1
|
Li K, Jiang KM, Wang Y, Hu F, Zhu XC, Sun CL, Jin L, Liu WT, Lin TT, Li M. Inhibition of NETs prevents doxorubicin-induced cardiotoxicity by attenuating IL-18-IFN-γ-Cx43 axis induced cardiac conduction abnormalities. Int Immunopharmacol 2025; 147:114016. [PMID: 39805175 DOI: 10.1016/j.intimp.2025.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Doxorubicin-induced cardiotoxicity (DIC) is one of the most severe side effects of doxorubicin, yet the underlying mechanisms remain incompletely understood. Our results showed that Neutrophil extracellular traps (NETs) accumulated in plasma and cardiac tissue after doxorubicin treatment. The inhibition of NETs formation by Pad4 gene ablation significantly attenuated doxorubicin-induced arrhythmia, prolonged survival time and reduced the levels of Troponin T (cTnT) and creatine kinase MB (CK-MB) in mice. In addition, reductions in left ventricular fractional shortening and ejection fraction induced by doxorubicin were more severe in WT mice than in Pad4-/- mice. Immunostaining and qPCR analyses revealed that NETs activated macrophages to release pro-inflammatory cytokines such as IL-18, IL-1β, and TNF-α. IL-18, in turn, activated T cells to produce IFN-γ, which, along with TNF-α, downregulated the expression of Cx43, thereby inducing cardiac conduction abnormalities. We identify that IL-18-IFN-γ-Cx43-induced cardiac conduction abnormalities triggered by neutrophil extracellular traps is the key molecular and cellular determinants of DIC. Furthermore, targeting NETs formation using ozone therapy significantly alleviated DIC. This study highlights the critical role of NETs in the development of DIC and proposes ozone therapy as a potential therapeutic strategy for treating DIC.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun-Mao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu-Chang Zhu
- Cardiovascular Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang-Lin Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lai Jin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tong-Tong Lin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligence Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Meng Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, Guangzhou, China.
| |
Collapse
|
2
|
Zhang B, Yang N, Li L. Bullous pemphigoid and hypercoagulability: a review. Expert Rev Clin Immunol 2025. [PMID: 39772971 DOI: 10.1080/1744666x.2025.2450766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies against hemidesmosomal proteins on basal membrane zone. The presence of a high incidence of thrombotic events has led to the identification of a hypercoagulable state in BP patients. AREA COVERS This review highlights the interactions between coagulation and immune-inflammatory responses based on the current literature available, as well as individual changes of characteristic coagulation parameters in BP. This review is based on publications up to August 2024 that were retrieved by a selective search in the PubMed database. EXPERT OPINION The hypercoagulable state and bullous pemphigoid (BP) have a reciprocally enhancing effect on each other. For clinicians, it is crucial to closely monitor the fluctuations in circulating coagulation markers among BP patients, such as D-dimer, fibrinogen, and fibrin degradation products (FDP). Furthermore, considering the interplay between coagulation and immune-inflammatory responses in BP, targeting the shared pathways in treatment strategies could be beneficial for patients who exhibit both BP and a hypercoagulable state.
Collapse
Affiliation(s)
- Bingjie Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
3
|
Tang Y, Jiao Y, An X, Tu Q, Jiang Q. Neutrophil extracellular traps and cardiovascular disease: Associations and potential therapeutic approaches. Biomed Pharmacother 2024; 180:117476. [PMID: 39357329 DOI: 10.1016/j.biopha.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a significant global health concern, ranking among the top five causes of disability-adjusted life-years (DALY) in 190 countries and territories. Neutrophils, key players in the innate immune system, combat infections by releasing neutrophil extracellular traps (NETs) composed of DNA, histones, elastase, myeloperoxidase, and antimicrobial peptides. This paper explores the relationship between NETs and cardiovascular diseases, focusing on conditions such as heart failure, pulmonary hypertension, atrial fibrillation, and ischemia-reperfusion injury. Particularly, it delves into the impact of NETs on atrial fibrillation and pulmonary hypertension, as well as the role of myeloperoxidase (MPO) and neutrophil elastase (NE) in these diseases. Furthermore, the potential of targeting NETs for the treatment of cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Yiyue Tang
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Jiao
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Xiaohua An
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingxian Tu
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| | - Qianfeng Jiang
- GuizhouAerospaceHospital,(Affiliated AerospaceHospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
4
|
Li L, Tan Q, Wu X, Mou X, Lin Z, Liu T, Huang W, Deng L, Jin T, Xia Q. Coagulopathy and acute pancreatitis: pathophysiology and clinical treatment. Front Immunol 2024; 15:1477160. [PMID: 39544925 PMCID: PMC11560453 DOI: 10.3389/fimmu.2024.1477160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Coagulopathy is a critical pathophysiological mechanism of acute pancreatitis (AP), arising from the complex interplay between innate immune, endothelial cells and platelets. Although initially beneficial for the host, uncontrolled and systemic activation of coagulation cascade in AP can lead to thrombotic and hemorrhagic complications, ranging from subclinical abnormalities in coagulation tests to severe clinical manifestations, such as disseminated intravascular coagulation. Initiation of coagulation activation and consequent thrombin generation is caused by expression of tissue factor on activated monocytes and is ineffectually offset by tissue factor pathway inhibitor. At the same time, endothelial-associated anticoagulant pathways, in particular the protein C system, is impaired by pro-inflammatory cytokines. Also, fibrin removal is severely obstructed by inactivation of the endogenous fibrinolytic system, mainly as a result of upregulation of its principal inhibitor, plasminogen activator inhibitor type 1. Finally, increased fibrin generation and impaired break down lead to deposition of (micro) vascular clots, which may contribute to tissue ischemia and ensuing organ dysfunction. Despite the high burden of coagulopathy that have a negative impact on AP patients' prognosis, there is no effective treatment yet. Although a variety of anticoagulants drugs have been evaluated in clinical trials, their beneficial effects are inconsistent, and they are also characterized by hemorrhagic complications. Future studies are called to unravel the pathophysiologic mechanisms involved in coagulopathy in AP, and to test novel therapeutics block coagulopathy in AP.
Collapse
Affiliation(s)
- Lan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Qingyuan Tan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Xueying Wu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Mou
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Ziqi Lin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Deng
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Zeng X, Li J, Pei L, Yang Y, Chen Y, Wang X, Zhang T, Zhou T. Didang decoction attenuates cancer-associated thrombosis by inhibiting PAD4-dependent NET formation in lung cancer. Pulm Circ 2024; 14:e12454. [PMID: 39386377 PMCID: PMC11462072 DOI: 10.1002/pul2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
This research aims to investigate the impact of Didang decoction (DD) on the formation of neutrophil extracellular traps (NETs) and cancer-associated thrombosis in lung cancer. BALB/c nude mice were used to establish xenograft models for inducing deep vein thrombosis. Tumor growth and thrombus length were assessed. The impact of DD on NET generation was analyzed using enzyme-linked immunosorbent assay, immunofluorescence staining, quantitative real-time PCR, and western blot analysis, both in vivo and in vitro. CI-amidine, a PAD4 inhibitor, was employed to evaluate the role of PAD4 in the generation of NETs. In vivo studies demonstrated that treatment with DD reduced tumor growth, inhibited thrombus formation, and decreased the levels of NET markers in the serum, tumor tissues, neutrophils, and thrombus tissues of mice. Additional data indicated that DD could suppress neutrophil counts, the release of tissue factor (TF), and the activation of thrombin-activated platelets, all of which contributed to increased formation of NETs in mouse models. In vitro, following incubation with conditioned medium (CM) derived from Lewis lung carcinoma cells, the expression of NET markers in neutrophils was significantly elevated, and an extracellular fibrous network structure was observed. Nevertheless, these NET-associated changes were partially counteracted by DD. Additionally, CI-amidine reduced the expression of NET markers in CM-treated neutrophils, consistent with the effects of DD. Collectively, DD inhibits cancer-associated thrombosis in lung cancer by decreasing PAD4-dependent NET formation through the regulation of TF-mediated thrombin-platelet activation. This presents a promising therapeutic strategy for preventing and treating venous thromboembolism in lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Jiuxi Li
- College of Acupuncture, Massage and RehabilitationHunan University of Chinese MedicineChangshaHunanChina
| | - Liyuan Pei
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Yaping Yang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ya Chen
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Xuejing Wang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ting Zhang
- Cardiovascular DepartmentHunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Ting Zhou
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
7
|
Peng L, Liu L, Chai M, Cai Z, Wang D. Predictive value of neutrophil to lymphocyte ratio for clinical outcome in patients with atrial fibrillation: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1461923. [PMID: 39390991 PMCID: PMC11464451 DOI: 10.3389/fcvm.2024.1461923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background The association between the Neutrophil-to-Lymphocyte Ratio (NLR) and the prognosis of Atrial Fibrillation (AF) has been extensively studied, yet clinical outcomes have varied. Consequently, this analysis was undertaken to explore the link between NLR and the prognostic markers of AF. Methods We conducted an exhaustive search across electronic databases, including PubMed, Embase, Web of Science, and the Cochrane Library, to investigate the correlation between the NLR and indicators of adverse clinical outcomes associated with AF from the database establishment date through March 31, 2024. In this study, the recurrence rate of AF was the primary outcome measure, while the secondary outcome measures were mortality, stroke, and left atrial thrombus. Odds ratio (OR), relative risk (RR), hazard ratio (HR) and standard mean difference (SMD) with a 95% confidence interval (CI) were integrated for assessment, and the stability of prognostic outcomes and publication bias were verified by sensitivity analysis and Egger's test, respectively. Subgroup analyses were performed to pinpoint the sources of heterogeneity. Results This analysis included 20 studies, encompassing a total of 59,256 patients. Our statistical analysis of both categorical and continuous variables revealed that an elevated NLR was significantly associated with increased risks in AF patients for recurrence (categorical variable: OR = 1.39, 95% CI = 1.21-1.60; continuous variable: SMD = 0.49, 95% CI = 0.24-0.74), mortality (categorical variable: OR = 1.87, 95% CI = 1.59-2.20), stroke (categorical variable: OR = 1.56, 95% CI = 1.13-2.17; continuous variable: SMD = 0.77, 95% CI = 0.63-0.91), and left atrial thrombus (categorical variable: OR = 1.87, 95% CI = 1.27-2.75; continuous variable: SMD = 0.59, 95% CI = 0.30-0.89). Subgroup analyses found that high NLR was significantly linked to AF recurrence when the NLR was >3. High NLR was significantly linked to the risk of stroke in AF when the NLR was ≤3. Conclusions This study suggested that a high NLR is significantly linked to prognostic risk markers of AF, and NLR may be an effective biomarker for the prognosis of AF in clinical practice. Systematic Review Registration PROSPERO (CRD42024530970).
Collapse
Affiliation(s)
- Lei Peng
- Department of Cardiology, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Li Liu
- Department of Cardiology, Jinan Integrated Traditional Chinese and Western Medicine Hospital, Jinan, China
| | - Miaomiao Chai
- Department of Cardiology, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Zhonggui Cai
- Department of Interventional Cardiology, Shandong Healthcare Group Zaozhuang Hospital, Zaozhuang, China
| | - Deqi Wang
- Department of Interventional Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
8
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Role of Platelets and Their Interaction with Immune Cells in Venous Thromboembolism. Semin Thromb Hemost 2024. [PMID: 39214148 DOI: 10.1055/s-0044-1789022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Venous thromboembolism (VTE) represents a significant global health challenge, ranking as the third leading cause of cardiovascular-related mortality. VTE pervades diverse clinical specialties, posing substantial risks to patient well-being and imposing considerable economic strains on health care systems. While platelets have long been recognized as pivotal players in hemostasis, emerging evidence underscores their multifaceted immune functions and their capacity to engage in crosstalk with other immune cells, such as neutrophils, thereby fostering immune-related thrombosis. Notably, investigations have elucidated the pivotal role of platelets in the pathogenesis of VTE. This review provides a comprehensive overview of platelet physiology, encompassing their activation, secretion dynamics, and implications in VTE. Moreover, it delineates the impact of platelet interactions with various immune cells on the initiation and progression of VTE, explores the correlation between platelet-related laboratory markers and VTE, and elucidates the role of platelets in thrombosis regression.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xianghui Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xin Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Zhipeng Cheng
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Yu Hu
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| |
Collapse
|
9
|
Li X, Wu W, He H, Guan L, Chen G, Lin Z, Li H, Jiang J, Dong X, Guan Z, Chen P, Pan Z, Huang W, Yu R, Song W, Lu L, Yang Z, Chen Z, Wang L, Xian S, Chen J. Analysis and validation of hub genes in neutrophil extracellular traps for the long-term prognosis of myocardial infarction. Gene 2024; 914:148369. [PMID: 38485036 DOI: 10.1016/j.gene.2024.148369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION The study focuses on the long-term prognosis of myocardial infarction (MI) influenced by neutrophil extracellular traps (NETs). It also aims to analyze and validate relative hub genes in this process, in order to further explore new therapeutic targets that can improve the prognosis of MI. MATERIALS AND METHODS We established a MI model in mice by ligating the left anterior descending branch (LAD) and conducted an 8-week continuous observation to study the dynamic changes in the structure and function of the heart in these mice. Meanwhile, we administered Apocynin, an inhibitor of NADPH Oxidase, which has also been shown to inhibit the formation of NETs, to mice undergoing MI surgery in order to compare. This study employed hematoxylin-eosin (HE) staining, echocardiography, immunofluorescence, and real-time quantitative PCR (RT-qPCR) to examine the impact of NETs on the long-term prognosis of MI. Next, datasets related to MI and NETs were downloaded from the GEO database, respectively. The Limma package of R software was used to identify differentially expressed genes (DEGs). After analyzing the "Robust Rank Aggregation (RRA)" package, we conducted a screening for robust differentially expressed genes (DEGs) and performed pathway enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to determine the functional roles of these robust DEGs. The protein-protein interaction (PPI) network was visualized and hub genes were filtered using Cytoscape. RESULTS Immunofluorescence and qPCR results showed an increase in the expression of Myeloperoxidase (MPO) at week 1 and week 8 in the hearts of mice after MI. HE staining reveals a series of pathological manifestations in the heart of the MI group during 8 weeks, including enlarged size, disordered arrangement of cardiomyocytes, infiltration of inflammatory cells, and excessive deposition of collagen fibers, among others. The utilization of Apocynin could significantly improve these poor performances. The echocardiography displayed the cardiac function of the heart in mice. The MI group has a reduced range of heart movement and decreased ejection ability. Moreover, the ventricular systolic movement was found to be abnormal, and its wall thickening rate decreased over time, indicating a progressive worsening of myocardial ischemia. The Apocynin group, on the contrary, showed fewer abnormal changes in the aforementioned aspects. A total of 81 DEGs and 4 hub genes (FOS, EGR1, PTGS2, and HIST1H4H) were obtained. The results of RT-qPCR demonstrated abnormal expression of these four genes in the MI group, which could be reversed by treatment of Apocynin. CONCLUSION The NETs formation could be highly related to MI and the long-term prognosis of MI can be significantly influenced by the NETs formation. Four hub genes, namely FOS, EGR1, PTGS2, and HIST1H4H, have the potential to be key genes related to this process. They could also serve as biomarkers for predicting MI prognosis and as targets for gene therapy.
Collapse
Affiliation(s)
- Xuan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Wenyu Wu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huan He
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Lin Guan
- Shandong Province Hospital of Traditional Chinese Medicine, Jinan 250011, China
| | - Guancheng Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhijun Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Huan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Jialin Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Xin Dong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhuoji Guan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Pinliang Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zigang Pan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Weiwei Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Runjia Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Wenxin Song
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Lu Lu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhongqi Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zixin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Lingjun Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Shaoxiang Xian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Jie Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| |
Collapse
|
10
|
Jiang C, Lin J, Xie B, Peng M, Dai Z, Mai S, Chen Q. Causal association between circulating blood cell traits and pulmonary embolism: a mendelian randomization study. Thromb J 2024; 22:49. [PMID: 38863024 PMCID: PMC11167760 DOI: 10.1186/s12959-024-00618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Pulmonary embolism (PE) is a life-threatening thromboembolic disease for which there is limited evidence for effective prevention and treatment. Our goal was to determine whether genetically predicted circulating blood cell traits could influence the incidence of PE. METHODS Using single variable Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) analyses, we identified genetic associations between circulating blood cell counts and lymphocyte subsets and PE. GWAS blood cell characterization summary statistics were compiled from the Blood Cell Consortium. The lymphocyte subpopulation counts were extracted from summary GWAS statistics for samples from 3757 individuals that had been analyzed by flow cytometry. GWAS data related to PE were obtained from the FinnGen study. RESULTS According to the SVMR and reverse MR, increased levels of circulating white blood cells (odds ratio [OR]: 0.88, 95% confidence interval [CI]: 0.81-0.95, p = 0.0079), lymphocytes (OR: 0.90, 95% CI: 0.84-0.97, p = 0.0115), and neutrophils (OR: 0.88, 95% CI: 0.81-0.96, p = 0.0108) were causally associated with PE susceptibility. MVMR analysis revealed that lower circulating lymphocyte counts (OR: 0.84, 95% CI: 0.75-0.94, p = 0.0139) were an independent predictor of PE. According to further MR results, this association may be primarily related to HLA-DR+ natural killer (NK) cells. CONCLUSIONS Among European populations, there is a causal association between genetically predicted low circulating lymphocyte counts, particularly low HLA-DR+ NK cells, and an increased risk of PE. This finding supports observational studies that link peripheral blood cells to PE and provides recommendations for predicting and preventing this condition.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianing Lin
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Suyin Mai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Nascimbene A, Bark D, Smadja DM. Hemocompatibility and biophysical interface of left ventricular assist devices and total artificial hearts. Blood 2024; 143:661-672. [PMID: 37890145 PMCID: PMC10900168 DOI: 10.1182/blood.2022018096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT Over the past 2 decades, there has been a significant increase in the utilization of long-term mechanical circulatory support (MCS) for the treatment of cardiac failure. Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) have been developed in parallel to serve as bridge-to-transplant and destination therapy solutions. Despite the distinct hemodynamic characteristics introduced by LVADs and TAHs, a comparative evaluation of these devices regarding potential complications in supported patients, has not been undertaken. Such a study could provide valuable insights into the complications associated with these devices. Although MCS has shown substantial clinical benefits, significant complications related to hemocompatibility persist, including thrombosis, recurrent bleeding, and cerebrovascular accidents. This review focuses on the current understanding of hemostasis, specifically thrombotic and bleeding complications, and explores the influence of different shear stress regimens in long-term MCS. Furthermore, the role of endothelial cells in protecting against hemocompatibility-related complications of MCS is discussed. We also compared the diverse mechanisms contributing to the occurrence of hemocompatibility-related complications in currently used LVADs and TAHs. By applying the existing knowledge, we present, for the first time, a comprehensive comparison between long-term MCS options.
Collapse
Affiliation(s)
- Angelo Nascimbene
- Advanced Cardiopulmonary Therapies and Transplantation, University of Texas, Houston, TX
| | - David Bark
- Division of Hematology and Oncology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - David M. Smadja
- Université de Paris-Cité, Innovative Therapies in Haemostasis, INSERM, Paris, France
- Hematology Department, Assistance Publique–Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Models of arterial thrombus formation represent a vital experimental tool to investigate platelet function and test novel antithrombotic drugs. This review highlights some of the recent advances in modelling thrombus formation in vitro and suggests potential future directions. RECENT FINDINGS Microfluidic devices and the availability of commercial chips in addition to enhanced accessibility of 3D printing has facilitated a rapid surge in the development of novel in-vitro thrombosis models. These include progression towards more sophisticated, 'vessel on a chip' models which incorporate vascular endothelial cells and smooth muscle cells. Other approaches include the addition of branches to the traditional single channel to yield an occlusive model; and developments in the adhesive coating of microfluidic chambers to better mimic the thrombogenic surface exposed following plaque rupture. Future developments in the drive to create more biologically relevant chambers could see a move towards the use of human placental vessels, perfused ex-vivo. However, further work is required to determine the feasibility and validity of this approach. SUMMARY Recent advances in thrombus formation models have significantly improved the pathophysiological relevance of in-vitro flow chambers to better reflect the in-vivo environment and provide a more translational platform to test novel antithrombotics.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | | | | |
Collapse
|
13
|
Deng Y, Zhou F, Li Q, Guo J, Cai B, Li G, Liu J, Li L, Zheng Q, Chang D. Associations between neutrophil-lymphocyte ratio and monocyte to high-density lipoprotein ratio with left atrial spontaneous echo contrast or thrombus in patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord 2023; 23:234. [PMID: 37142962 PMCID: PMC10157900 DOI: 10.1186/s12872-023-03270-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The importance of inflammation in thrombosis is increasingly appreciated. Neutrophil-lymphocyte ratio (NLR) and monocyte to high-density lipoprotein ratio (MHR) are important indicators of systemic inflammation. This study aimed to investigate the associations between NLR and MHR with left atrial appendage thrombus (LAAT) and spontaneous echo contrast (SEC) in patients with non-valvular atrial fibrillation. METHODS This retrospective, cross-sectional study enrolled 569 consecutive patients with non-valvular atrial fibrillation. Multivariable logistic regression analysis was used to investigate independent risk factors of LAAT/SEC. Receiver operating characteristic (ROC) curves were used to evaluate the specificity and sensitivity of NLR and MHR in predicting LAAT/SEC. Subgroup and Pearson correlation analyses were used to assess the correlations between NLR and MHR with the CHA2DS2-VASc score. RESULTS Multivariate logistic regression analysis showed that NLR (OR: 1.49; 95%CI: 1.173-1.892) and MHR (OR: 2.951; 95%CI: 1.045-8.336) were independent risk factors for LAAT/SEC. The area under the ROC curve of NLR (0.639) and MHR (0.626) was similar to that of the CHADS2 score (0.660) and CHA2DS2-VASc score (0.637). Subgroup and Pearson correlation analyses showed significant but very weak associations between NLR (r = 0.139, P < 0.05) and MHR (r = 0.095, P < 0.05) with the CHA2DS2-VASc score. CONCLUSION Generally, NLR and MHR are independent risk factors for predicting LAAT/SEC in patients with non-valvular atrial fibrillation.
Collapse
Affiliation(s)
- Yingjian Deng
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Faguang Zhou
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qiang Li
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jincun Guo
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Binni Cai
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Guiyang Li
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jianghai Liu
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Linlin Li
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qi Zheng
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, China.
| | - Dong Chang
- Department of Cardiology, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Yan H, Kawano T, Kanki H, Nishiyama K, Shimamura M, Mochizuki H, Sasaki T. Role of Polymorphonuclear Myeloid-Derived Suppressor Cells and Neutrophils in Ischemic Stroke. J Am Heart Assoc 2023; 12:e028125. [PMID: 36892072 PMCID: PMC10111556 DOI: 10.1161/jaha.122.028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Background Immune cells play a vital role in the pathology of ischemic stroke. Neutrophils and polymorphonuclear myeloid-derived suppressor cells share a similar phenotype and have attracted increasing attention in immune regulation research, yet their dynamics in ischemic stroke remain elusive. Methods and Results Mice were randomly divided into 2 groups and intraperitoneally treated with anti-Ly6G (lymphocyte antigen 6 complex locus G) monoclonal antibody or saline. Distal middle cerebral artery occlusion and transient middle cerebral artery occlusion were applied to induce experimental stroke, and mice mortality was recorded until 28 days after stroke. Green fluorescent nissl staining was used to measure infarct volume. Cylinder and foot fault tests were used to evaluate neurological deficits. Immunofluorescence staining was conducted to confirm Ly6G neutralization and detect activated neutrophils and CD11b+Ly6G+ cells. Fluorescence-activated cell sorting was performed to evaluate polymorphonuclear myeloid-derived suppressor cell accumulation in brains and spleens after stroke. Anti-Ly6G antibody successfully depleted Ly6G expression in mice cortex but did not alter cortical physiological vasculature. Prophylactic anti-Ly6G antibody treatment ameliorated ischemic stroke outcomes in the subacute phase. Moreover, using immunofluorescence staining, we found that anti-Ly6G antibody suppressed activated neutrophil infiltration into parenchyma and decreased neutrophil extracellular trap formation in penumbra after stroke. Additionally, prophylactic anti-Ly6G antibody treatment reduced polymorphonuclear myeloid-derived suppressor cell accumulation in the ischemic hemisphere. Conclusions Our study suggested a protective effect of prophylactic anti-Ly6G antibody administration against ischemic stroke by reducing activated neutrophil infiltration and neutrophil extracellular trap formation in parenchyma and suppressing polymorphonuclear myeloid-derived suppressor cell accumulation in the brain. This study may provide a novel therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Tomohiro Kawano
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Munehisa Shimamura
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
- Department of Health Development and Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
- Department of Neurotherapeutics, Graduate School of Medicine Osaka University Osaka Japan
| |
Collapse
|
15
|
Koutsiaris AG. The velocity-diffusion equation in the exchange microvessels. Clin Hemorheol Microcirc 2023:CH231713. [PMID: 36911932 DOI: 10.3233/ch-231713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In human and animal microvascular networks, the exchange microvessels are the capillaries and postcapillary venules where material transport between the circulating blood and tissue takes place. For small-size molecules, this material transport is done by the physical mechanism of diffusion through the endothelium wall and the diffusion rate J in relation to blood volume flow Q is described by the flow-diffusion (Q-J) equation. However, the volume flow is not easy to be measured in vivo. The objective of this work was to transform the classical flow-diffusion equation into a new form with axial velocity V as an independent variable instead of volume flow Q. The new form was called the velocity-diffusion (V-J) equation and has the advantage that V can be measured directly in vivo by optical imaging techniques. The V-J equation could have important applications in the calculation of the mass diffusion rate of various substances in vivo.
Collapse
Affiliation(s)
- Aristotle G Koutsiaris
- Medical Informatics and Biomedical Imaging (MIBI) Lab, Faculty of Medicine University of Thessaly, Biopolis Campus, Larissa, Greece
| |
Collapse
|
16
|
Zhang R, Sun C, Han Y, Huang L, Sheng H, Wang J, Zhang Y, Lai J, Yuan J, Chen X, Jiang C, Wu F, Wang J, Fan X, Wang J. Neutrophil autophagy and NETosis in COVID-19: perspectives. Autophagy 2023; 19:758-767. [PMID: 35951555 PMCID: PMC9980466 DOI: 10.1080/15548627.2022.2099206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has caused substantial losses worldwide in people's lives, health, and property. Currently, COVID-19 is still prominent worldwide without any specific drug treatment. The SARS-CoV-2 pathogen is the cause of various systemic diseases, mainly acute pneumonia. Within the pathological process, neutrophils are recruited to infected sites, especially in the lungs, for the first stage of removing invading SARS-CoV-2 through a range of mechanisms. Macroautophagy/autophagy, a conserved autodegradation process in neutrophils, plays a crucial role in the neutrophil phagocytosis of pathogens. NETosis refers to neutrophil cell death, while auto-inflammatory factors and antigens release NETs. This review summarizes the latest research progress and provides an in-depth explanation of the underlying mechanisms of autophagy and NETosis in COVID-19. Furthermore, after exploring the relationship between autophagy and NETosis, we discuss potential targets and treatment options. This review keeps up with the latest research on COVID-19 from neutrophil autophagy and NETosis with a new perspective, which can guide the urgent development of antiviral drugs and provide guidance for the clinical treatment of COVID-19.Abbreviations: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; AP: autophagosome; ARDS: acute respiratory distress syndrome; ATG: autophagy related; BECN1: beclin 1; cfDNA: cell-free DNA; COVID-19: coronavirus disease 2019; CQ: chloroquine; DMVs: double-membrane vesicles; ELANE/NE: elastase, neutrophil expressed; F3: coagulation factor III, tissue factor; HCQ: hydroxychloroquine; MAP1LC3/LC3: microtubule associated protein 1 light chain of 3; MPO: myeloperoxidase; MTORC1: mechanistic target of rapamycin kinase complex 1; NETs: neutrophil traps; NSP: nonstructural protein; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SKP2: S-phase kinase associated protein 2; TCC: terminal complement complex; ULK1: unc-51 like.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chen Sun
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunze Han
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Honghui Sheng
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuqing Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jonathan Lai
- Premed track majoring in Biology, Baylor University, Waco, Texas, USA
| | - Jiahao Yuan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chao Jiang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fuyuan Wu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaochong Fan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
17
|
Gui M, Zhao B, Huang J, Chen E, Qu H, Mao E. Pathogenesis and Therapy of Coagulation Disorders in Severe Acute Pancreatitis. J Inflamm Res 2023; 16:57-67. [PMID: 36636248 PMCID: PMC9831125 DOI: 10.2147/jir.s388216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/12/2022] [Indexed: 01/07/2023] Open
Abstract
Ischemia superimposed upon pancreatic edema leads to acute necrotizing pancreatitis. One possible mechanism contributing to ischemia is intravascular thrombogenesis since fibrin deposits have been detected in pancreatic capillaries by electron microscope. Current experimental and clinical data provided compelling evidence that the disorders in the blood coagulation system play a critical role in the pathogenesis of severe acute pancreatitis (SAP). This leads to microcirculatory failure of intra- and extrapancreatic organs and multiple organ failure and increases the case fatality rate. However, the mechanism of coagulopathy underlying SAP is not yet clear, although some anticoagulant drugs have entered clinical practice showing improvement in prognosis. Thus, enhanced understanding of the process might improve the treatment strategies with safety and high efficacy. Herein, the pathogenesis of the coagulation system of SAP was reviewed with a focus on the coagulation pathway, intercellular interactions, and complement system, thereby illustrating some anticoagulant therapies and potential therapeutic targets.
Collapse
Affiliation(s)
- Menglu Gui
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Enqiang Mao, Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, People’s Republic of China, Tel +86 13501747906, Email
| |
Collapse
|
18
|
Phthalide derivative CD21 regulates the platelet- neutrophil extracellular trap-thrombin axis and protects against ischemic brain injury in rodents. Int Immunopharmacol 2023; 114:109547. [PMID: 36527877 DOI: 10.1016/j.intimp.2022.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Prothrombotic and proinflammatory properties of neutrophil extracellular traps (NETs) contribute to brain damage after ischemic stroke. CD21 is a novel phthalide neuroprotectant against cerebral ischemia in rodents. This study investigated effects of CD21 on the platelet-NET-thrombin axis and ischemic brain injury and the underlying mechanism. CD21 exerteddose-dependent neuroprotectionin rats that were subjected to2 h middle cerebral artery occlusion,dose-dependentlyinhibited adenosine diphosphate-mediatedplatelet aggregationin rats, and dose-dependentlyexertedanti-thrombotic activityin rodents that received a collagen-epinephrine combination, ferric chloride, or an arteriovenous shunt. Equimolar CD21 doses exerted stronger efficacy than 3-N-butylphthalide (NBP, natural phthalide for the treatment of ischemic stroke). CD21 dose-dependently improved regional cerebral blood flow, neurobehavioral deficits, and infarct volume in mice that were subjected to photothrombotic stroke (PTS). CD21 (13.79 mg/kg, i.v.) significantly decreased NET components (plasma dsDNA concentrations; mRNA levels of elastase, myeloperoxidase, and neutrophil gelatinase-associated lipocalin and protein level of citrullinated histone H3 in ischemic brain tissues), mRNA and protein levels of peptidyl-arginine deiminase 4 (PDA4, NET formation enzyme), and mRNA levels of NET-related inflammatory mediators (interleukin-1β, interleukin-17A, matrix metalloproteinase 8, and matrix metalloproteinase 9) in ischemic brain tissues, despite no effect on mRNA levels of deoxyribonuclease I (NET elimination enzyme). Pretreatment with compound C (inhibitor of adenosine monophosphate-activated protein kinase [AMPK]) significantly reversed the inhibitory effects of CD21 on NETs, PDA4, and inflammatory mediators in PTS mice. These results suggest that CD21 might regulate the platelet-NET-thrombin axis and protect against ischemic brain injury partly through the induction of AMPK activation.
Collapse
|
19
|
Platelet-Neutrophil Association in NETs-Rich Areas in the Retrieved AIS Patient Thrombi. Int J Mol Sci 2022; 23:ijms232214477. [PMID: 36430952 PMCID: PMC9694992 DOI: 10.3390/ijms232214477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Histological structure of thrombi is a strong determinant of the outcome of vascular recanalization therapy, the only treatment option for acute ischemic stroke (AIS) patients. A total of 21 AIS patients from this study after undergoing non-enhanced CT scan and multimodal MRI were treated with mechanical stent-based and manual aspiration thrombectomy, and thromboembolic retrieved from a cerebral artery. Complementary histopathological and imaging analyses were performed to understand their composition with a specific focus on fibrin, von Willebrand factor, and neutrophil extracellular traps (NETs). Though distinct RBC-rich and platelet-rich areas were found, AIS patient thrombi were overwhelmingly platelet-rich, with 90% of thrombi containing <40% total RBC-rich contents (1.5 to 37%). Structurally, RBC-rich areas were simple, consisting of tightly packed RBCs in thin fibrin meshwork with sparsely populated nucleated cells and lacked any substantial von Willebrand factor (VWF). Platelet-rich areas were structurally more complex with thick fibrin meshwork associated with VWF. Plenty of leukocytes populated the platelet-rich areas, particularly in the periphery and border areas between platelet-rich and RBC-rich areas. Platelet-rich areas showed abundant activated neutrophils (myeloperoxidase+ and neutrophil-elastase+) containing citrullinated histone-decorated DNA. Citrullinated histone-decorated DNA also accumulated extracellularly, pointing to NETosis by the activated neutrophils. Notably, NETs-containing areas showed strong reactivity to VWF, platelets, and high-mobility group box 1 (HMGB1), signifying a close interplay between these components.
Collapse
|
20
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Shao Y, Du J, Song Y, Li Y, Jing L, Gong Z, Duan R, Yao Y, Jia Y, Jiao S. Elevated plasma D-dimer levels in patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurol 2022; 13:1022785. [PMID: 36457866 PMCID: PMC9707621 DOI: 10.3389/fneur.2022.1022785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 05/22/2024] Open
Abstract
PURPOSE We aimed to explore the difference in coagulation function between healthy individuals and patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis and its relationship with disease severity. METHODS We retrospectively compared coagulation function in 161 patients with first-attack anti-NMDAR encephalitis and 178 healthy individuals. The association between D-dimer levels and disease severity was analyzed using binary logistic regression. Receiver operating characteristic (ROC) curves were used to analyze the predictive value of D-dimer levels for the severity of anti-NMDAR encephalitis. RESULTS Compared to control individuals, patients with anti-NMDAR encephalitis had higher D-dimer levels (median 0.14 vs. 0.05 mg/L, p < 0.001), blood white blood cell (WBC) count (median 8.54 vs. 5.95 × 109/L, p < 0.001), and neutrophil count (median 6.14 vs. 3.1 × 109/L, p < 0.001). D-dimers (median 0.22 vs. 0.10 mg/L, p < 0.001), blood WBC count (median 9.70 vs. 7.70 × 109/L, p < 0.001), neutrophil count (median 7.50 vs. 4.80 × 109/L, p < 0.001), and C-reactive protein (median 2.61 vs. 1.50 mg/l, p = 0.017) were higher; however, eosinophils (median 0.02 vs. 0.06 × 109/L, p < 0.001), and blood calcium (median 2.26 vs. 2.31 mmol/L, p = 0.003) were lower in patients with severe forms of anti-NMDAR encephalitis than in those with mild to moderate forms, and were associated with initial modified Rankin Scale scores. Multivariate analysis showed that D-dimer levels were significantly associated with severity [odds ratio =2.631, 95% confidence interval (CI) = 1.018-6.802, p = 0.046]. The ROC curve was used to analyze the predictive value of D-dimer levels for disease severity. The area under the curve was 0.716 (95% CI = 0.64-0.80, p < 0.001), and the best cut-off value was D-dimer = 0.147 mg/L (sensitivity 0.651; specificity, 0.705). CONCLUSION Serum D-dimer and neutrophil levels were independent predictors of disease severity in patients with first-attack anti-NMDAR encephalitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujie Jiao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Kondreddy V, Keshava S, Das K, Magisetty J, Rao LVM, Pendurthi UR. The Gab2-MALT1 axis regulates thromboinflammation and deep vein thrombosis. Blood 2022; 140:1549-1564. [PMID: 35895897 PMCID: PMC9523376 DOI: 10.1182/blood.2022016424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is the third most common cause of cardiovascular mortality. Several studies suggest that DVT occurs at the intersection of dysregulated inflammation and coagulation upon activation of inflammasome and secretion of interleukin 1β (IL-1β) in restricted venous flow conditions. Our recent studies showed a signaling adapter protein, Gab2 (Grb2-associated binder 2), plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that Gab2 facilitates the assembly of the CBM (CARMA3 [CARD recruited membrane-associated guanylate kinase protein 3]-BCL-10 [B-cell lymphoma 10]-MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) signalosome, which mediates the activation of Rho and NF-κB in endothelial cells. Gene silencing of Gab2 or MALT1, the effector signaling molecule in the CBM signalosome, or pharmacological inhibition of MALT1 with a specific inhibitor, mepazine, significantly reduced IL-1β-induced Rho-dependent exocytosis of P-selectin and von Willebrand factor (VWF) and the subsequent adhesion of neutrophils to endothelial cells. MALT1 inhibition also reduced IL-1β-induced NF-κB-dependent expression of tissue factor and vascular cell adhesion molecule 1. Consistent with the in vitro data, Gab2 deficiency or pharmacological inhibition of MALT1 suppressed the accumulation of monocytes and neutrophils at the injury site and attenuated venous thrombosis induced by the inferior vena cava ligation-induced stenosis or stasis in mice. Overall, our data reveal a previously unrecognized role of the Gab2-MALT1 axis in thromboinflammation. Targeting the Gab2-MALT1 axis with MALT1 inhibitors may become an effective strategy to treat DVT by suppressing thromboinflammation without inducing bleeding complications.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
23
|
Thrombosis and Anticoagulation Therapy in Systemic Lupus Erythematosus. Autoimmune Dis 2022; 2022:3208037. [PMID: 35795725 PMCID: PMC9252713 DOI: 10.1155/2022/3208037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease in which pathogenic autoantibodies and immune complexes are formed and mediate multiple organ and tissue damage. Thrombosis is one of the most common causes of death in patients with SLE. Anticoagulant therapy blocks the vicious cycle between inflammation and thrombosis, which may greatly improve the long-term prognosis of patients with SLE. However, the etiology and pathogenesis of this disease are very complicated and have not yet been fully clarified. Therefore, in the present review, we will highlight the characteristics and mechanisms of thrombosis and focus on the anticoagulant drugs commonly used in clinical practice, thus, providing a theoretical basis for scientific and reasonable anticoagulant therapy in clinical practice.
Collapse
|
24
|
Kuijpers MJE, Heemskerk JWM, Jurk K. Molecular Mechanisms of Hemostasis, Thrombosis and Thrombo-Inflammation. Int J Mol Sci 2022; 23:ijms23105825. [PMID: 35628635 PMCID: PMC9143948 DOI: 10.3390/ijms23105825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Correspondence:
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
- Synapse Research Institute, Kon. Emmaplein 7, 6214 AC Maastricht, The Netherlands
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|