1
|
Hung JE, Brewer RA, Elbakr L, Mollica A, Forguson G, Chan WS, Ivakine EA. Precise template-free correction restores gene function in Tay-Sachs disease while reframing is ineffective. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102401. [PMID: 39759878 PMCID: PMC11699244 DOI: 10.1016/j.omtn.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Tay-Sachs disease is a fatal neurodegenerative disorder caused by HEXA mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting HEXA expression by frameshift. In an engineered cell model, we explore the use of CRISPR-Cas9 for therapeutic editing of c.1278insTATC. Within genomic microduplications, the microhomology-mediated end joining (MMEJ) pathway is favored to repair double-stranded breaks with collateral deletion of one repeat. Protospacer adjacent motif (PAM) constraints on Cas9 endonuclease activity prevented cleavage at the duplication center, the optimal position for MMEJ initiation. Rather, cleavage 1 bp from the c.1278insTATC duplication center spontaneously reconstructed the wild-type sequence at ∼14.7% frequency, with concomitant restoration of normal cellular HexA activity. As an alternative to perfect correction, short insertions or deletions were serially introduced to restore an open reading frame across a 19-bp sequence encompassing c.1278insTATC. Frame-restored variants did not recover significant HexA function, presumably due to structural incompatibility of incurred amino acid insertions. Hence, precise correction of c.1278insTATC is the only therapeutically relevant outcome achieved in this study, with MMEJ highlighted as a potential template-free CRISPR-Cas9 modality to that end.
Collapse
Affiliation(s)
- Joshua E. Hung
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Reid A. Brewer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Lujaina Elbakr
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Georgiana Forguson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Wing Suen Chan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Evgueni A. Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| |
Collapse
|
2
|
Tang A, Yokota T. Is Duchenne gene therapy a suitable treatment despite its immunogenic class effect? Expert Opin Drug Saf 2024:1-17. [PMID: 39720847 DOI: 10.1080/14740338.2024.2447072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allows for gene therapies to better address the genetic cause of the disease. AREAS COVERED This review evaluates the efficacy and safety of emerging DMD gene therapies as of 2024. It also discusses the potential of utrophin upregulation, gene editing, and truncated dystrophin as therapeutic strategies. It highlights safety concerns associated with these therapies, including adverse events and patient deaths. A comprehensive overview of developments covers topics such as CRISPR-Cas9 therapies, micro-dystrophin, and the potential delivery of full-length dystrophin. EXPERT OPINION The FDA's recent approval of delandistrogene moxeparvovec (Elevidys) underscores the promise of gene replacement therapies for DMD patients. Understanding the mechanisms behind the adverse effects and excluding patients with specific pathogenic variants may enhance the safety profiles of these therapies. CRISPR/Cas9 therapies, while promising, face significant regulatory and safety challenges that hinder their clinical application. Optimal DMD therapies should target both skeletal and cardiac muscles to be effective.
Collapse
Affiliation(s)
- Annie Tang
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Siemionow M, Bocian K, Bozyk KT, Ziemiecka A, Siemionow K. Chimeric Cell Therapy Transfers Healthy Donor Mitochondria in Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2024; 20:1819-1829. [PMID: 39017908 PMCID: PMC11445288 DOI: 10.1007/s12015-024-10756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MBN/MBN) and normal and DMD-affected donors (MBN/MBDMD), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.
Collapse
Affiliation(s)
- Maria Siemionow
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, Poznan, 61‑545, Poland.
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
- Polish Stem Cell Bank, FamiCord Group, Warsaw, 00-867, Poland
| | - Katarzyna T Bozyk
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
5
|
Mandalawatta HP, Rajendra K, Fairfax K, Hewitt AW. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102280. [PMID: 39206077 PMCID: PMC11350507 DOI: 10.1016/j.omtn.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
Collapse
Affiliation(s)
| | - K.C. Rajendra
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
6
|
Zou Y, Tang X, Yang S, Chen Z, Liu B, Zhou Z, Peng X, Tang C. New insights into the function of the NLRP3 inflammasome in sarcopenia: mechanism and therapeutic strategies. Metabolism 2024; 158:155972. [PMID: 38972476 DOI: 10.1016/j.metabol.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.
Collapse
Affiliation(s)
- Yunyi Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiangbin Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Siyuan Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| |
Collapse
|
7
|
Masarwy R, Stotsky-Oterin L, Elisha A, Hazan-Halevy I, Peer D. Delivery of nucleic acid based genome editing platforms via lipid nanoparticles: Clinical applications. Adv Drug Deliv Rev 2024; 211:115359. [PMID: 38857763 DOI: 10.1016/j.addr.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
CRISPR/Cas technology presents a promising approach for treating a wide range of diseases, including cancer and genetic disorders. Despite its potential, the translation of CRISPR/Cas into effective in-vivo gene therapy encounters challenges, primarily due to the need for safe and efficient delivery mechanisms. Lipid nanoparticles (LNPs), FDA-approved for RNA delivery, show potential for delivering also CRISPR/Cas, offering the capability to efficiently encapsulate large mRNA molecules with single guide RNAs. However, achieving precise targeting in-vivo remains a significant obstacle, necessitating further research into optimizing LNP formulations. Strategies to enhance specificity, such as modifying LNP structures and incorporating targeting ligands, are explored to improve organ and cell type targeting. Furthermore, the development of base and prime editing technology presents a potential breakthrough, offering precise modifications without generating double-strand breaks (DSBs). Prime editing, particularly when delivered via targeted LNPs, holds promise for treating diverse diseases safely and precisely. This review assesses both the progress made and the persistent challenges faced in using LNP-encapsulated CRISPR-based technologies for therapeutic purposes, with a particular focus on clinical translation.
Collapse
Affiliation(s)
- Razan Masarwy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Irfan M, Majeed H, Iftikhar T, Ravi PK. A review on molecular scissoring with CRISPR/Cas9 genome editing technology. Toxicol Res (Camb) 2024; 13:tfae105. [PMID: 39006883 PMCID: PMC11240166 DOI: 10.1093/toxres/tfae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Genome editing is a technology to make specific changes in the DNA of a cell or an organism. It has significantly altered the landscape of life sciences, facilitating the establishment of exceedingly customized genetic modifications. Among various genome editing technologies, the CRISPR/Cas9 system, a specific endonuclease induces a double stranded DNA break and enabling modifications to the genome, has surfaced as a formidable and adaptable instrument. Its significance cannot be overstated, as it not only allows for the manipulation of genomes in model organisms but also holds great potential for revolutionary advances in medicine, particularly in treating genetic diseases. This review paper explores the remarkable journey of CRISPR/Cas9, its natural function, mechanisms, and transformative impact on genome editing and finally the use of artificial intelligence and other intelligent manufacturing tools used. The introduction provides the background on genome editing, emphasizing the emergence and significance of CRISPR/Cas9. Subsequent sections comprehensively elucidate its natural function, disease modeling, agriculture, and biotechnology, address therapeutic applications, and ongoing clinical trials while also discussing prospects and ethical implications. We summarized the key findings, indicating that CRISPR/Cas9 has empowered the creation of disease-specific animal models. This provides invaluable insights into pathogenic mechanisms and opens new avenues for drug discovery, reaffirming the transformative impact of CRISPR/Cas9 on genome editing. Finally we discussed the importance of continued research and collaboration for comprehensive utilization of the inherent capabilities of this molecular precision tool in shaping forthcoming advancements.
Collapse
Affiliation(s)
- Muskan Irfan
- Department of Biotechnology, University of Management and Technology (UMT), Lahore, Sialkot Campus, Sialkot 51310, Pakistan
| | - Hammad Majeed
- Department of Chemistry, University of Management and Technology (UMT), Lahore, Sialkot Campus, Sialkot 51310, Pakistan
| | - Tehreema Iftikhar
- Applied Botany Lab, Department of Botany, Government College University, 54000, Lahore, Pakistan
| | - Pritam Kumar Ravi
- Computer Applications Department, Ganesh Lal Agarwal College, Nilamber-Pitamber University, Jharkhand, 822101, India
| |
Collapse
|
9
|
Antonopoulos AS, Xintarakou A, Protonotarios A, Lazaros G, Miliou A, Tsioufis K, Vlachopoulos C. Imagenetics for Precision Medicine in Dilated Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004301. [PMID: 38415367 DOI: 10.1161/circgen.123.004301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder of nonischemic etiology associated with heart failure development and the risk of malignant ventricular arrhythmias and sudden cardiac death. A tailored approach to risk stratification and prevention of sudden cardiac death is required in genetic DCM given its variable presentation and phenotypic severity. Currently, advances in cardiogenetics have shed light on disease mechanisms, the complex genetic architecture of DCM, polygenic contributors to disease susceptibility and the role of environmental triggers. Parallel advances in imaging have also enhanced disease recognition and the identification of the wide spectrum of phenotypes falling under the DCM umbrella. Genotype-phenotype associations have been also established for specific subtypes of DCM, such as DSP (desmoplakin) or FLNC (filamin-C) cardiomyopathy but overall, they remain elusive and not readily identifiable. Also, despite the accumulated knowledge on disease mechanisms, certain aspects remain still unclear, such as which patients with DCM are at risk for disease progression or remission after treatment. Imagenetics, that is, the combination of imaging and genetics, is expected to further advance research in the field and contribute to precision medicine in DCM management and treatment. In the present article, we review the existing literature in the field, summarize the established knowledge and emerging data on the value of genetics and imaging in establishing genotype-phenotype associations in DCM and in clinical decision making for DCM patients.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Anastasia Xintarakou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, United Kingdom (A.P.)
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom (A.P.)
| | - George Lazaros
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Antigoni Miliou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Charalambos Vlachopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| |
Collapse
|
10
|
Davis DJ, Yeddula SGR. CRISPR Advancements for Human Health. MISSOURI MEDICINE 2024; 121:170-176. [PMID: 38694604 PMCID: PMC11057861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has emerged as a powerful gene editing technology that is revolutionizing biomedical research and clinical medicine. The CRISPR system allows scientists to rewrite the genetic code in virtually any organism. This review provides a comprehensive overview of CRISPR and its clinical applications. We first introduce the CRISPR system and explain how it works as a gene editing tool. We then highlight current and potential clinical uses of CRISPR in areas such as genetic disorders, infectious diseases, cancer, and regenerative medicine. Challenges that need to be addressed for the successful translation of CRISPR to the clinic are also discussed. Overall, CRISPR holds great promise to advance precision medicine, but ongoing research is still required to optimize delivery, efficacy, and safety.
Collapse
Affiliation(s)
- Daniel J Davis
- Assistant Director - Animal Modeling Core; Assistant Research Professor - Department of Veterinary Pathobiology; and Comparative Medicine Program Faculty, University of Missouri - Columbia, Columbia, Missouri
| | - Sai Goutham Reddy Yeddula
- PhD candidate in the Department of Animal Sciences, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
11
|
Agrawal P, Harish V, Mohd S, Singh SK, Tewari D, Tatiparthi R, Harshita, Vishwas S, Sutrapu S, Dua K, Gulati M. Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies. Life Sci 2023; 330:122003. [PMID: 37544379 DOI: 10.1016/j.lfs.2023.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder brought on by mutations in the DMD gene, which prevent muscle cells from expressing the dystrophin protein. CRISPR/Cas9 technology has evolved as potential option to treat DMD due to its ability to permanently skip exons, restoring the disrupted DMD reading frame and leading to dystrophin restoration. Even though, having potential to treat DMD, the delivery, safety and efficacy of this technology is still challenging. Several delivery methods, including viral vectors, nanoparticles, and electroporation, have been explored to deliver CRISPR/Cas9 to the targeted cells. Despite the potential of CRISPR/Cas9 technology in the treatment of DMD, several limitations need to be addressed. The off-target effects of CRISPR/Cas9 are a major concern that needs to be addressed to avoid unintended mutations. The delivery of CRISPR/Cas9 to the target cells and the immune response due to the viral vectors used for delivery are a few other limitations. The clinical trials of CRISPR/Cas9 for DMD provide valuable insights into the safety and efficacy of this technology in humans and the limitations that need to be known. Therefore, in this review we insightfully discussed the challenges and limitations of CRISPR/Cas9 in the treatment of DMD and delivery strategies used, and the ongoing efforts to overcome these challenges and restore dystrophin expression in DMD patients in the ongoing trials.
Collapse
Affiliation(s)
- Pooja Agrawal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramanjireddy Tatiparthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Harshita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Srinivas Sutrapu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
12
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Egorova TV, Polikarpova AV, Vassilieva SG, Dzhenkova MA, Savchenko IM, Velyaev OA, Shmidt AA, Soldatov VO, Pokrovskii MV, Deykin AV, Bardina MV. CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein. Mol Ther Methods Clin Dev 2023; 30:161-180. [PMID: 37457303 PMCID: PMC10339130 DOI: 10.1016/j.omtm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.
Collapse
Affiliation(s)
- Tatiana V. Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Anna V. Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A. Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M. Savchenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Oleg A. Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna A. Shmidt
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladislav O. Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Mikhail V. Pokrovskii
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Alexey V. Deykin
- Marlin Biotech LLC, Sochi 354340, Russia
- Joint Center for Genetic Technologies, Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod 308015, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
14
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
15
|
Newborn screening and genomic analysis of duchenne muscular dystrophy in Henan, China. Clin Chim Acta 2023; 539:90-96. [PMID: 36516925 DOI: 10.1016/j.cca.2022.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is a rare disorder caused by mutations in the dystrophin gene. Recent availability in treatment for DMD raised the need of early screening in our center, but newborn screening (NBS) for DMD has not been carried out in Henan Province. OBJECTIVES To determine an optimal cutoff value through the quantitative determination of the creatine kinase isoform MM (CK-MM) concentration dried blood spot (DBS) to identify male DMD, and to evaluate assess the detection rate and mutation spectrum of DMD in Henan, China. METHODS The CK-MM level in DBS was measured using with a GSP® neonatal creatine kinase -MM kit from 13,110 male newborns to establish the cut-off value for CK-MM. Multiplex ligation-dependent probe amplification (MLPA) were carried out for infants with elevated CK levels to detect DMD gene deletions/ duplications, NGS and sanger sequencing were then applied to exclude MLPA-negative samples to single-nucleotide variants. Phenotype-genotype correlations were analyzed using REVEL For novel missense mutations. RESULTS Statistical analysis of CK-MM value of the 13,110 neonates suggested that the cut-off value may be set as 472 ng/mL. 3 cases of DMD were screened among 13,110 newborns, all of whom had CK-MM levels >600 ng/mL. We detected 4 rare variants in DMD gene, including 2 exon deletions (deletion of exon 52 and deletion from exon 3 to exon 7) and 2 point variants (c.9568C>T and c.4030C>T). Two cases were all exon deletions, one case was compound heterozygous variants. CONCLUSIONS The estimated incidence of male neonatal DMD was 1:4,370 in Henan province. NBS is of great value to the early intervention and treatment of the disease, and is fundamental to support public health decision-making. The experience from this study provided a model that will allow further expansion and facilitate establishment a universal public health screening in Henan hospital systems.
Collapse
|
16
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
17
|
Huang C, Li Q, Li J. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:471-500. [PMID: 37724161 PMCID: PMC10388762 DOI: 10.1515/mr-2022-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
Advancements in genome editing enable permanent changes of DNA sequences in a site-specific manner, providing promising approaches for treating human genetic disorders caused by gene mutations. Recently, genome editing has been applied and achieved significant progress in treating inherited genetic disorders that remain incurable by conventional therapy. Here, we present a review of various programmable genome editing systems with their principles, advantages, and limitations. We introduce their recent applications for treating inherited diseases in the clinic, including sickle cell disease (SCD), β-thalassemia, Leber congenital amaurosis (LCA), heterozygous familial hypercholesterolemia (HeFH), etc. We also discuss the paradigm of ex vivo and in vivo editing and highlight the promise of somatic editing and the challenge of germline editing. Finally, we propose future directions in delivery, cutting, and repairing to improve the scope of clinical applications.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|