1
|
El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T. Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 2025; 8:e202403052. [PMID: 39419547 PMCID: PMC11487088 DOI: 10.26508/lsa.202403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Wound closure after brain injury is crucial for tissue restoration but remains poorly understood at the tissue level. We investigated this process using in vivo observations of larval zebrafish brain injury. Our findings show that wound closure occurs within the first 24 h through global tissue contraction, as evidenced by live-imaging and drug inhibition studies. Microglia accumulate at the wound site before closure, and computational models suggest that their physical traction could drive this process. Depleting microglia genetically or pharmacologically impairs tissue repair. At the cellular level, live imaging reveals centripetal deformation of astrocytic processes contacted by migrating microglia. Laser severing of these contacts causes rapid retraction of microglial processes and slower retraction of astrocytic processes, indicating tension. Disrupting the lcp1 gene, which encodes the F-actin-stabilising protein L-plastin, in microglia results in failed wound closure. These findings support a mechanical role of microglia in wound contraction and suggest that targeting microglial mechanics could offer new strategies for treating traumatic brain injury.
Collapse
Affiliation(s)
- Francois El-Daher
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Stephen J Enos
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Louisa K Drake
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Daniel Wehner
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus Westphal
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Nicola J Porter
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Catherina G Becker
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Thomas Becker
- https://ror.org/01nrxwf90 Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
Karihtala P, Kilpivaara O, Porvari K. Mutational signatures and their association with cancer survival and gene expression in multiple cancer types. Int J Cancer 2025; 156:114-129. [PMID: 39194330 DOI: 10.1002/ijc.35148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Different endogenous and exogenous mutational processes cause specific patterns of somatic mutations and mutational signatures. Although their biological research has been intensive, there are only rare studies assessing the possible prognostic role of mutational signatures. We used data from The Cancer Genome Atlas to study the associations between the activity of the mutational signatures and four survival endpoints in 18 types of malignancies. We further explored the prognostic differences according to, for example, the HPV status in head and neck squamous cell carcinomas and smoking status in lung cancers. The predictive power of the signatures over time was evaluated with a dynamic area under the curve model, and the links between mutational signature activities and differences in gene expression patterns were analyzed. In 12 of 18 studied cancer types, we identified at least one mutational signature whose activity predicted survival outcomes after adjusting for the established prognostic factors. For example, overall survival was associated with the activity of mutational signatures in nine cancer types and disease-specific survival in seven cancer types. The clock-like signatures SBS5 and SBS40 were most commonly associated with survival endpoints. The genes of the myosin binding protein and melanoma antigen families were among the most substantially dysregulated genes between the signatures of low and high activity. The differences in gene expression also revealed various enriched pathways. Based on these data, specific mutational signatures associate with the gene expression and have the potential to serve as strong prognostic factors in several cancer types.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, Helsinki, Finland
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- K. Albin Johansson Cancer Research Fellow, Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Katja Porvari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Zhao W, Wang W, Zhu Y, Lv Z, Xu W. Molecular mechanisms and clinicopathological characteristics of inhibin βA in thyroid cancer metastasis. Int J Mol Med 2024; 54:99. [PMID: 39301627 DOI: 10.3892/ijmm.2024.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
The present study aimed to investigate the role and mechanism of inhibin βA (INHBA) in thyroid cancer (TC), and to determine its potential impact on the aggressive behavior of TC cells. The present study employed a comprehensive approach, using public databases, such as the Gene Expression Omnibus and The Cancer Genome Atlas, to identify and analyze the expression of INHBA in TC. Cell transfection, reverse transcription‑quantitative PCR, western blot analysis, immunohistochemistry and in vivo assays were conducted to investigate the functional effects of INHBA on TC. In addition, the present study explored the molecular mechanisms underlying the effects of INHBA, focusing on the potential impact on the RhoA signaling pathway and associated molecular cascades. Bioinformatics analysis revealed a significant association between INHBA expression and TC, and INHBA expression was markedly upregulated in TC tissues compared with in healthy control tissues. The results of functional studies demonstrated that INHBA overexpression increased the migration and invasion of TC cells, and the opposite result was observed following INHBA knockdown. Mechanistic investigations indicated that INHBA modulated the RhoA pathway, leading to alterations in the phosphorylation status of LIM kinase 1 (LIMK) and cofilin, key regulators of cytoskeletal dynamics and cell motility. Following the introduction of transfected TC cells into zebrafish and nude mouse models, the results of the present study demonstrated that INHBA knockdown attenuated the metastatic potential of TC cells. In conclusion, INHBA may serve a pivotal role in promoting the aggressive phenotype of TC cells through modulating the RhoA/LIMK/cofilin signaling axis. These findings highlight INHBA as a potential biomarker and therapeutic target for the management of aggressive TC.
Collapse
Affiliation(s)
- Wanjun Zhao
- Department of Otolaryngology‑Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Weiyu Wang
- Department of Otolaryngology‑Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Yifan Zhu
- Department of Otolaryngology‑Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Zhenghua Lv
- Department of Otolaryngology‑Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, P.R. China
| | - Wei Xu
- Department of Otolaryngology‑Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
4
|
Peng Y, Liu J, Sun L, Zheng Q, Cao C, Ding W, Yang S, Ma L, Zhang W. GALNT9 enrichment attenuates MPP +-induced cytotoxicity by ameliorating protein aggregations containing α-synuclein and mitochondrial dysfunction. Biol Direct 2024; 19:77. [PMID: 39237967 PMCID: PMC11378468 DOI: 10.1186/s13062-024-00524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND GALNTs (UDP-GalNAc; polypeptide N-acetylgalactosaminyltransferases) initiate mucin-type O-GalNAc glycosylation by adding N-GalNAc to protein serine/threonine residues. Abnormalities in O-GalNAc glycosylation are involved in various disorders such as Parkinson's disease (PD), a neurodegenerative disorder. GALNT9 is potentially downregulated in PD patients. METHODS To determine whether GALNT9 enrichment ameliorates cytotoxicity related to PD-like variations, a pcDNA3.1-GALNT9 plasmid was constructed and transfected into SH-SY5Y cells to establish a GALNT9-overexpressing cell model. RESULTS Downregulation of GALNT9 and O-GalNAc glycosylation was confirmed in our animal and cellular models of PD-like variations. GALNT9 supplementation greatly attenuated cytotoxicity induced by MPP+ (1-Methyl-4-phenylpyridinium iodide) since it led to increased levels of tyrosine hydroxylase and dopamine, reduced rates of apoptosis, and significantly ameliorated MPP+-induced mitochondrial dysfunction by alleviating abnormal levels of mitochondrial membrane potential and reactive oxygen species. A long-lasting mPTP (mitochondrial permeability transition pores) opening and calcium efflux resulted in significantly lower activity in the cytochrome C-associated apoptotic pathway and mitophagy process, signifying that GALNT9 supplementation maintained neuronal cell health under MPP+ exposure. Additionally, it was found that glycans linked to proteins influenced the formation of protein aggregates containing α-synuclein, and GALNT9 supplement dramatically reduced such insoluble protein aggregations under MPP+ treatment. Glial GALNT9 predominantly appears under pathological conditions like PD-like variations. CONCLUSIONS GALNT9 enrichment improved cell survival, and glial GALNT9 potentially represents a pathogenic index for PD patients. This study provides insights into the development of therapeutic strategies for the treatment of PD.
Collapse
Affiliation(s)
- Yuanwen Peng
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dalian, China
| | - Lili Sun
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qiuying Zheng
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Can Cao
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shufeng Yang
- Department of Microbiology, Dalian Medical University, Dalian, 116044, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China.
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Kim D, Lee MJ, Arai Y, Ahn J, Lee GW, Lee SH. Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells. Bioact Mater 2024; 38:331-345. [PMID: 38764447 PMCID: PMC11101682 DOI: 10.1016/j.bioactmat.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
Collapse
Affiliation(s)
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gun Woo Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
6
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
7
|
Fu F, Yu Y, Zou B, Long Y, Wu L, Yin J, Zhou Q. Role of actin-binding proteins in prostate cancer. Front Cell Dev Biol 2024; 12:1430386. [PMID: 39055653 PMCID: PMC11269120 DOI: 10.3389/fcell.2024.1430386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms driving the onset and metastasis of prostate cancer remain poorly understood. Actin, under the control of actin-binding proteins (ABPs), plays a crucial role in shaping the cellular cytoskeleton, which in turn supports the morphological alterations in normal cells, as well as the invasive spread of tumor cells. Previous research indicates that ABPs of various types serve distinct functions, and any disruptions in their activities could predispose individuals to prostate cancer. These ABPs are intricately implicated in the initiation and advancement of prostate cancer through a complex array of intracellular processes, such as severing, linking, nucleating, inducing branching, assembling, facilitating actin filament elongation, terminating elongation, and promoting actin molecule aggregation. As such, this review synthesizes existing literature on several ABPs linked to prostate cancer, including cofilin, filamin A, and fascin, with the aim of shedding light on the molecular mechanisms through which ABPs influence prostate cancer development and identifying potential therapeutic targets. Ultimately, this comprehensive examination seeks to contribute to the understanding and management of prostate diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Hufft-Martinez BM, Wang HH, Saadi I, Tran PV. Actin cytoskeletal regulation of ciliogenesis in development and disease. Dev Dyn 2024. [PMID: 38958410 DOI: 10.1002/dvdy.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.
Collapse
Affiliation(s)
- Brittany M Hufft-Martinez
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Henry H Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Reed AE, Peraza J, van den Haak F, Hernandez ER, Gibbs RA, Chinn IK, Lupski JR, Marchi E, Reshef R, Alobeid B, Mace EM, Orange JS. β-Actin G342D as a Cause of NK Cell Deficiency Impairing Lytic Synapse Termination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:962-973. [PMID: 38315012 PMCID: PMC11337350 DOI: 10.4049/jimmunol.2300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
NK cell deficiency (NKD) occurs when an individual's major clinical immunodeficiency derives from abnormal NK cells and is associated with several genetic etiologies. Three categories of β-actin-related diseases with over 60 ACTB (β-actin) variants have previously been identified, none with a distinct NK cell phenotype. An individual with mild developmental delay, macrothrombocytopenia, and susceptibility to infections, molluscum contagiosum virus, and EBV-associated lymphoma had functional NKD for over a decade. A de novo ACTB variant encoding G342D β-actin was identified and was consistent with the individual's developmental and platelet phenotype. This novel variant also was found to have direct impact in NK cells because its expression in the human NK cell line YTS (YTS-NKD) caused increased cell spreading in lytic immune synapses created on activating surfaces. YTS-NKD cells were able to degranulate and perform cytotoxicity, but they demonstrated defective serial killing because of prolonged conjugation to the killed target cell and thus were effectively unable to terminate lytic synapses. G342D β-actin results in a novel, to our knowledge, mechanism of functional NKD via increased synaptic spreading and defective lytic synapse termination with resulting impaired serial killing, leading to overall reductions in NK cell cytotoxicity.
Collapse
Affiliation(s)
- Abigail E Reed
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Jackeline Peraza
- Department of Biology, Barnard College of Columbia University, New York, NY
| | - Frederique van den Haak
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Evelyn R Hernandez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ivan K Chinn
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Enrica Marchi
- Division of Hematology-Oncology, Department of Medicine, NCI Designated Cancer Center, University of Virginia, Charlottesville, VA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
10
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
11
|
Kumar S, Chakraborty S, Chakraborty N. Dehydration-responsive cytoskeleton proteome of rice reveals reprograming of key molecular pathways to mediate metabolic adaptation and cell survival. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108359. [PMID: 38237420 DOI: 10.1016/j.plaphy.2024.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
The plant cytoskeletal proteins play a key role that control cytoskeleton dynamics, contributing to crucial biological processes such as cell wall morphogenesis, stomatal conductance and abscisic acid accumulation in repercussion to water-deficit stress or dehydration. Yet, it is still completely unknown which specific biochemical processes and regulatory mechanisms the cytoskeleton uses to drive dehydration tolerance. To better understand the role of cytoskeleton, we developed the dehydration-responsive cytoskeletal proteome map of a resilient rice cultivar. Initially, four-week-old rice plants were exposed to progressive dehydration, and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical indices. The organelle fractionation in conjunction with label-free quantitative proteome analysis led to the identification of 955 dehydration-responsive cytoskeletal proteins (DRCPs). To our knowledge, this is the first report of a stress-responsive plant cytoskeletal proteome, representing the largest inventory of cytoskeleton and cytoskeleton-associated proteins. The DRCPs were apparently involved in a wide array of intra-cellular molecules transportation, organelles positioning, cytoskeleton organization followed by different metabolic processes including amino acid metabolism. These findings presented open a unique view on global regulation of plant cytoskeletal proteome is intimately linked to cellular metabolic rewiring of adaptive responses, and potentially confer dehydration tolerance, especially in rice, and other crop species, in general.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
12
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
13
|
Olejárová S, Horváth D, Huntošová V. The Remodulation of Actin Bundles during the Stimulation of Mitochondria in Adult Human Fibroblasts in Response to Light. Pharmaceutics 2023; 16:20. [PMID: 38258031 PMCID: PMC10818370 DOI: 10.3390/pharmaceutics16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
β-actin belongs to cytoskeletal structures that change dynamically in cells according to various stimuli. Human skin can be considered as an organ that is very frequently exposed to various stress factors, of which light plays an important role. The present study focuses on adult human fibroblasts exposed to two types of light stress. Orange light with a wavelength of 590 nm was used here to stimulate the photosensitizer localized in the cells as a residual dose of photodynamic therapy (PDT). On the other hand, near-infrared light with a wavelength of 808 nm was considered for photobiomodulation (PBM), which is often used in healing processes. Confocal fluorescence microscopy was used to observe changes in intercellular communication, mitochondrial structures, and cytoskeletal dynamics defined by the remodulation of β-actin of fibroblasts. The number of β-actin bundles forming spherical structures was detected after light exposure. These structures as β-actin oligomers were confirmed with super-resolution microscopy. While PDT led to the disintegration of actin oligomers, PBM increased their number. The interaction of β-actin with mitochondria was observed. The combination of PDT and PBM treatments is important to minimize the side effects of cancer treatment with PDT on healthy cells, as shown by the cell metabolism assay in this work. In this work, β-actin is presented as an important parameter that changes and is involved in the response of cells to PDT and PBM.
Collapse
Affiliation(s)
- Soňa Olejárová
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Kosice, Slovakia;
| | - Denis Horváth
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia;
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia;
| |
Collapse
|
14
|
Nguyen MT, Ly QK, Kim HJ, Lee W. WAVE2 Is a Vital Regulator in Myogenic Differentiation of Progenitor Cells through the Mechanosensitive MRTFA-SRF Axis. Cells 2023; 13:9. [PMID: 38201213 PMCID: PMC10778525 DOI: 10.3390/cells13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal myogenesis is an intricate process involving the differentiation of progenitor cells into myofibers, which is regulated by actin cytoskeletal dynamics and myogenic transcription factors. Although recent studies have demonstrated the pivotal roles of actin-binding proteins (ABPs) as mechanosensors and signal transducers, the biological significance of WAVE2 (Wiskott-Aldrich syndrome protein family member 2), an ABP essential for actin polymerization, in myogenic differentiation of progenitor cells has not been investigated. Our study provides important insights into the regulatory roles played by WAVE2 in the myocardin-related transcription factor A (MRTFA)-serum response factor (SRF) signaling axis and differentiation of myoblasts. We demonstrate that WAVE2 expression is induced during myogenic differentiation and plays a pivotal role in actin cytoskeletal remodeling in C2C12 myoblasts. Knockdown of WAVE2 in C2C12 cells reduced filamentous actin levels, increased globular actin accumulation, and impaired the nuclear translocation of MRTFA. Furthermore, WAVE2 depletion in myoblasts inhibited the expression and transcriptional activity of SRF and suppressed cell proliferation in myoblasts. Consequently, WAVE2 knockdown suppressed myogenic regulatory factors (i.e., MyoD, MyoG, and SMYD1) expressions, thereby hindering the differentiation of myoblasts. Thus, this study suggests that WAVE2 is essential for myogenic differentiation of progenitor cells by modulating the mechanosensitive MRTFA-SRF axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
15
|
Yin LM, Kudryashov DS, Zervas CG, Murk K. Editorial: Evolution, emerging functions and structure of actin-binding proteins, Volume II. Front Cell Dev Biol 2023; 11:1329219. [PMID: 38020892 PMCID: PMC10663335 DOI: 10.3389/fcell.2023.1329219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Lei-Miao Yin
- YueYang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Christos G. Zervas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
17
|
Le N, Chand A, Braun E, Keyes C, Wu Q, Kim K. Interactions between Quantum Dots and G-Actin. Int J Mol Sci 2023; 24:14760. [PMID: 37834208 PMCID: PMC10572542 DOI: 10.3390/ijms241914760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Quantum dots (QDs) are a type of nanoparticle with excellent optical properties, suitable for many optical-based biomedical applications. However, the potential of quantum dots to be used in clinical settings is limited by their toxicity. As such, much effort has been invested to examine the mechanism of QDs' toxicity. Yet, the current literature mainly focuses on ROS- and apoptosis-mediated cell death induced by QDs, which overlooks other aspects of QDs' toxicity. Thus, our study aimed to provide another way by which QDs negatively impact cellular processes by investigating the possibility of protein structure and function modification upon direct interaction. Through shotgun proteomics, we identified a number of QD-binding proteins, which are functionally associated with essential cellular processes and components, such as transcription, translation, vesicular trafficking, and the actin cytoskeleton. Among these proteins, we chose to closely examine the interaction between quantum dots and actin, as actin is one of the most abundant proteins in cells and plays crucial roles in cellular processes and structural maintenance. We found that CdSe/ZnS QDs spontaneously bind to G-actin in vitro, causing a static quenching of G-actin's intrinsic fluorescence. Furthermore, we found that this interaction favors the formation of a QD-actin complex with a binding ratio of 1:2.5. Finally, we also found that CdSe/ZnS QDs alter the secondary structure of G-actin, which may affect G-actin's function and properties. Overall, our study provides an in-depth mechanistic examination of the impact of CdSe/ZnS QDs on G-actin, proposing that direct interaction is another aspect of QDs' toxicity.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| | - Abhishu Chand
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| | - Emma Braun
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| | - Chloe Keyes
- Jordan Valley Innovation Center, Springfield, MO 65806, USA; (C.K.); (Q.W.)
| | - Qihua Wu
- Jordan Valley Innovation Center, Springfield, MO 65806, USA; (C.K.); (Q.W.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (E.B.)
| |
Collapse
|
18
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
19
|
Peng N, Zhang Y, Zhang X, Wu HY, Nakamura F. NAP1L1 is a novel microtubule-associated protein. Cytoskeleton (Hoboken) 2023; 80:382-392. [PMID: 37098731 DOI: 10.1002/cm.21761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 04/27/2023]
Abstract
Microtubule-associated proteins (MAPs) regulate assembly and stability of microtubules (MTs) during cell cytokinesis, cell migration, neuronal growth, axon guidance, and synapse formation. Using data mining of the Human Protein Atlas database and experimental screening, we identified nucleosome assembly protein 1 like 1 (NAP1L1) as a new MAP. The Human Protein Atlas and PubMed database screening identified 99 potential new MAPs. Twenty candidate proteins that highly co-localized with MTs were exogenously expressed with green fluorescent protein (GFP) or hemagglutinin (HA) tags in tissue culture cells and MTs were co-stained for immunofluorescent microscopy. We found that NAP1L1 is mainly localized in the cytosol with MTs during interphase. Using bacterially expressed recombinant NAP1L1 fragments and purified MTs, we biochemically mapped the MT-binding site on the N-terminal region (1-72aa) and the central region (164-269aa) of NAP1L1. NAP1L1 dimerizes through the long helix region (73-163aa), and full-length NAP1L1 induces the formation of thick MTs, indicating that NAP1L1 has the ability to bundle MTs in cells. Analysis of publicly available RNA-seq data of NAP1L1 depleted cells suggested that NAP1L1 is involved in cell adhesion and migration in agreement with the function of NAP1L1 as a MAP.
Collapse
Affiliation(s)
- Nannan Peng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Lambert C, Schmidt K, Karger M, Stadler M, Stradal TEB, Rottner K. Cytochalasans and Their Impact on Actin Filament Remodeling. Biomolecules 2023; 13:1247. [PMID: 37627312 PMCID: PMC10452583 DOI: 10.3390/biom13081247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The eukaryotic actin cytoskeleton comprises the protein itself in its monomeric and filamentous forms, G- and F-actin, as well as multiple interaction partners (actin-binding proteins, ABPs). This gives rise to a temporally and spatially controlled, dynamic network, eliciting a plethora of motility-associated processes. To interfere with the complex inter- and intracellular interactions the actin cytoskeleton confers, small molecular inhibitors have been used, foremost of all to study the relevance of actin filaments and their turnover for various cellular processes. The most prominent inhibitors act by, e.g., sequestering monomers or by interfering with the polymerization of new filaments and the elongation of existing filaments. Among these inhibitors used as tool compounds are the cytochalasans, fungal secondary metabolites known for decades and exploited for their F-actin polymerization inhibitory capabilities. In spite of their application as tool compounds for decades, comprehensive data are lacking that explain (i) how the structural deviances of the more than 400 cytochalasans described to date influence their bioactivity mechanistically and (ii) how the intricate network of ABPs reacts (or adapts) to cytochalasan binding. This review thus aims to summarize the information available concerning the structural features of cytochalasans and their influence on the described activities on cell morphology and actin cytoskeleton organization in eukaryotic cells.
Collapse
Affiliation(s)
- Christopher Lambert
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marius Karger
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Argentati C, Morena F, Guidotti G, Soccio M, Lotti N, Martino S. Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness. Cells 2023; 12:1746. [PMID: 37443780 PMCID: PMC10341130 DOI: 10.3390/cells12131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Mechanotransduction is a molecular process by which cells translate physical stimuli exerted by the external environment into biochemical pathways to orchestrate the cellular shape and function. Even with the advancements in the field, the molecular events leading to the signal cascade are still unclear. The current biotechnology of tissue engineering offers the opportunity to study in vitro the effect of the physical stimuli exerted by biomaterial on stem cells and the mechanotransduction pathway involved in the process. Here, we cultured multipotent human mesenchymal/stromal cells (hMSCs) isolated from bone marrow (hBM-MSCs) and adipose tissue (hASCs) on films of poly(butylene 1,4-cyclohexane dicarboxylate) (PBCE) and a PBCE-based copolymer containing 50 mol% of butylene diglycolate co-units (BDG50), to intentionally tune the surface hydrophilicity and the stiffness (PBCE = 560 Mpa; BDG50 = 94 MPa). We demonstrated the activated distinctive mechanotransduction pathways, resulting in the acquisition of an elongated shape in hBM-MSCs on the BDG50 film and in maintaining the canonical morphology on the PBCE film. Notably, hASCs acquired a new, elongated morphology on both the PBCE and BDG50 films. We found that these events were mainly due to the differences in the expression of Cofilin1, Vimentin, Filamin A, and Talin, which established highly sensitive machinery by which, rather than hASCs, hBM-MSCs distinguished PBCE from BDG50 films.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
- CEMIN (Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
22
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
23
|
Nguyen MT, Lee W. Mir-302a/TWF1 Axis Impairs the Myogenic Differentiation of Progenitor Cells through F-Actin-Mediated YAP1 Activation. Int J Mol Sci 2023; 24:ijms24076341. [PMID: 37047312 PMCID: PMC10094299 DOI: 10.3390/ijms24076341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton dynamics have been found to regulate myogenesis in various progenitor cells, and twinfilin-1 (TWF1), an actin-depolymerizing factor, plays a vital role in actin dynamics and myoblast differentiation. Nevertheless, the molecular mechanisms underlying the epigenetic regulation and biological significance of TWF1 in obesity and muscle wasting have not been explored. Here, we investigated the roles of miR-302a in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation in C2C12 progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in the diet, decreased the expression of TWF1 and impeded myogenic differentiation while increasing the miR-302a levels in C2C12 myoblasts. Interestingly, miR-302a inhibited TWF1 expression directly by targeting its 3′UTR. Furthermore, ectopic expression of miR-302a promoted cell cycle progression and proliferation by increasing the filamentous actin (F-actin) accumulation, which facilitated the nuclear translocation of Yes-associated protein 1 (YAP1). Consequently, by suppressing the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, miR-302a impaired myoblast differentiation. Hence, this study demonstrated that SFA-inducible miR-302a suppresses TWF1 expression epigenetically and impairs myogenic differentiation by facilitating myoblast proliferation via F-actin-mediated YAP1 activation.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
24
|
Vedula P, Fina ME, Bell BA, Nikonov SS, Kashina A, Dong DW. β -actin is essential for structural integrity and physiological function of the retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534392. [PMID: 37034790 PMCID: PMC10081178 DOI: 10.1101/2023.03.27.534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of non-muscle β -actin gene (Actb) leads to early embryonic lethality in mice, however mice with β - to γ -actin replacement develop normally and show no detectable phenotypes at young age. Here we investigated the effect of this replacement in the retina. During aging, these mice have accelerated de-generation of retinal structure and function, including elongated microvilli and defective mitochondria of retinal pigment epithelium (RPE), abnormally bulging photoreceptor outer segments (OS) accompanied by reduced transducin concentration and light sensitivity, and accumulation of autofluorescent microglia cells in the subretinal space between RPE and OS. These defects are accompanied by changes in the F-actin binding of several key actin interacting partners, including ezrin, myosin, talin, and vinculin known to play central roles in modulating actin cytoskeleton and cell adhesion and mediating the phagocytosis of OS. Our data show that β -actin protein is essential for maintaining normal retinal structure and function.
Collapse
|
25
|
EVL Promotes Osteo-/Odontogenic Differentiation of Dental Pulp Stem Cells via Activating JNK Signaling Pathway. Stem Cells Int 2023; 2023:7585111. [PMID: 36684389 PMCID: PMC9851786 DOI: 10.1155/2023/7585111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Human dental pulp stem cells (hDPSCs) were recognized as a suitable and promising source of stem cells in dental pulp regeneration. However, the mechanism by which hDPSCs differentiation into osteo-/odontogenic lineage remains unclear. Ena/VASP-like protein (EVL) has been found to be involved in diverse biological processes. In this study, we explored the role and underlying mechanism of EVL in osteo-/odontogenic differentiation of hDPSCs. Methods Expression of EVL was detected in hDPSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) analyses during osteo-/odontogenic differentiation. The function of EVL in osteo-/odontogenic differentiation and involvement of MAPK signaling pathways were evaluated by alkaline phosphatase (ALP) staining and activity, alizarin red staining (ARS), and qRT-PCR and western blot analyses. Results The expression of EVL was upregulated during osteo-/odontogenic differentiation of hDPSCs. Overexpression of EVL significantly increased osteo-/odontogenic capacity of hDPSCs, which was reflected in increased alkaline phosphatase (ALP) staining, ALP activity, mineralized nodule formation, and the expressions of genes related to osteo-/odontogenic differentiation, while downregulation of EVL inhibited it. In addition, EVL activated the JNK pathway and phosphorylation of p38 MAPK during differentiation procedure of hDPSCs. The EVL-enhanced differentiation of DPSCs was suppressed by blocking the JNK pathway, rather than the p38 MAPK pathway. Conclusion EVL promotes the osteo-/odontogenic differentiation of hDPSCs by activating the JNK pathway, providing a future target for osteo-/odontogenic differentiation and dental pulp regeneration.
Collapse
|
26
|
Meenakshi S I, Rao M, Mayor S, Sowdhamini R. A census of actin-associated proteins in humans. Front Cell Dev Biol 2023; 11:1168050. [PMID: 37187613 PMCID: PMC10175787 DOI: 10.3389/fcell.2023.1168050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Actin filaments help in maintaining the cell structure and coordinating cellular movements and cargo transport within the cell. Actin participates in the interaction with several proteins and also with itself to form the helical filamentous actin (F-actin). Actin-binding proteins (ABPs) and actin-associated proteins (AAPs) coordinate the actin filament assembly and processing, regulate the flux between globular G-actin and F-actin in the cell, and help maintain the cellular structure and integrity. We have used protein-protein interaction data available through multiple sources (STRING, BioGRID, mentha, and a few others), functional annotation, and classical actin-binding domains to identify actin-binding and actin-associated proteins in the human proteome. Here, we report 2482 AAPs and present an analysis of their structural and sequential domains, functions, evolutionary conservation, cellular localization, abundance, and tissue-specific expression patterns. This analysis provides a base for the characterization of proteins involved in actin dynamics and turnover in the cell.
Collapse
Affiliation(s)
| | - Madan Rao
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Ramanathan Sowdhamini,
| |
Collapse
|
27
|
Ramires MDJ, Hummel K, Hatfaludi T, Riedl P, Hess M, Bilic I. Comparative Surfaceome Analysis of Clonal Histomonas meleagridis Strains with Different Pathogenicity Reveals Strain-Dependent Profiles. Microorganisms 2022; 10:microorganisms10101884. [PMID: 36296163 PMCID: PMC9610433 DOI: 10.3390/microorganisms10101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Histomonas meleagridis, a poultry-specific intestinal protozoan parasite, is histomonosis’s etiological agent. Since treatment or prophylaxis options are no longer available in various countries, histomonosis can lead to significant production losses in chickens and mortality in turkeys. The surfaceome of microbial pathogens is a crucial component of host–pathogen interactions. Recent proteome and exoproteome studies on H. meleagridis produced molecular data associated with virulence and in vitro attenuation, yet the information on proteins exposed on the cell surface is currently unknown. Thus, in the present study, we identified 1485 proteins and quantified 22 and 45 upregulated proteins in the virulent and attenuated strains, respectively, by applying cell surface biotinylation in association with high-throughput proteomic analysis. The virulent strain displayed upregulated proteins that could be linked to putative virulence factors involved in the colonization and establishment of infection, with the upregulation of two candidates being confirmed by expression analysis. In the attenuated strain, structural, transport and energy production proteins were upregulated, supporting the protozoan’s adaptation to the in vitro environment. These results provide a better understanding of the surface molecules involved in the pathogenesis of histomonosis, while highlighting the pathogen’s in vitro adaptation processes.
Collapse
Affiliation(s)
- Marcelo de Jesus Ramires
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Tamas Hatfaludi
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Petra Riedl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +43-12-5077-5158; Fax: +43-12-5077-5192
| |
Collapse
|
28
|
Emodin activates BK channel in vascular smooth muscle cells and relaxes the interlobar renal artery of rat. Biomed Pharmacother 2022; 153:113452. [DOI: 10.1016/j.biopha.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
|
29
|
Ge R, Cao M, Chen M, Liu M, Xie S. Cytoskeletal networks in primary cilia: Current knowledge and perspectives. J Cell Physiol 2022; 237:3975-3983. [PMID: 36000703 DOI: 10.1002/jcp.30865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Ruixin Ge
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Minghui Cao
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Min Liu
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China.,Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
30
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|