antioxidant during analysis using cyclic voltammetry (CV). The cyclic voltammograms of each quinoline were compared with similar ligands that contained aromatic N-donor groups but no sulfur groups to provide relative electrochemical properties of each complex in solution. In a dose-dependent manner, it was observed that AA exerted dual-efficacy when combined with these chelating ligands: promoting synergistic metal binding while also scavenging harmful ROS, suggesting AA is an effective adjuvant therapeutic agent. Overall, this study shows how coordination by sulfur-bridged quinoline ligands can alter copper electrochemistry in the presence of AA to limit ROS production in solution.
Collapse
Affiliation(s)
- Emma Crnich
- Department of Biology, Lewis University, One University Pkwy, Romeoville, IL, 60446, USA
| | - Erik Sanchez
- Department of Chemistry, Lewis University, One University Pkwy, Romeoville, IL, 60446, USA
| | - Mallory A Havens
- Department of Biology, Lewis University, One University Pkwy, Romeoville, IL, 60446, USA
| | - Daniel S Kissel
- Department of Chemistry, Lewis University, One University Pkwy, Romeoville, IL, 60446, USA.
| |
Collapse
|
13
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
14
|
Anceschi A, Patrucco A, Bhavsar P, Zoccola M, Tessari M, Erbazzi L, Zamboni P. Keratose Self-Cross-Linked Wound Dressing for Iron Sequestration in Chronic Wounds. ACS OMEGA 2023; 8:30118-30128. [PMID: 37636950 PMCID: PMC10448490 DOI: 10.1021/acsomega.3c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Chronic wound diseases affect a large part of the world population, and therefore, novel treatments are becoming fundamental. People with chronic wounds show high iron and protease levels due to genetic disorders or other comorbidities. Since it was demonstrated that iron plays an important role in chronic wounds, being responsible for oxidative processes (ROS generation), while metalloproteinases prevent wound healing by literally "eating" the growing skin, it is crucial to design an appropriate wound dressing. In this paper, a novel bioactive dressing for binding iron in chronic wounds has been produced. Wool-derived keratose wound dressing in the form of films has been prepared by casting an aqueous solution of keratoses. These films are water-soluble; therefore, in order to increase their stability, they have been made insoluble through a thermal cross-link treatment. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA) analyses clarified the structure and the properties of the keratose wound dressing films. The capability of this new biomaterial in iron sequestration has been investigated by testing the adsorption of Fe3+ by inductively coupled plasma-optical emission spectrometry (ICP-OES). The results suggest that the keratose cross-linked films can adsorb a large amount of iron (about 85% of the average amount usually present in chronic wounds) following pseudo-second-order kinetics and an intraparticle diffusion model, thus opening new perspectives in chronic wound care. Furthermore, the QSAR Toolbox was applied for conducting in silico tests and for predicting the chemical behavior of the C-Ker-film. All of the data suggest that the keratose bioactive dressing can significantly contribute to wound healing by mechanisms such as iron depletion, acting as a radical scavenger, diminishing the proteolytic damage, acting as a substrate in place of skin, and, finally, promoting tissue regeneration.
Collapse
Affiliation(s)
- Anastasia Anceschi
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Alessia Patrucco
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Parag Bhavsar
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Marina Zoccola
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Mirko Tessari
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| | - Luca Erbazzi
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Zamboni
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
16
|
Selyutina OY, Timoshnikov VA, Polyakov NE, Kontoghiorghes GJ. Metal Complexes of Omadine ( N-Hydroxypyridine-2-thione): Differences of Antioxidant and Pro-Oxidant Behavior in Light and Dark Conditions with Possible Toxicity Implications. Molecules 2023; 28:molecules28104210. [PMID: 37241949 DOI: 10.3390/molecules28104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Omadine or N-hydroxypyridine-2-thione and its metal complexes are widely used in medicine and show bactericidal, fungicidal, anticancer, and photochemical activity. The redox activity of omadine complexes with iron, copper, and zinc on lipid peroxidation under light and dark conditions has been investigated. The monitoring of the oxidation of linoleic acid micelles, resembling a model of lipid membrane, was carried out using nuclear magnetic resonance (1H-NMR). It has been shown that the omadine-zinc complex can induce the oxidation of linoleic acid under light irradiation, whereas the complexes with iron and copper are photochemically stable. All the chelating complexes of omadine appear to be redox-inactive in the presence of hydrogen peroxide under dark conditions. These findings suggest that omadine can demonstrate antioxidant behavior in processes involving reactive oxygen species generation induced by transition metals (Fenton and photo-Fenton reactions). However, the omadine complex with zinc, which is widely used in shampoos and ointments, is photochemically active and may cause oxidative cell membrane damage when exposed to light, with possible implications to health.
Collapse
Affiliation(s)
- Olga Yu Selyutina
- Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia
- Institute of Solid Chemistry and Mechanochemistry, 630090 Novosibirsk, Russia
| | | | - Nikolay E Polyakov
- Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia
- Institute of Solid Chemistry and Mechanochemistry, 630090 Novosibirsk, Russia
| | - George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus
| |
Collapse
|
17
|
Ha JW, Choi JY, Boo YC. Differential Effects of Histidine and Histidinamide versus Cysteine and Cysteinamide on Copper Ion-Induced Oxidative Stress and Cytotoxicity in HaCaT Keratinocytes. Antioxidants (Basel) 2023; 12:antiox12040801. [PMID: 37107176 PMCID: PMC10135049 DOI: 10.3390/antiox12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Metal chelators are used for various industrial and medical purposes based on their physicochemical properties and biological activities. In biological systems, copper ions bind to certain enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and transport. However, unbound free copper ions can catalyze the production of reactive oxygen species (ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4 (0.4–1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells, whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-chelating activity at 0.5–1.0 mM (34–68 mg mL−1). Histidine, histidinamide, and BSA at 0.5–1.0 mM enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper ion-induced toxic effects in the skin.
Collapse
Affiliation(s)
- Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
18
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
19
|
Bayram I, Decker EA. Underlying mechanisms of synergistic antioxidant interactions during lipid oxidation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
20
|
Hitchhiking into a cell: flavonoids may produce complexes with transition metals for transmembrane translocation. Biometals 2022; 35:1299-1306. [PMID: 36161545 DOI: 10.1007/s10534-022-00445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Flavonoids are a group of food polyphenols that are delivered to the human body with plant foods. In recent years, these substances have attracted the attention of researchers due to their effectiveness in preventing a wide variety of diseases, including neurodegenerative, oncological, autoimmune, and cardiovascular. Similar pathologies may also occur with a lack of some first-row transition metals, including Cu(II), Zn(II), Mn(II), Fe(II/III). It is noteworthy that flavonoids are known as transition metal chelators. When a complex with these metals is formed, the therapeutic effect of flavonoids can be enhanced, assuming the possibility of synergy. Molecular models have shown that the lipophilicity of flavonoid-metal complexes can vary significantly depending on their binding stoichiometry. Therefore, a unique process of translocation of flavonoid-metal complexes of various lipophilicity through cell membranes is assumed, based on the possibility of their sequential association and dissociation, called "hitchhiking". It is expected that studies of the interaction of flavonoids with metals will improve the effectiveness of drugs based on flavonoids.
Collapse
|
21
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
22
|
Analysis of Phenolic Compounds in Buckwheat ( Fagopyrum esculentum Moench) Sprouts Modified with Probiotic Yeast. Molecules 2022; 27:molecules27227773. [PMID: 36431874 PMCID: PMC9695562 DOI: 10.3390/molecules27227773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat sprouts are a source of various nutrients, e.g., antioxidant flavonoids, which have a positive effect on human health. This study analyzed the content of phenolic compounds and assessed their impact on the antioxidant and anti-inflammatory properties and dietary fiber in modified buckwheat sprouts. For this purpose, the buckwheat seeds were modified by adding Saccharomyces cerevisiae var. boulardii. The modified buckwheat sprouts showed a higher content of total phenol compounds (1526 µg/g d.w.) than the control sprouts (951 µg/g d.w.) and seeds (672 µg/g d.w.). As a consequence, a higher antioxidant activity and anti-inflammatory effect were noted. Probiotic-rich sprouts also had the highest content of total dietary fiber and its soluble fraction. A correlation between phenolic compounds and the antioxidant and anti-inflammatory effects, as well as dietary fiber, was shown. The interaction between dietary fiber and phenolic compounds affects the bioaccessibility, bioavailability, and bioactivity of phenolic compounds in food. The introduction of probiotic yeast into the sprouts had a positive effect on increasing their nutritional value, as well as their antioxidant and anti-inflammatory activity. As a consequence, the nutraceutical potential of the raw material changed, opening a new direction for the use of buckwheat sprouts, e.g., in industry.
Collapse
|
23
|
Kontoghiorghes GJ. Questioning Established Theories and Treatment Methods Related to Iron and Other Metal Metabolic Changes, Affecting All Major Diseases and Billions of Patients. Int J Mol Sci 2022; 23:1364. [PMID: 35163288 PMCID: PMC8836132 DOI: 10.3390/ijms23031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
The medical and scientific literature is dominated by highly cited historical theories and findings [...].
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|