1
|
Alfuraih S, Tran A, Kim L, Ansari R, Sharma A. Hyperglycemia causes differential change in macrophage population in the lacrimal gland, conjunctiva and cornea. Front Immunol 2024; 15:1505508. [PMID: 39749321 PMCID: PMC11693596 DOI: 10.3389/fimmu.2024.1505508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Background Due to its location, the ocular surface is exposed to environmental microbes. Innate immune cells including macrophages are first line defense against infections. In vitro exposure to high glucose as well as diabetes-associated hyperglycemia has been shown to affect innate immune cell function and population. The present study was designed to examine the effect of diabetes-associated hyperglycemia on the lacrimal gland, conjunctiva and cornea macrophage population, phenotypic changes and cytokines/chemokines. Methods Mouse model of Streptozotocin-induced diabetes was used to induce hyperglycemia. Immunostaining for CD11b and F4/80 was performed to stain macrophages in whole mount cornea, conjunctiva and 50 µm lacrimal gland sections. Flowcytometry was performed on single cell suspension to identify macrophage phenotypes and activation using CD11b, F4/80, CD80, CD206 and MHCII staining. Real time PCR was performed to quantify gene expression for macrophage-associated cytokines (IL-1β, TNF-α, IFN-γ) and chemokine (CCL2). Results Our data demonstrates the diabetes-associated hyperglycemia caused a rapid onset and significant decrease in macrophage population in lacrimal gland, conjunctiva and cornea. The onset of this noted decrease was as early as 7 days after hyperglycemia in lacrimal gland and conjunctiva followed by a notable increase towards recovery only in conjunctiva but not in the lacrimal gland. The cornea tissue showed a steady decline up to the tested time point of 28 days. Further, hyperglycemia did not cause any notable changes in macrophage phenotypes, their activation status or the expression of IL-1β, TNF-α, IFN-γ, CCL2 except in the cornea where an increase in the cytokine levels was noted after 7 days of hyperglycemia. Conclusion Our data shows that diabetes-associated hyperglycemia can cause a significant decrease in microphage population with changing their plasticity or activation status in lacrimal gland, conjunctiva and cornea but the kinetics of decrease and recovery show differential pattern specific for each tissue.
Collapse
Affiliation(s)
- Saleh Alfuraih
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Health Professions Division, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Amy Tran
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Lois Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Health Professions Division, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ajay Sharma
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
2
|
Yu Y, Yuan H, Han Q, Shi J, Liu X, Xue Y, Li Y. SMOC2, OGN, FCN3, and SERPINA3 could be biomarkers for the evaluation of acute decompensated heart failure caused by venous congestion. Front Cardiovasc Med 2024; 11:1406662. [PMID: 39717447 PMCID: PMC11663912 DOI: 10.3389/fcvm.2024.1406662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Background Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC. Methods Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases. The potential mechanisms of HF exacerbation were explored via GO and KEGG enrichment analyses. Diagnostic genes for acute decompensated HF were discovered using LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-gene GSEA analysis. A nomogram tool was developed for the diagnostic model's evaluation and application, with validation conducted on external datasets. Results Our findings reveal that VC influences 37 genes impacting HF via 8 genes, primarily affecting oxygen transport, binding, and extracellular matrix stability. Four diagnostic genes for HF's pre-decompensation phase were identified: SMOC2, OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential, with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942. Conclusions Our study identifies four critical diagnostic genes for HF's pre-decompensated phase using bioinformatics and machine learning, shedding light on the molecular mechanisms through which VC worsens HF. It offers a novel approach for clinical evaluation of acute decompensated HF patient congestion status, presenting fresh insights into its pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Ferenc K, Filip R. Mechanisms of Insulin Signaling as a Potential Therapeutic Method in Intestinal Diseases. Cells 2024; 13:1879. [PMID: 39594627 PMCID: PMC11593555 DOI: 10.3390/cells13221879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Gastrointestinal diseases are becoming a growing public health problem. One of them is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). The incidence of IBD is increasing in developing countries and declining in developed countries, affecting people of all ages. Researchers have been exploring new treatment options including insulin signaling pathways in the inflammation of the gastrointestinal tract. It seems that a better understanding of the mechanism of IGF-1, GLP-1 and TL1A on the gut microbiota and inflammation may provide new advances in future therapeutic strategies for patients with IBD, but also other intestinal diseases. This review aims to synthesize insights into the effects of GLP, IGF and anti-TL1A on inflammation and the gut microbiota, which may enable their future use in therapy for people with intestinal diseases.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
4
|
Tecce N, Menafra D, Proganò M, Tecce MF, Pivonello R, Colao A. Evaluating the Impact of Continuous Glucose Monitoring on Erectile Dysfunction in Type 1 Diabetes: A Focus on Reducing Glucose Variability and Inflammation. Healthcare (Basel) 2024; 12:1823. [PMID: 39337164 PMCID: PMC11430976 DOI: 10.3390/healthcare12181823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) severely impairs metabolic control and can lead to erectile dysfunction (ED) through hyperglycemia-induced vascular damage, autonomic neuropathy, and psychological distress. This review examines the role of continuous glucose monitoring (CGM) in ameliorating ED by addressing glucose variability and inflammation. A comprehensive analysis of studies and clinical trials was conducted to evaluate the impact of CGM on metabolic control, inflammatory responses, and vascular health in patients with T1D. Evidence suggests that CGM systems significantly stabilize blood glucose levels and reduce hyper- and hypoglycemic episodes that contribute to endothelial dysfunction and ED. CGM's real-time feedback helps patients optimize metabolic control, improve vascular health, and reduce inflammation. CGM has the potential to redefine ED management in patients with T1D by improving glycemic control and reducing the physiological stressors that cause ED, potentially improving quality of life and sexual health. Further research is warranted to explore the specific benefits of CGM for ED management.
Collapse
Affiliation(s)
- Nicola Tecce
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
| | - Davide Menafra
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
| | - Mattia Proganò
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
- UNESCO Chair for Health Education and Sustainable Development, University Federico II of Naples, 80138 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Department of Endocrinology, University Federico II of Naples, 80138 Naples, Italy; (D.M.); (M.P.); (R.P.); (A.C.)
- UNESCO Chair for Health Education and Sustainable Development, University Federico II of Naples, 80138 Naples, Italy
| |
Collapse
|
5
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
6
|
Oliveira SLD, Costa CCD, Aracati MF, Rodrigues LF, Conde G, Moraes ACD, Camplesi AC, Farias THV, Silva IC, Pereira LAM, Belo MADA. Innate immunity response of zafirlukast treated-tilapia during foreign body inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105112. [PMID: 38092068 DOI: 10.1016/j.dci.2023.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
There is limited knowledge regarding the blockade of cysteinyl leukotriene receptors (CysLTRs) and their effects in teleost fish. The present study investigated the effects of Zafirlukast, antagonist of CysLTR1 receptor, on the foreign body inflammatory reaction in Nile tilapia (Oreochromis niloticus). Zafirlukast-treated tilapia demonstrated a decrease in the formation of multinucleated foreign body giant cells and Langhans cells on the round glass coverslips implanted in the subcutaneous tissue, along with a significant reduction in white blood cell counts and decreased production of reactive oxygen species. There was an increase in serum levels of α2-macroglobulins, as well as a decrease in ceruloplasmin and haptoglobin. Zafirlukast treatment led to a significant decrease in the area of splenic melanomacrophage centers and a reduction in the presence of lipofuscin. These findings highlight the potential anti-inflammatory effects of zafirlukast treatment in tilapia and indicate its action on CysLTR1 receptor, modulating the innate immune response of tilapia during the foreign body reaction. The comprehension of chronic inflammation mechanisms in fish has become increasingly relevant, especially concerning the utilization of biomaterials for vaccine and drug delivery.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Brazil
| | | | | | | | - Ives Charlie Silva
- Chemistry Institute, IQ -UNESP (São Paulo State University), Araraquara, SP, Brazil
| | | | - Marco Antonio de Andrade Belo
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Brazil; Brazil University - (UB), Descalvado, SP, Brazil.
| |
Collapse
|
7
|
Illescas O, Ferrero G, Belfiore A, Pardini B, Tarallo S, Ciniselli CM, Noci S, Daveri E, Signoroni S, Cattaneo L, Mancini A, Morelli D, Milione M, Cordero F, Rivoltini L, Verderio P, Pasanisi P, Vitellaro M, Naccarati A, Gariboldi M. Modulation of faecal miRNAs highlights the preventive effects of a Mediterranean low-inflammatory dietary intervention. Clin Nutr 2024; 43:951-959. [PMID: 38422953 DOI: 10.1016/j.clnu.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Dietary interventions have been proposed as therapeutic approaches for several diseases, including cancer. A low-inflammatory Mediterranean dietary intervention, conducted as a pilot study in subjects with Familial Adenomatous Polyposis (FAP), reduced markers of local and systemic inflammation. We aim to determine whether this diet may modulate faecal microRNA (miRNA) and gene expression in the gut. METHODS Changes in the faecal miRNome were evaluated by small RNA sequencing at baseline (T0), after the three-month intervention (T1), and after an additional three months (T2). Changes in the transcriptome of healthy rectal mucosa and adenomas were evaluated by RNA sequencing at T0 and T2. The identification of validated miRNA-gene interactions and functional analysis of miRNA targets were performed using in silico approaches. RESULTS Twenty-seven subjects were included in this study. It was observed that the diet modulated 29 faecal miRNAs (p < 0.01; |log2 Fold Change|>1), and this modulation persisted for three months after the intervention. Levels of miR-3612-3p and miR-941 correlated with the adherence to the diet, miR-3670 and miR-4252-5p with faecal calprotectin, and miR-3670 and miR-6867 with serum calprotectin. Seventy genes were differentially expressed between adenoma and normal tissue, and most were different before the dietary intervention but reached similar levels after the diet. Functional enrichment analysis identified the proinflammatory ERK1/2, cell cycle regulation, and nutrient response pathways as commonly regulated by the modulated miRNAs and genes. CONCLUSIONS Faecal miRNAs modulated by the dietary intervention target genes that participate in inflammation. Changes in levels of miRNAs and genes with oncogenic and tumour suppressor functions further support the potential cancer-preventive effect of the low-inflammatory Mediterranean diet. CLINICAL TRIAL NUMBER REGISTRATION NCT04552405, Registered in ClinicalTrials.gov.
Collapse
Affiliation(s)
- Oscar Illescas
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulio Ferrero
- Dept. of Clinical and Biological Sciences, University of Turin, Turin, Italy; Dept. of Computer Science, University of Turin, Turin, Italy
| | - Antonino Belfiore
- First Pathology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara M Ciniselli
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Noci
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Daveri
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Signoroni
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Cattaneo
- First Pathology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Mancini
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Morelli
- Laboratory Medicine Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Cordero
- Dept. of Clinical and Biological Sciences, University of Turin, Turin, Italy; Dept. of Computer Science, University of Turin, Turin, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Unit of Epidemiology and Prevention, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Hereditary Digestive Tract Tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
8
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
9
|
Chagovets V, Starodubtseva N, Tokareva A, Novoselova A, Patysheva M, Larionova I, Prostakishina E, Rakina M, Kazakova A, Topolnitskiy E, Shefer N, Kzhyshkowska J, Frankevich V, Sukhikh G. Specific changes in amino acid profiles in monocytes of patients with breast, lung, colorectal and ovarian cancers. Front Immunol 2024; 14:1332043. [PMID: 38259478 PMCID: PMC10800720 DOI: 10.3389/fimmu.2023.1332043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Immunometabolism is essential factor of tumor progression, and tumor-associated macrophages are characterized by substantial changes in their metabolic status. In this study for the first time, we applied targeted amino acid LC-MS/MS analysis to compare amino acid metabolism of circulating monocytes isolated from patients with breast, ovarian, lung, and colorectal cancer. Methods Monocyte metabolomics was analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/ MS) analysis of amino acid extracts. The targeted analysis of 26 amino acids was conducted by LCMS/MS on an Agilent 6460 triple quadrupole mass spectrometer equipped with an electrospray ionization source and an Agilent 1260 II liquid chromatograph. Results Comparison of monocytes of cancer patients with monocytes of healthy control individuals demonstrated that in breast cancer most pronounced changes were identified for tryptophan (AUC = 0.76); for ovarian cancer, aminobutyric acid was significantly elevated (AUC= 1.00); for lung cancer significant changes we indented for citrulline (AUC = 0.70). In order to identify key amino acids that are characteristic for monocytes in specific cancer types, we compared each individual cancer with other 3 types of cancer. We found, that aspartic acid and citrulline are specific for monocytes of patients with colorectal cancer (p<0.001, FC = 1.40 and p=0.003, FC = 1.42 respectively). Citrulline, sarcosine and glutamic acid are ovarian cancer-specific amino acids (p = 0.003, FC = 0.78, p = 0.003, FC = 0.62, p = 0.02, FC = 0.78 respectively). Glutamine, methionine and phenylalanine (p = 0.048, FC = 1.39. p = 0.03, FC = 1.27 and p = 0.02, FC = 1.41) are lung cancer-specific amino acids. Ornithine in monocytes demonstrated strong positive correlation (r = 0.63) with lymph node metastasis incidence in breast cancer patients. Methyl histidine and cysteine in monocytes had strong negative correlation with lymph node metastasis in ovarian cancer patients (r = -0.95 and r = -0.95 respectively). Arginine, citrulline and ornithine have strong negative correlation with tumor size (r = -0.78, citrulline) and lymph node metastasis (r = -0.63 for arginine and r = -0.66 for ornithine). Discussion These alterations in monocyte amino acid metabolism can reflect the reaction of systemic innate immunity on the growing tumor. Our data indicate that this metabolic programming is cancer specific and can be inhibiting cancer progression. Cancer-specific differences in citrulline, as molecular link between metabolic pathways and epigenetic programing, provide new option for the development and validation of anti-cancer therapies using inhibitors of enzymes catalyzing citrullination.
Collapse
Affiliation(s)
- Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Chemical Physics, The Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Marina Patysheva
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Elizaveta Prostakishina
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Kazakova
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Evgenii Topolnitskiy
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Nikolay Shefer
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg–Hessen, Mannheim, Germany
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, Tomsk, Russia
| | - Gennadiy Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Samoilova YG, Matveeva MV, Spirina LV, Podchinenova DV, Oleinik OA, Galyukova DE. Neuroinflammation in Obese Children. Bull Exp Biol Med 2024; 176:386-389. [PMID: 38340199 DOI: 10.1007/s10517-024-06029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 02/12/2024]
Abstract
Obesity is associated with chronic persistent inflammation due to a pool of tissue macrophages that can penetrate the blood-brain barrier and cause neuroinflammation. The analysis of the association of CD14+CD163+ monocytes in the peripheral blood with cognitive functions in 56 obese children (mean age 11.95 (9.45; 14.45) years) was carried out. The control group consisted of 10 children (mean age 10.4 (9.3; 13.8) years). Standard deviation of the body mass index (SDS BMI) and height (SDS height) were calculated using WHO AnthroPlus software (for children of 6-19 years). Body composition was assessed using bioimpedance measurement. Mononuclear cells were isolated from whole blood by centrifugation on a Ficoll-Urografin density gradient (ρ=1.077 g/ml). The content of CD14+CD163+ monocytes in the peripheral blood was assessed by flow cytometry. To analyze cognitive functions, the intelligence coefficient (IQ) was calculated and a Russian adaptation of the Rey test was performed. We found an increase in the number of M2-polarized CD14+CD163+ monocytes in the peripheral blood with an increase in the obesity degree and in the presence of cognitive decline, as well as a negative correlation of the level of M2-polarized monocytes and IQ, taking into account the excess of visceral fat. The revealed data on the relationship of M2-polarized CD14+CD163+ peripheral blood monocytes with obesity in children and the development of neuropsychological deficiency confirm the role of peripheral visceral obesity and neuroinflammation.
Collapse
Affiliation(s)
- Yu G Samoilova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - M V Matveeva
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.
| | - L V Spirina
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - D V Podchinenova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - O A Oleinik
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - D E Galyukova
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
11
|
Ganesh GV, Ramkumar KM. Pterostilbene accelerates wound healing response in diabetic mice through Nrf2 regulation. Mol Immunol 2023; 164:17-27. [PMID: 37926050 DOI: 10.1016/j.molimm.2023.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Pterostilbene (PTS), known for its diverse beneficial effects via Nuclear factor erythroid-2 related factor (Nrf2) activation, holds potential for Diabetic Foot Ulcer (DFU) treatment. However, PTS-mediated Nrf2 regulation in diabetic wounds has yet to be elucidated. We used IC21 macrophage-conditioned media to simulate complex events that can influence the fibroblast phenotype using L929 cells during the wound healing process under a hyperglycemic microenvironment. We found that PTS attenuated fibroblast migration and alpha-smooth muscle actin (α-SMA) levels and hypoxia-inducible factor- 1 alpha (HIF1α). Furthermore, we demonstrated that wounds in diabetic mice characterized by impaired wound closure in a heightened inflammatory milieu, such as the NOD-like receptor P3 (NLRP3) and intercellular adhesion molecule 1 (ICAM1), and deficient Nrf2 response accompanying lowered Akt signaling and heme oxygenase1 (HO1) expression along with the impaired macrophage M2 marker CD206 expression, was rescued by administration of PTS. Such an elicited response was also compared favorably with the standard treatment using Regranex, a commercially available topical formulation for treating DFUs. Our findings suggest that PTS regulates Nrf2 in diabetic wounds, triggering a pro-wound healing response mediated by macrophages. This insight holds the potential for developing targeted therapies to heal chronic wounds, including DFUs.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
12
|
Chen J, Yin D, Dou K. Intensified glycemic control by HbA1c for patients with coronary heart disease and Type 2 diabetes: a review of findings and conclusions. Cardiovasc Diabetol 2023; 22:146. [PMID: 37349787 PMCID: PMC10288803 DOI: 10.1186/s12933-023-01875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
The occurrence and development of coronary heart disease (CHD) are closely linked to fluctuations in blood glucose levels. While the efficacy of intensified treatment guided by HbA1c levels remains uncertain for individuals with diabetes and CHD, this review summarizes the findings and conclusions regarding HbA1c in the context of CHD. Our review showed a curvilinear correlation between regulated level of HbA1c and therapeutic effectiveness of intensified glycemic control among patients with type 2 diabetes and coronary heart disease. It is necessary to optimize the dynamic monitoring indicators of HbA1c, combine genetic profiles, haptoglobin phenotypes for example and select more suitable hypoglycemic drugs to establish more appropriate glucose-controlling guideline for patients with CHD at different stage of diabetes.
Collapse
Affiliation(s)
- Jingyang Chen
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Dong Yin
- Cardiometabolic Medicine Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| |
Collapse
|
13
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
14
|
Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2023; 12:1096897. [PMID: 36686729 PMCID: PMC9853406 DOI: 10.3389/fonc.2022.1096897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs interact with the components of the tumor microenvironment (TME) by using scavenger receptors (SRs), a large superfamily of multifunctional receptors that recognize, internalize and transport to the endosomal/lysosomal pathway apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and other unwanted-self ligands. In our review, we summarized state-of-the art for the role of macrophage scavenger receptors in tumor development and their significance as cancer biomarkers. In this review we focused on functional activity of TAM-expressing SRs in animal models and in patients, and summarized the data for different human cancer types about the prognostic significance of TAM-expressed SRs. We discussed the role of SRs in the regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME, immune status in TME, angiogenesis, and intratumoral metabolism. Targeting of tumor-promoting SRs can be a promising therapeutic approach in anti-cancer therapy. In our review we provide evidence for both tumor supporting and tumor inhibiting functions of scavenger receptors expressed on TAMs. We focused on the key differences in the prognostic and functional roles of SRs that are specific for cancer types. We highlighted perspectives for inhibition of tumor-promoting SRs in anti-cancer therapy.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia,Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany,*Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
15
|
Novoselova AV, Yushina MN, Patysheva MR, Prostashkina EA, Bragina OD, Garbukov EY, Kzhyshkowska JG. Peculiarities of amino acid profile in monocytes in breast cancer. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monocytes are large circulating white blood cells that are the main precursors of tissue macrophages as well as tumor-associated macrophages in the adult body. Different types of monocytes have multidirectional effects on the growth and metastatic spread of cancer cells, both activating and inhibiting these processes. Tumor progression is associated with the triggering of a whole cascade of inflammatory and immune reactions. These pathological processes are associated with changes in the amino acid content of monocytes, which can lead to disruption of their function, in particular their migration, division and maturation. The aim of the work was to profile the amino acids of monocytes, followed by a study of the amino acid composition of monocytes from patients with breast cancer using liquid chromatography with mass spectrometric detection. Significant differences in metabolite levels in monocytes of breast cancer patients and monocytes of healthy donors were found for glycine (p-value = 0.0127), asparagine (p-value = 0.0197), proline (p-value = 0.0159), methionine (p-value = 0.0357), tryptophan (p-value = 0.0028), tyrosine (p-value = 0.0127). In the study, we identified biological networks that could potentially be involved in altering the phenotype of monocytes affected by breast cancer (BC), using bioinformatic analysis of metabolic pathways involving the discovered amino acids. Mathematical models based on amino acid combinations with 100% sensitivity and specificity have been developed. Features of immune system cell metabolism in BC have been identified and potential diagnostic biomarkers have been proposed.
Collapse
Affiliation(s)
- AV Novoselova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - MN Yushina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - MR Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia; Tomsk National State University, Tomsk, Russia
| | - EA Prostashkina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - OD Bragina
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - EYu Garbukov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - JG Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|