1
|
Wu HL, Zhang SL, Feng X, Zhang YQ, Zhou BJ, Cao M, Wang YP, Guo BS, Hou ZX. Possible Mechanism of Sucrose and Trehalose-6-Phosphate in Regulating the Secondary Flower on the Strong Upright Spring Shoots of Blueberry Planted in Greenhouse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2350. [PMID: 39273834 PMCID: PMC11397707 DOI: 10.3390/plants13172350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed in blueberries planted in the greenhouse. To reveal the cause and possible regulatory mechanism of the phenomenon, we clarified the phenological characteristics of flower bud differentiation and development on the spring shoots by combining phenological phenotype with anatomical observation. Furthermore, the changes in carbohydrates, trehalose-6-phosphate (Tre6P), and the relationship among the key enzyme regulatory genes for Tre6P metabolism and the key regulatory genes for flower formation during the differentiation process of apical buds and axillary buds were investigated. The results showed that the process of flower bud differentiation and flowering of apical and axillary buds was consistent, accompanied by a large amount of carbohydrate consumption. This process was positively correlated with the expression trends of VcTPS1/2, VcSnRK1, VcFT, VcLFY2, VcSPL43, VcAP1, and VcDAM in general, and negatively correlated with that of VcTPP. In addition, there is a certain difference in the differentiation progress of flower buds between the apical and axillary buds. Compared with axillary buds, apical buds had higher contents of sucrose, fructose, glucose, Tre6P, and higher expression levels of VcTPS2, VcFT, VcSPL43, and VcAP1. Moreover, VcTPS1 and VcTPS2 were more closely related to the physiological substances (sucrose and Tre6P) in axillary bud and apical bud differentiation, respectively. It was suggested that sucrose and trehalose-6-phosphate play a crucial role in promoting flower bud differentiation in strong upright spring shoots, and VcTPS1 and VcTPS2 might play a central role in these activities. Our study provided substantial sight for further study on the mechanism of multiple flowering of blueberries and laid a foundation for the regulation and utilization of the phenomenon of multiple flowering in a growing season of perennial woody plants.
Collapse
Affiliation(s)
- Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Ping Wang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bao-Shi Guo
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Yu H, Liu P, Xu J, Wang T, Lu T, Gao J, Li Q, Jiang W. The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1516. [PMID: 38891324 PMCID: PMC11174464 DOI: 10.3390/plants13111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
To achieve higher economic returns, we employ inexpensive valley electricity for night-time supplementary lighting (NSL) of tomato plants, investigating the effects of various durations of NSL on the growth, yield, and quality of tomato. Tomato plants were treated with supplementary light for a period of 0 h, 3 h, 4 h, and 5 h during the autumn-winter season. The findings revealed superior growth and yield of tomato plants exposed to 3 h, 4 h, and 5 h of NSL compared to their untreated counterparts. Notably, providing lighting for 3 h demonstrated greater yields per plant and per trough than 5 h exposure. To investigate if a reduced duration of NSL would display similar effects on the growth and yield of tomato plants, tomato plants received supplementary light for 0 h, 1 h, 2 h, and 3 h at night during the early spring season. Compared to the control group, the stem diameter, chlorophyll content, photosynthesis rate, and yield of tomatoes significantly increased upon supplementation with lighting. Furthermore, the input-output ratios of 1 h, 2 h, and 3 h NSL were calculated as 1:10.11, 1:4.38, and 1:3.92, respectively. Nonetheless, there was no detectable difference in yield between the 1 h, 2 h, and 3 h NSL groups. These findings imply that supplemental LED lighting at night affects tomato growth in the form of light signals. Night-time supplemental lighting duration of 1 h is beneficial to plant growth and yield, and its input-output ratio is the lowest, which is an appropriate NSL mode for tomato cultivation.
Collapse
Affiliation(s)
- Hongjun Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Peng Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Jingcheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
- Taizhou Academy of Agricultural Sciences, Taizhou 318014, China
| | - Tanyu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Qiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Weijie Jiang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| |
Collapse
|
3
|
Dong M, Yin T, Gao J, Zhang H, Yang F, Wang S, Long C, Fu X, Liu H, Guo L, Zhou D. Transcriptome differential expression analysis of defoliation of two different lemon varieties. PeerJ 2024; 12:e17218. [PMID: 38685937 PMCID: PMC11057431 DOI: 10.7717/peerj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits. However, it suffers from severe winter defoliation that leads to a large loss of organic nutrients and seriously affects the tree's growth and development as well as the yield of the following year, and the mechanism of its response to defoliation is still unclear. In order to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemon, two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials. The petiole abscission zone (AZ) was collected at three different defoliation stages, namely, the pre-defoliation stage (CQ), the mid-defoliation stage (CZ), and the post-defoliation stage (CH). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 898, 4,856, and 3,126 differentially expressed genes (DEGs) were obtained in CQ, CZ, and CH, respectively, and the number of DEGs in CZ was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to oxidoreductase, hydrolase, DNA binding transcription factor, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in CZ and involved plant hormone signal transduction, phenylpropanoid biosynthesis, glutathione metabolism, and alpha-linolenic acid metabolism. The expression trends of some DEGs suggested their roles in regulating defoliation in lemon. Eight gene families were obtained by combining DEG clustering analysis and weighted gene co-expression network analysis (WGCNA), including β-glucosidase, AUX/IAA, SAUR, GH3, POD, and WRKY, suggesting that these genes may be involved in the regulation of lemon leaf abscission. The above conclusions enrich the research related to lemon leaf abscission and provide reliable data for the screening of lemon defoliation candidate genes and analysis of defoliation pathways.
Collapse
Affiliation(s)
- Meichao Dong
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tuo Yin
- The Key Laboratory of Biodiversity Conservation of Southwest China, National Forestry and Grassland Administration, College of Forestry, Southwest Forestry University, Kunming, China
| | - Junyan Gao
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Hanyao Zhang
- The Key Laboratory of Biodiversity Conservation of Southwest China, National Forestry and Grassland Administration, College of Forestry, Southwest Forestry University, Kunming, China
| | - Fan Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Chunrui Long
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaomeng Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Hongming Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Lina Guo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Dongguo Zhou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| |
Collapse
|
4
|
Zhao N, Geng Z, Zhao G, Liu J, An Z, Zhang H, Ai P, Wang Y. Integrated analysis of the transcriptome and metabolome reveals the molecular mechanism regulating cotton boll abscission under low light intensity. BMC PLANT BIOLOGY 2024; 24:182. [PMID: 38475753 DOI: 10.1186/s12870-024-04862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Zetong An
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, P.R. China.
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China.
| |
Collapse
|
5
|
Meng S, Xiang H, Yang X, Ye Y, Han L, Xu T, Liu Y, Wang F, Tan C, Qi M, Li T. Effects of Low Temperature on Pedicel Abscission and Auxin Synthesis Key Genes of Tomato. Int J Mol Sci 2023; 24:ijms24119186. [PMID: 37298137 DOI: 10.3390/ijms24119186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cold stress usually causes the abscission of floral organs and a decline in fruit setting rate, seriously reducing tomato yield. Auxin is one of the key hormones that affects the abscission of plant floral organs; the YUCCA (YUC) family is a key gene in the auxin biosynthesis pathway, but there are few research reports on the abscission of tomato flower organs. This experiment found that, under low temperature stress, the expression of auxin synthesis genes increased in stamens but decreased in pistils. Low temperature treatment decreased pollen vigor and pollen germination rate. Low night temperature reduced the tomato fruit setting rate and led to parthenocarpy, and the treatment effect was most obvious in the early stage of tomato pollen development. The abscission rate of tomato pTRV-Slfzy3 and pTRV-Slfzy5 silenced plants was higher than that of the control, which is the key auxin synthesis gene affecting the abscission rate. The expression of Solyc07g043580 was down-regulated after low night temperature treatment. Solyc07g043580 encodes the bHLH-type transcription factor SlPIF4. It has been reported that PIF4 regulates the expression of auxin synthesis and synthesis genes, and is a key protein in the interaction between low temperature stress and light in regulating plant development.
Collapse
Affiliation(s)
- Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Hengzuo Xiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Xiaoru Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Yunzhu Ye
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Leilei Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
6
|
Production of Amylase by Aspergillus subflavus and Aspergillus fumigatus from flamevine flower (Pyrostegia venusta (Ker-Gawl.) Miers): A Tropical Plant in Bedugul Botanical Garden, Bali, Indonesia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrostegia venusta is known as an ornamental plant with its source of antioxidants, cytotoxic, anti-inflammatory, and anti-HIV compounds. Ephypitic molds are potentially co-existed on the surface of this flower since it contains essential nutrients which support their growth. On the other hand, molds produce several enzymes that might involve flower growth. The presence of ephypitic molds on this flower provides information about its ability to produce amylase. This study successfully isolated molds from August flower (P. venusta) originating from Taman Nasional Bedugul, Bali, Indonesia. The study aimed to isolate potential amylase producer strains and optimize the enzyme production using Solid-State Fermentation (SSF) method. Ten mold isolates belonging to Universitas Negeri Jakarta Culture Collection (UNJCC) were selected according to their amylolytic index (IA) values, morphological identification, and colony count number. Selected strains were optimized for its growth to produce amylase using the SSF method under different temperatures (30, 40, 50°C) and pH (6, 7, 8) with a wheat brain fermentation medium. Results showed that UNJCC F100 (6.53 × 108 CFU/ml) and UNJCC F106 (9.83 x 108 CFU/ml) are the two isolates with the highest IA values of 1.34 ± 0.1 and 1.08 ± 0.12 among all isolates. Based on molecular identification using ITS region, UNJCC F100 and UNJCC F106 were identified as A. subflavus (97% homology) and A. fumigatus (99.52% homology), respectively. This study exhibited that both isolate UNJCC F100 and isolate UNJCC F106 have optimal amylase production conditions at 30°C and pH 6. The enzyme produced was 19.99 U/ml at 30°C and 34.33 U/ml at pH 6 for isolate UNJCC F100, and for isolate UNJCC F106 is 28.55±3.80 U/ml. The two isolates are potentially used for amylase production, referring to the specific environmental condition. However, to generate a higher amount with amylase activity, other external variables such as medium used, inoculum concentration, and fermentation method are important to consider further for a larger application.
Collapse
|