1
|
Simpson HL, Smits E, Moerkens R, Wijmenga C, Mooiweer J, Jonkers IH, Withoff S. Human organoids and organ-on-chips in coeliac disease research. Trends Mol Med 2024:S1471-4914(24)00270-3. [PMID: 39448329 DOI: 10.1016/j.molmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.
Collapse
Affiliation(s)
- Hanna L Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Eline Smits
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
2
|
Parente IA, Chiara L, Bertoni S. Exploring the potential of human intestinal organoids: Applications, challenges, and future directions. Life Sci 2024; 352:122875. [PMID: 38942359 DOI: 10.1016/j.lfs.2024.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The complex and dynamic environment of the gastrointestinal tract shapes one of the fastest renewing tissues in the human body, the intestinal epithelium. Considering the lack of human preclinical studies, reliable models that mimic the intestinal environment are increasingly explored. Patient-derived intestinal organoids are powerful tools that recapitulate in vitro many pathophysiological features of the human intestine. In this review, the possible applications of human intestinal organoids in different research fields are highlighted. From physiologically relevant to intestinal disease modeling, regenerative medicine, and toxicology studies, the potential of intestinal organoids will be here presented and discussed. Despite the remarkable opportunities offered, limitations related to ethical concerns, tissue collection, reproducibility, and methodologies may hinder the full exploitation of this cell-based model into high throughput studies and clinical practice. Currently, distinct approaches can be used to overcome the numerous challenges found along the way and to allow the full implementation of this ground-breaking technology.
Collapse
Affiliation(s)
- Inês A Parente
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Linda Chiara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Simona Bertoni
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
3
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Malekahmadi S, Asri N, Forouzesh F, Saneifard H, Rezaei-Tavirani M, Rostami-Nejad M. Evaluation of genetic association between celiac disease and type 1 diabetes. J Diabetes Metab Disord 2024; 23:1329-1336. [PMID: 38932832 PMCID: PMC11196513 DOI: 10.1007/s40200-024-01429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 06/28/2024]
Abstract
Purpose Celiac disease (CD) is a chronic autoimmune disorder with a common genetic pathogenesis with type 1 diabetes (T1D). This study aimed to investigate the immune regulation in patients with both CD and T1D. Methods A total of 29 CD patients, 29 T1D patients, and 16 patients with both CD and T1D, along with 30 healthy controls (HCs) were included. The mRNA expression levels of TNF-α, IL-6, IL-2, and CTLA4 were evaluated in peripheral blood samples. Results The results showed that in patients with CD, T1D and CD/T1D, TNF-α mRNA levels were significantly increased (P = 0.0009, 0.0001, and 0.008, respectively), while CTLA4 mRNA levels were significantly decreased in them compared to the control group (P = 0.0009, 0.0001, and 0.004, respectively). IL-2 mRNA expression levels were also significantly higher in CD (P = 0.01) and comorbid CD/T1D (P = 0.01) patients than in the control group. There was no significant difference in terms of IL-6 expression between studied groups (P > 0.05). Conclusions TNF-α mRNA exhibited potential diagnostic value for distinguishing CD, T1D, and comorbid CD/T1D patients from HCs. These findings contribute to our understanding of the shared genetic factors and potential mechanisms underlying CD and T1D, which can aid in improved diagnostic methods and treatment approaches for these conditions.
Collapse
Affiliation(s)
- Sayyad Malekahmadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran MedicalSciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran MedicalSciences, Islamic Azad University, Tehran, Iran
| | - Hedyeh Saneifard
- Pediatric Endocrinology and Metabolism Department, Faculty of Medicine, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther 2024; 15:155. [PMID: 38816841 PMCID: PMC11140936 DOI: 10.1186/s13287-024-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.
Collapse
Affiliation(s)
- Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hui Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Flood P, Hanrahan N, Nally K, Melgar S. Human intestinal organoids: Modeling gastrointestinal physiology and immunopathology - current applications and limitations. Eur J Immunol 2024; 54:e2250248. [PMID: 37957831 DOI: 10.1002/eji.202250248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/15/2023]
Abstract
Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication. They are accompanied by characteristic intestinal symptoms and have significant societal, economic, and healthcare burdens. To develop new treatment options, cutting-edge research is required to investigate their etiology and pathology. Human intestinal organoids derived from patient tissue recapitulate the key physiological and immunopathological aspects of these conditions, providing a promising platform for elucidating disease mechanisms. This review will summarize recent reports on patient-derived human small intestinal and colonic organoids and highlight how these models have been used to study intestinal epithelial functions in the context of inflammation, altered physiology, and immune response. Furthermore, it will elaborate on the various organoid systems in use and the techniques/assays currently available to study epithelial functions. Finally, it will conclude by discussing the limitations and future perspectives of organoid technology.
Collapse
Affiliation(s)
- Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Ruera CN, Perez F, Iribarren ML, Guzman L, Menendez L, Garbi L, Chirdo FG. Coexistence of apoptosis, pyroptosis, and necroptosis pathways in celiac disease. Clin Exp Immunol 2023; 214:328-340. [PMID: 37455655 PMCID: PMC10719221 DOI: 10.1093/cei/uxad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023] Open
Abstract
Usually, the massive elimination of cells under steady-state conditions occurs by apoptosis, which is also acknowledged to explain the loss of enterocytes in the small intestine of celiac disease (CD) patients. However, little is known about the role of proinflammatory cell death pathways in CD. Here, we have used confocal microscopy, western blot, and RT-qPCR analysis to assess the presence of regulated cell death pathways in the duodenum of CD patients. We found an increased number of dead (TUNEL+) cells in the lamina propria of small intestine of CD patients, most of them are plasma cells (CD138+). Many dying cells expressed FAS and were in close contact with CD3+ T cells. Caspase-8 and caspase-3 expression was increased in CD, confirming the activation of apoptosis. In parallel, caspase-1, IL-1β, and GSDMD were increased in CD samples indicating the presence of inflammasome-dependent pyroptosis. Necroptosis was also present, as shown by the increase of RIPK3 and phosphorylate MLKL. Analysis of published databases confirmed that CD has an increased expression of regulated cell death -related genes. Together, these results reveal that CD is characterized by cell death of different kinds. In particular, the presence of proinflammatory cell death pathways may contribute to mucosal damage.
Collapse
Affiliation(s)
- Carolina N Ruera
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Federico Perez
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Luz Iribarren
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luciana Guzman
- Servicio de Gastroenterología Hospital de Niños “Sor María Ludovica”, La Plata, Argentina
| | - Lorena Menendez
- Servicio de Gastroenterología Hospital de Niños “Sor María Ludovica”, La Plata, Argentina
| | - Laura Garbi
- Servicio de Gastroenterología, HospitalSan Martin, La Plata, Argentina
| | - Fernando G Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
8
|
Rizzi A, Di Gioacchino M, Gammeri L, Inchingolo R, Chini R, Santilli F, Nucera E, Gangemi S. The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. Cells 2023; 12:1910. [PMID: 37508573 PMCID: PMC10378400 DOI: 10.3390/cells12141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Center for Advanced Studies and Technology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Santilli
- Center for Advanced Studies and Technology, G. d'Annunzio University, 66100 Chieti, Italy
| | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Furone F, Bellomo C, Carpinelli M, Nicoletti M, Hewa-Munasinghege FN, Mordaa M, Mandile R, Barone MV, Nanayakkara M. The protective role of Lactobacillus rhamnosus GG postbiotic on the alteration of autophagy and inflammation pathways induced by gliadin in intestinal models. Front Med (Lausanne) 2023; 10:1085578. [PMID: 37215707 PMCID: PMC10192745 DOI: 10.3389/fmed.2023.1085578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy caused by an abnormal immune response to gliadin peptides in genetically predisposed individuals. For people with CD, the only available therapy thus far is the lifelong necessity for a gluten-free diet (GFD). Innovative therapies include probiotics and postbiotics as dietary supplements, both of which may benefit the host. Therefore, the present study aimed to investigate the possible beneficial effects of the postbiotic Lactobacillus rhamnosus GG (LGG) in preventing the effects induced by indigested gliadin peptides on the intestinal epithelium. In this study, these effects on the mTOR pathway, autophagic function, and inflammation have been evaluated. Furthermore, in this study, we stimulated the Caco-2 cells with the undigested gliadin peptide (P31-43) and with the crude gliadin peptic-tryptic peptides (PTG) and pretreated the samples with LGG postbiotics (ATCC 53103) (1 × 108). In this study, the effects induced by gliadin before and after pretreatment have also been investigated. The phosphorylation levels of mTOR, p70S6K, and p4EBP-1 were increased after treatment with PTG and P31-43, indicating that the intestinal epithelial cells responded to the gliadin peptides by activating the mTOR pathway. Moreover, in this study, an increase in the phosphorylation of NF-κβ was observed. Pretreatment with LGG postbiotic prevented both the activation of the mTOR pathway and the NF-κβ phosphorylation. In addition, P31-43 reduced LC3II staining, and the postbiotic treatment was able to prevent this reduction. Subsequently, to evaluate the inflammation in a more complex intestinal model, the intestinal organoids derived from celiac disease patient biopsies (GCD-CD) and controls (CTR) were cultured. Stimulation with peptide 31-43 in the CD intestinal organoids induced NF-κβ activation, and pretreatment with LGG postbiotic could prevent it. These data showed that the LGG postbiotic can prevent the P31-43-mediated increase in inflammation in both Caco-2 cells and in intestinal organoids derived from CD patients.
Collapse
Affiliation(s)
- Francesca Furone
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Claudia Bellomo
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Martina Carpinelli
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | | | - Majed Mordaa
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| | - Roberta Mandile
- Department of Translational Medical Sciences, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Paediatrics), University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
11
|
Altered Posttranslational Modification of Microtubules Contributes to Disturbed Enterocyte Morphology in Celiac Disease. Int J Mol Sci 2023; 24:ijms24032635. [PMID: 36768957 PMCID: PMC9917072 DOI: 10.3390/ijms24032635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Celiac disease (CD) represents a frequent autoimmune disease triggered by the ingestion of gliadin in genetically predisposed individuals. The alteration of enterocytes and brush border membrane morphology have been repetitively demonstrated, but the underlying mechanisms remain unclear. Microtubules represent a major element of the cytoskeleton and exert multiple functions depending on their tyrosination status. The aim of our study was to investigate whether posttranslational modification of microtubules was altered in the context of CD and whether this mechanism contributed to morphological changes of CD enterocytes. We examined the expression of tubulin tyrosine ligase (TTL) and vasohibin-2 (VASH2) and the level of detyrosinated and acetylated tubulin in duodenal biopsies and Caco-2 cells by immunoblot and immunofluorescence microcopy. Electron microscopy was performed to investigate the subcellular distribution of detyrosinated tubulin and brush border membrane architecture in CD biopsies and Madin-Darby Canine Kidney type II (MDCK) cells lacking TTL. CD enterocytes and Caco-2 cells stimulated with digested gliadin or IFN-y displayed a flattened cell morphology. This disturbed cellular architecture was accompanied by an increased amount of detyrosinated and acetylated tubulin and corresponding high expression of VASH2 and low expression of TTL. The altered posttranslational modification of tubulin was reversible after the introduction of the gluten-free diet. CD enterocytes and MDCK cells deficient in TTL displayed a reduced cell height along with an increased cell width and a reduced number of apical microvilli. Our results provide a functional explanation for the observed morphological alterations of the enterocytes observed in CD and provide diagnostic potential of the tyrosination status of microtubules as an early marker of villous atrophy and CD inflammation.
Collapse
|
12
|
Sposito S, Secondo A, Romanelli AM, Montefusco A, Nanayakkara M, Auricchio S, Barone MV, Caputo I, Paolella G. Peculiar Ca 2+ Homeostasis, ER Stress, Autophagy, and TG2 Modulation in Celiac Disease Patient-Derived Cells. Int J Mol Sci 2023; 24:ijms24021495. [PMID: 36675008 PMCID: PMC9866799 DOI: 10.3390/ijms24021495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype. We analyzed Ca2+ levels by single-cell video-imaging and TG2 activity by a microplate assay. Western blots and PCR analyses were employed to monitor TG2 levels and markers of ER stress and autophagy. We found that the cytosolic and ER Ca2+ level of CD cells was lower than in control cells. Treatments with thapsigargin differently activated TG2 in control and CD cells, as well as caused slightly different responses regarding the activation of ER stress and the expression of autophagic markers. On the whole, our findings identified further molecular features of the celiac cellular phenotype and highlighted that CD cells appeared less capable of adapting to a stress condition and responding in a physiological way.
Collapse
Affiliation(s)
- Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University Federico II, 80138 Naples, Italy
| | | | - Antonio Montefusco
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, 80138 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, 80138 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, 80138 Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, 80138 Naples, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, 80138 Naples, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
13
|
Nanayakkara M, Bellomo C, Furone F, Maglio M, Marano A, Lania G, Porpora M, Nicoletti M, Auricchio S, Barone MV. PTPRK, an EGFR Phosphatase, Is Decreased in CeD Biopsies and Intestinal Organoids. Cells 2022; 12:cells12010115. [PMID: 36611909 PMCID: PMC9818839 DOI: 10.3390/cells12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND & AIMS Celiac disease (CeD) is an immune-mediated enteropathy triggered in genetically susceptible (HLA-DQ2/8) individuals by a group of wheat proteins and related prolamins from cereals. The celiac intestine is characterized by an inversion of the differentiation/proliferation program of the enterocytes, with an increase in the proliferative compartment and crypt hyperplasia, which are the mechanisms that regulate the increased proliferation in CeD that arenot completely understood.The aim of this study is to understand the role of Protein Tyrosine Phosphatase Receptor Type K (PTPRK), a nodal phosphatase that regulates EGFR activation in the proliferation of the enterocytes from CeD biopsies and organoids. METHODS The levels of PTPRK were evaluated by RT PCR, western blot (WB) and immunofluorescence techniques in intestinal biopsies and organoids from CeD patients and controls. Additionally, pEGFR and pERK were evaluated by WB and proliferation by BrdU incorporation. PTPRK si-RNA was silenced in CTR organoids and was overexpressed in CeD organoids. RESULTS PTPRK was reduced in Gluten Containing Diet-Celiac Disease (GCD-CeD) and Potential-Celiac Disease(Pot-CeD) biopsies (p < 0.01-p < 0.05) whereas pEGFR (p < 0.01 p < 0.01), pERK (p < 0.01 p < 0.01) and proliferation were increased. (p < 0.05 p < 0.05) respect to the controls.The CeD organoids reproduced these same alterations. Silencing of PTPRK in CTR organoids increased pEGFR, pERK and proliferation. The overexpression of PTPRK in CeD organoids reduced pEGFR, pERK and proliferation. CONCLUSIONS modulation of PTPRK levels can reduce or increase pEGFR, pERK and proliferation in CeD or CTR organoids, respectively. The CeD organoids can be a good model to study the mechanisms of the disease.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonella Marano
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuliana Lania
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817464568; Fax: +39-0817463116
| |
Collapse
|
14
|
Giuffrè M, Gazzin S, Zoratti C, Llido JP, Lanza G, Tiribelli C, Moretti R. Celiac Disease and Neurological Manifestations: From Gluten to Neuroinflammation. Int J Mol Sci 2022; 23:15564. [PMID: 36555205 PMCID: PMC9779232 DOI: 10.3390/ijms232415564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) is a complex multi-organ disease with a high prevalence of extra-intestinal involvement, including neurological and psychiatric manifestations, such as cerebellar ataxia, peripheral neuropathy, epilepsy, headache, cognitive impairment, and depression. However, the mechanisms behind the neurological involvement in CD remain controversial. Recent evidence shows these can be related to gluten-mediated pathogenesis, including antibody cross-reaction, deposition of immune-complex, direct neurotoxicity, and in severe cases, vitamins or nutrients deficiency. Here, we have summarized new evidence related to gut microbiota and the so-called "gut-liver-brain axis" involved in CD-related neurological manifestations. Additionally, there has yet to be an agreement on whether serological or neurophysiological findings can effectively early diagnose and properly monitor CD-associated neurological involvement; notably, most of them can revert to normal with a rigorous gluten-free diet. Moving from a molecular level to a symptom-based approach, clinical, serological, and neurophysiology data might help to disentangle the many-faceted interactions between the gut and brain in CD. Eventually, the identification of multimodal biomarkers might help diagnose, monitor, and improve the quality of life of patients with "neuroCD".
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Silvia Gazzin
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
| | - Caterina Zoratti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - John Paul Llido
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
- Philippine Council for Healthcare Research and Development, Department of Science and Technology, Bicutan Taguig City 1631, Philippines
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudio Tiribelli
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
15
|
IL-1β blockade prevents cell death and mucosal damage of the small intestine in a model of sterile inflammation. Immunol Lett 2022; 251-252:56-62. [PMID: 36309159 DOI: 10.1016/j.imlet.2022.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
The intestinal mucosa is covered by a layer of epithelial cells that is constantly challenged by commensal, opportunistic, and pathogenic microorganisms, their components, and harmful compounds. Any inflammatory response to these materials must be tightly controlled to limit tissue damage and restore the integrity of the mucosal barrier. We have shown previously that production of IL-1β via activation of the inflammasome can lead to mucosal damage in the small intestinal pathology that occurs after intragastric administration of a gluten derived peptide, p31-43. Here we show that specific inhibition of caspase-1 or NLRP3 abolishes the damage induced by p31-43, and that antibody-mediated blocking of IL-1β inhibits the both the histological changes and the induction of apoptosis and caspase-3 activation driven by p31-43. Understanding the role of IL-1β in sterile inflammation may help to understand chronic inflammatory pathological processes, and design new intervention strategies.
Collapse
|
16
|
Dotti I, Mayorgas A, Salas A. Generation of human colon organoids from healthy and inflammatory bowel disease mucosa. PLoS One 2022; 17:e0276195. [PMID: 36301950 PMCID: PMC9612551 DOI: 10.1371/journal.pone.0276195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases (IBD) of unknown cause characterized by a relapsing-remitting behavior. Growing evidence supports the idea that the epithelial barrier plays a central role in the pathogenesis of IBD as well as in its evolution over time, thus representing a potential target for novel therapeutic options. In the last decade, the introduction of 3D epithelial cultures from ex vivo-expanded intestinal adult stem cells (ASCs) has impacted our ability to study the function of the epithelium in several gastrointestinal disorders, including IBD. Here, we describe in detail a reproducible protocol to generate Matrigel-embedded epithelial organoids from ASCs of non-IBD and IBD donors using small colonic biopsies, including steps for its optimization. A slightly modified version of this protocol is also provided in case surgical samples are used. With this method, epithelial organoids can be expanded over several passages, thereby generating a large quantity of viable cells that can be used in multiple downstream analyses including genetic, transcriptional, proteomic and/or functional studies. In addition, 3D cultures generated using our protocol are suitable for the establishment of 2D cultures, which can model relevant cell-to-cell interactions that occur in IBD mucosa.
Collapse
Affiliation(s)
- Isabella Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Aida Mayorgas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
- * E-mail:
| |
Collapse
|
17
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Aliyu M, Zohora FT, Anka AU, Ali K, Maleknia S, Saffarioun M, Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 111:109130. [PMID: 35969896 DOI: 10.1016/j.intimp.2022.109130] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022]
Abstract
Several studies have shown that interleukin 6 (IL-6) is a multifunctional cytokine with both pro-inflammatory and anti-inflammatory activity, depending on the immune response context. Macrophages are among several cells that secrete IL-6, which they express upon activation by antigens, subsequently inducing fever and production of acute-phase proteins from the liver. Moreover, IL-6 induces the final maturation of B cells into memory B cells and plasma cells as well as an adaptive role for short-term energy allocation. Activation of IL-6 receptors results in the intracellular activation of the JAK/STAT pathway with resultant production of inflammatory cytokines. Several mechanisms-controlled IL-6 expression, but aberrant production was shown to be crucial in the pathogenesis of many diseases, which include autoimmune and chronic inflammatory diseases. IL-6 in combination with transforming growth factor β (TGF-β) induced differentiation of naïve T cells to Th17 cells, which is the cornerstone in autoimmune diseases. Recently, IL-6 secretion was shown to form the backbone of hypercytokinemia seen in the Coronavirus disease 2019 (COVID-19)-associated hyperinflammation and multiorgan failure. There are two classes of approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., tocilizumab) and anti-IL-6 monoclonal antibodies (i.e., siltuximab). These drugs have been evaluated in patients with rheumatoid arthritis, juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19 who have systemic inflammation. JAK/STAT pathway blockers were also successfully used in dampening IL-6 signal transduction. A better understanding of different mechanisms that modulate IL-6 expression will provide the much-needed solution with excellent safety and efficacy profiles for the treatment of autoimmune and inflammatory diseases in which IL-6 derives their pathogenesis.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran; Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Kashif Ali
- Department of Pharmacy Abdul Wali, Khan University Mardan, Pakistan
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
19
|
Paolella G, Sposito S, Romanelli AM, Caputo I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23147513. [PMID: 35886862 PMCID: PMC9318967 DOI: 10.3390/ijms23147513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa. Given the importance of TG2 enzymatic activities in CD, several studies have sought to discover specific and potent inhibitors that could be employed in new therapeutical approaches for CD, as alternatives to a lifelong gluten-free diet. In this review, we summarise all the aspects regarding TG2 involvement in CD, including its enzymatic reactions in pathogenesis, the role of anti-TG2 antibodies in disease management, and the exploration of recent strategies to reduce deamidation or to use transamidation to detoxify gluten.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- Correspondence: (G.P.); (I.C.)
| | - Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
| | | | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (G.P.); (I.C.)
| |
Collapse
|
20
|
Barone MV, Auricchio R, Nanayakkara M, Greco L, Troncone R, Auricchio S. Pivotal Role of Inflammation in Celiac Disease. Int J Mol Sci 2022; 23:ijms23137177. [PMID: 35806180 PMCID: PMC9266393 DOI: 10.3390/ijms23137177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered in genetically susceptible individuals by gluten-containing cereals. A central role in the pathogenesis of CD is played by the HLA-restricted gliadin-specific intestinal T cell response generated in a pro-inflammatory environment. The mechanisms that generate this pro-inflammatory environment in CD is now starting to be addressed. In vitro study on CD cells and organoids, shows that constant low-grade inflammation is present also in the absence of gluten. In vivo studies on a population at risk, show before the onset of the disease and before the introduction of gluten in the diet, cellular and metabolic alterations in the absence of a T cell-mediated response. Gluten exacerbates these constitutive alterations in vitro and in vivo. Inflammation, may have a main role in CD, adding this disease tout court to the big family of chronic inflammatory diseases. Nutrients can have pro-inflammatory or anti-inflammatory effects, also mediated by intestinal microbiota. The intestine function as a crossroad for the control of inflammation both locally and at distance. The aim of this review is to discuss the recent literature on the main role of inflammation in the natural history of CD, supported by cellular fragility with increased sensitivity to gluten and other pro-inflammatory agents.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
- Correspondence:
| | - Renata Auricchio
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Luigi Greco
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
21
|
Conte M, Nigro F, Porpora M, Bellomo C, Furone F, Budelli AL, Nigro R, Barone MV, Nanayakkara M. Gliadin Peptide P31-43 Induces mTOR/NFkβ Activation and Reduces Autophagy: The Role of Lactobacillus paracasei CBA L74 Postbiotc. Int J Mol Sci 2022; 23:ijms23073655. [PMID: 35409015 PMCID: PMC8999065 DOI: 10.3390/ijms23073655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disease characterized by an altered immune response stimulated by gliadin peptides that are not digested and cause damage to the intestinal mucosa. The aim of this study was to investigate whether the postbiotic Lactobacillus paracasei (LP) could prevent the action of gliadin peptides on mTOR, autophagy, and the inflammatory response. Most of the experiments performed were conducted on intestinal epithelial cells Caco-2 treated with a peptic-tryptic digest of gliadin (PTG) and P31-43. Furthermore, we pretreated the Caco-2 with the postbiotic LP before treatment with the previously described stimuli. In both cases, we evaluated the levels of pmTOR, p70S6k, and p4EBP-1 for the mTOR pathway, pNFkβ, and pERK for inflammation and LC 3 and p62 for autophagy. For autophagy, we also used immunofluorescence analysis. Using intestinal organoids derivate from celiac (CD) patients, we analyzed the effect of gliadin after postbiotic pretreatment with LP on inflammation marker NFkβ. Through these experiments, we showed that gliadin peptides are able to induce the increase of the inflammatory response in a more complex model of intestinal epithelial cells. LP postbiotic was able to induce autophagy in Caco-2 cells and prevent gliadin effects. In conclusion, postbiotic pretreatment with LP could be considered for in vivo clinical trials.
Collapse
Affiliation(s)
- Mariangela Conte
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (M.P.); (C.B.); (F.F.); (M.N.)
| | - Federica Nigro
- I.T.P. Innovation and Technology Provider s.r.l., Via Bisignano a Chiaia 68, 80121 Naples, Italy;
| | - Monia Porpora
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (M.P.); (C.B.); (F.F.); (M.N.)
| | - Claudia Bellomo
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (M.P.); (C.B.); (F.F.); (M.N.)
| | - Francesca Furone
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (M.P.); (C.B.); (F.F.); (M.N.)
| | - Andrea Luigi Budelli
- DICMAPI, University of Naples Federico II, 80125 Naples, Italy; (A.L.B.); (R.N.)
| | - Roberto Nigro
- DICMAPI, University of Naples Federico II, 80125 Naples, Italy; (A.L.B.); (R.N.)
| | - Maria Vittoria Barone
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (M.P.); (C.B.); (F.F.); (M.N.)
- Correspondence: ; Tel.: +39-0817464568
| | - Merlin Nanayakkara
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), Department of Translational Medical Science, Section of Paediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.); (M.P.); (C.B.); (F.F.); (M.N.)
| |
Collapse
|