1
|
Küçükgöz K, Venema K, Chamorro F, Cassani L, Donn P, Prieto MA, Trząskowska M. Unlocking the potential of fermented beetroot ketchup: Enhancing polyphenol recovery and gut microbiota interactions. Food Chem 2025; 463:141141. [PMID: 39405640 DOI: 10.1016/j.foodchem.2024.141141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024]
Abstract
The study aimed to evaluate the effect of digestion and gut microbiota interactions on beetroot ketchup formulations, focusing on the release of polyphenols, bioaccessibility, and microbial interactions on gut microbiota with polyphenols. Tested ketchup samples were evaluated using the TNO Gastro-Intestinal Model 1 (TIM-1) simulated upper part of the gastrointestinal tract and the TNO Gastro-Intestinal Model 2 (TIM-2) simulated colon system. The results showed that fermentation of ketchup with Lactobacillus johnsonii K4, increased the release of bioactive compounds during digestion, with higher polyphenol recoveries observed in fermented samples. In particular, a fermented sample has higher recovery percentages for most of the phenolic acids, flavonoids, and betalains. However, some polyphenolic compounds were degraded during fermentation, suggesting a dynamic process of polyphenol metabolism in the gut environment. The study highlights the potential of fermented foods, such as beetroot ketchup, enriched with polyphenols and beneficial bacteria, to promote gut health and overall well-being.
Collapse
Affiliation(s)
- Kübra Küçükgöz
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Institute of Human Nutrition, Nowoursynowska Str. 159C, 02-776 Warsaw, Poland.
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928, SZ, Venlo, the Netherlands; Current address: Wageningen Food and Biobased Research, Wageningen University & Research, 6708, WG, Wageningen, the Netherlands.
| | - Franklin Chamorro
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Institute of Agroecology and Food (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Lucía Cassani
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Institute of Agroecology and Food (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Pauline Donn
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Institute of Agroecology and Food (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Miguel A Prieto
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Institute of Agroecology and Food (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Institute of Human Nutrition, Nowoursynowska Str. 159C, 02-776 Warsaw, Poland.
| |
Collapse
|
2
|
Silva A, Carpena M, Cassani L, Grosso C, Garcia-Oliveira P, Delerue-Matos C, Simal-Gandara J, Barroso MF, Prieto MA. Optimization and Bioactive Evaluation of Bifurcaria bifurcata Antioxidant-Rich Extracts for Functional Food and Pharmaceutical Applications. Antioxidants (Basel) 2024; 13:1189. [PMID: 39456443 PMCID: PMC11505410 DOI: 10.3390/antiox13101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, consumers have been increasingly interested in natural, healthier, functional foods, with a focus on sea-based products such as algae. Bifurcaria bifurcata (BB) is a macroalga that belongs to the Phaeophyceae class. These brown algae are recognized as the source of bioactive molecules of great interest to the pharmaceutical and nutraceutical industries. The present work applied response surface methodology to optimize the microwave-assisted extraction of the poorly studied algae. The optimization variables were time, pressure, and solvent composition (ethanol/water) and the response parameters selected were yield, total phenolic and flavonoid content, and the antioxidant profile by evaluating DPPH•+, ABTS•+ scavenging activity, and β-carotene discoloration capacity. The results obtained reveal remarkable bioactivity of the crude extract of BB with positive results as an antioxidant and antimicrobial agent. Furthermore, the BB extract's capacity to inhibit enzymes related to neurodegenerative diseases and its anti-inflammatory and anti-proliferation activity open the possibility of future food or pharmaceutical applications.
Collapse
Affiliation(s)
- Aurora Silva
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Lucia Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Paula Garcia-Oliveira
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Maria Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Miguel A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| |
Collapse
|
3
|
Pereira AG, Fraga-Corral M, Silva A, Barroso MF, Grosso C, Carpena M, Garcia-Perez P, Perez-Gregorio R, Cassani L, Simal-Gandara J, Prieto MA. Unraveling the Bioactive Potential of Camellia japonica Edible Flowers: Profiling Antioxidant Substances and In Vitro Bioactivity Assessment. Pharmaceuticals (Basel) 2024; 17:946. [PMID: 39065796 PMCID: PMC11280385 DOI: 10.3390/ph17070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, the search for novel natural-based ingredients by food and related industries has sparked extensive research aimed at discovering new sources of functional molecules. Camellia japonica, traditionally known as an ornamental plant, has gained attention due to its diverse array of bioactive compounds with potential industrial applications. Although C. japonica flowers are edible, their phytochemical profile has not been thoroughly investigated. In this study, a phenolic profile screening through an HPLC-ESI-QQQ-MS/MS approach was applied to C. japonica flower extracts, revealing a total of 36 compounds, including anthocyanins, curcuminoids, dihydrochalcones, dihydroflavonols, flavonols, flavones, hydroxybenzoic acids, hydroxycinnamic acids, isoflavonoids, stilbenes, and tyrosols. Following extract profiling, their bioactivity was assessed by means of in vitro antioxidant, antimicrobial, cytotoxic, and neuroprotective activities. The results showed a multifaceted high correlation of phenolic compounds with all the tested bioactivities according to Pearson's correlation analysis, unraveling the potential of C. japonica flowers as promising sources of nutraceuticals. Overall, these findings provide insight into the valorization of C. japonica flowers from different unexplored cultivars thus diversifying their industrial outcome.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.F.B.); (C.G.)
| | - Maria Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.F.B.); (C.G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.F.B.); (C.G.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Rosa Perez-Gregorio
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
- LAQV-REQUIMTE Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| |
Collapse
|
4
|
Cassani L, Silva A, Carpena M, Pellegrini MC, García-Pérez P, Grosso C, Barroso MF, Simal-Gandara J, Gómez-Zavaglia A, Prieto MA. Phytochemical compounds with promising biological activities from Ascophyllum nodosum extracts using microwave-assisted extraction. Food Chem 2024; 438:138037. [PMID: 38011789 DOI: 10.1016/j.foodchem.2023.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Phytochemical-rich antioxidant extracts were obtained from Ascophyllum nodosum (AN) using microwave-assisted extraction (MAE). Critical extraction factors such as time, pressure, and ethanol concentration were optimized by response surface methodology with a circumscribed central composite design. Under the optimal MAE conditions (3 min, 10.4 bar, 46.8 % ethanol), the maximum recovery of phytochemical compounds (polyphenols and fucoxanthin) with improved antioxidant activity from AN was obtained. In addition, the optimized AN extract showed significant biological activities as it was able to scavenge reactive oxygen and nitrogen species, inhibit central nervous system-related enzymes, and exhibit cytotoxic activity against different cancer cell lines. In addition, the optimized AN extract showed antimicrobial, and anti-quorum sensing activities, indicating that this extract could offer direct and indirect protection against infection by pathogenic microorganisms. This work demonstrated that the sustainably obtained AN extract could be an emerging, non-toxic, and natural ingredient with potential to be included in different applications.
Collapse
Affiliation(s)
- Lucía Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain.
| | - Aurora Silva
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain; REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, B7600 Mar del Plata, Argentina
| | - Pascual García-Pérez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| |
Collapse
|
5
|
Bains A, Sridhar K, Singh BN, Kuhad RC, Chawla P, Sharma M. Valorization of onion peel waste: From trash to treasure. CHEMOSPHERE 2023; 343:140178. [PMID: 37714483 DOI: 10.1016/j.chemosphere.2023.140178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Globally, fruits and vegetables are consumed as raw, processed, or as an additive, accounting for approximately 50% of total food wastage. Among the fruits and vegetables, onion is well known for its potential bioactive components; however, peels of onion are a major concern for the environmental health and food industries. Effective utilization methods for valorizing the onion peel should be needed to develop value-added products, which are more eco-friendly, cost-effective, and sustainable. Therefore, this review attempts to emphasize the conventional and emerging valorization techniques for onion peel waste to generate value-added products. Several vital applications including anticancerous, antiobesity, antimicrobial, and anti-inflammatory activities are thoroughly discussed. The findings showed that the use of advanced technologies like ultrasound-assisted extraction, microwave-assisted extraction, and enzymatic extraction, demonstrated improved extraction efficiency and higher yield of bioactive compounds, which showed the anticancerous, antiobesity, antimicrobial, and anti-inflammatory properties. However, in-depth studies are recommended to elucidate the mechanisms of action and potential synergistic effects of the bioactive compounds derived from onion peel waste, and to promote the sustainable utilization of onion peel waste in the long-term.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Brahma Nand Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Ramesh Chander Kuhad
- Sharda School of Basic Sciences and Research, Sharda University, Greater Noida - 201310, Uttar Pradesh, India; DPG Institute of Management and Technology, Sector-34, Gurugram - 122004, Haryana, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium.
| |
Collapse
|
6
|
Uguz S, Sozcu A. Nutritional Value of Microalgae and Cyanobacteria Produced with Batch and Continuous Cultivation: Potential Use as Feed Material in Poultry Nutrition. Animals (Basel) 2023; 13:3431. [PMID: 37958186 PMCID: PMC10650744 DOI: 10.3390/ani13213431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, the demand for new alternative feedstuffs that do not contain chemical residue and are not genetically modified has been increased for sustainability in poultry production. In this respect, the usage of algae as animal feed is very promising as an alternative feed ingredient that reduces pollutant gases from animal production facilities. The aim of the current study is to investigate the usage possibility of algae, through determining nutritional value and production cost, as a feed ingredient in poultry nutrition. Three microalgae species, including Scenedesmus sp., Ankistrodesmus sp., and Synechococcaceae, were produced with batch and continuous cultivation to determine the difference in the lipid, protein, carbohydrate, fatty acid, and amino acid profiles, as well as the color characteristics and production cost. The highest lipid content of 72.5% was observed in algae biomass produced from Synechococcaceae with batch cultivation, whereas the highest protein level was found in algae biomass produced by Synechococcaceae under continuous cultivation practice (25.6%). The highest content of PUFA was observed in Scenedesmus sp. harvested from both batch and continuous cultivation (35.6 and 36.2%), whereas the lowest content of PUFA was found in Synechococcaceae harvested with continuous cultivation (0.4%). Continuously cultivated of Scenedesmus sp. had higher carbohydrate content than batch-cultivated Scenedesmus sp. (57.2% vs. 50.1%). The algae biomass produced from Synechococcaceae was found to have a higher content of essential amino acids, except lysine and histidine, compared to Scenedesmus sp. and Ankistrodesmus sp. Cultivation practices also affected the amino acid level in each algae species. The continuous cultivation practice resulted in a higher level of essential amino acids, except glycine. Synechococcaceae had richer essential amino acid content except for proline and ornithine, whereas continuous cultivation caused an incremental increase in non-essential amino acids. The lightness value was found to be the lowest (13.9) in Scenedesmus sp. that was continuously cultivated. The current study indicated that Scenedesmus sp. could be offered for its high PUFA and lysine content, whereas Synechococcaceae could have potential due to its high content of methionine and threonine, among the investigated microalgae and Cyanobacteria.
Collapse
Affiliation(s)
- Seyit Uguz
- Department of Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
- Department of Biosystems Engineering, Faculty of Engineering and Architecture, Yozgat Bozok University, 66200 Yozgat, Turkey
| | - Arda Sozcu
- Department of Animal Science, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey;
| |
Collapse
|
7
|
Pereira AG, Cassani L, Liu C, Li N, Chamorro F, Barreira JCM, Simal-Gandara J, Prieto MA. Camellia japonica Flowers as a Source of Nutritional and Bioactive Compounds. Foods 2023; 12:2825. [PMID: 37569093 PMCID: PMC10417519 DOI: 10.3390/foods12152825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
In recent decades, plants have strengthened their relevance as sources of molecules potentially beneficial for health. This underpinning effect also arises from the extensive research that has been conducted on plants that are typically undervalued, besides being scarcely used. This is the case with Camellia japonica in Galicia (NW Spain), where, despite its abundance, it is exclusively used for ornamental purposes and has been studied only for its proximate composition. Thus, the present study was conducted on several additional parameters in the flowers of eight C. japonica varieties. Our results show that camellia has a high nutritional value, with carbohydrates as the most abundant macronutrients followed by a moderate protein content (4.4-6.3 g/100 g dry weight) and high levels of polyunsaturated fatty acids (especially ω-3 fatty acids, which represent 12.9-22.7% of the total fatty acids), raising its potential for use for nutritional purposes. According to the thermochemical characterization and elemental composition of camellia, the raw material has poor mineralization and low nitrogen content, but high percentages of volatile matter and high carbon-fixation rates, making it a promising alternative for biofuel production. Furthermore, preliminary analysis reveals a high concentration of different bioactive compounds. As a result of these findings, camellias can be used as food or functional ingredients to improve the nutritional quality of food formulations.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250000, China;
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China;
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| |
Collapse
|
8
|
Lourenço-Lopes C, Silva A, Garcia-Oliveira P, Soria-Lopez A, Echave J, Grosso C, Cassani L, Barroso MF, Simal-Gandara J, Fraga-Corral M, Prieto MA. Kinetic Extraction of Fucoxanthin from Undaria pinnatifida Using Ethanol as a Solvent. Mar Drugs 2023; 21:414. [PMID: 37504945 PMCID: PMC10381705 DOI: 10.3390/md21070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Fucoxanthin (Fx) has been proven to exert numerous biological properties, which makes it an interesting molecule with diverse industrial applications. In this study, the kinetic behavior of Fx was studied to optimize three variables: time (t-3 min to 7 days), temperature (T-5 to 85 °C), and concentration of ethanol in water (S-50 to 100%, v/v), in order to obtain the best Fx yield from Undaria pinnatifida using conventional heat extraction. The Fx content (Y1) was found through HPLC-DAD and expressed in µg Fx/g of algae sample dry weight (AS dw). Furthermore, extraction yield (Y2) was also found through dry weight analysis and was expressed in mg extract (E)/g AS dw. The purity of the extracts (Y3) was found and expressed in mg Fx/g E dw. The optimal conditions selected for Y1 were T = 45 °C, S = 70%, and t = 66 min, obtaining ~5.24 mg Fx/g AS; for Y2 were T = 65 °C, S = 60%, and t = ~10 min, obtaining ~450 mg E/g AS; and for Y3 were T = 45 °C, S = 70%, and t = 45 min, obtaining ~12.3 mg Fx/g E. In addition, for the selected optimums, a full screening of pigments was performed by HPLC-DAD, while phenolics and flavonoids were quantified by spectrophotometric techniques and several biological properties were evaluated (namely, antioxidant, antimicrobial, and cholinesterase inhibitory activity). These results could be of interest for future applications in the food, cosmetic, or pharmaceutical industries, as they show the Fx kinetic behavior and could help reduce costs associated with energy and solvent consumption while maximizing the extraction yields.
Collapse
Affiliation(s)
- Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Aurora Silva
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.G.); (M.F.B.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.G.); (M.F.B.)
| | - Lucia Cassani
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Maria Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.G.); (M.F.B.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E-32004 Ourense, Spain (L.C.); (J.S.-G.)
| |
Collapse
|
9
|
Shobier AH, Ismail MM, Hassan SWM. Variation in Anti-inflammatory, Anti-arthritic, and Antimicrobial Activities of Different Extracts of Common Egyptian Seaweeds with an Emphasis on Their Phytochemical and Heavy Metal Contents. Biol Trace Elem Res 2023; 201:2071-2087. [PMID: 35665884 PMCID: PMC9931819 DOI: 10.1007/s12011-022-03297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
The anti-inflammatory, anti-arthritic, and antimicrobial activities of some common Egyptian seaweeds in addition to their phytochemical and heavy metal contents were investigated. Phytochemical screening of the seaweed extracts showed the presence of different primary and secondary metabolites with different concentrations according to their species and the used solvent. The ethanolic extract of Colpmenia sinuosa (CSBE2) exhibited the maximum anti-inflammatory and anti-arthritic activity at 1000 μg/ml concentration compared to other seaweed extracts. The dichloromethane extract of Corallina officinalis (CORM) exerted the highest antimicrobial activity with an average inhibition zone diameter (AV) = 15.29 mm and activity index (AI) = 1.53 and with the highest antagonistic activity against Escherichia coli (28 mm). It is followed by Ulva linza ethanolic extract (ULGE2) which recorded (AV) of 14.71 mm and (AI) of 1.30 with the highest antifungal activity against Candida albicans (30 mm). The collected seaweeds would therefore be a very promising source for treating inflammatory, arthritic, and microbial diseases. Moreover, the investigated seaweeds showed variable concentrations of heavy metals among various species. The mean concentrations of the heavy metals took the following order: Fe > Zn > Mn > Ba > Cu > As > Cr > Ni > Pb > V > Cd > Se > Co > Mo. Based on the permissible limits set by the WHO and CEVA, Pb and Ni in the studied seaweeds were found to be within the permissible limits, whereas Cd and Zn contents were at the borderline. Significant correlations were observed between studied parameters. The estimated daily intakes for most heavy metals were lower than the recommended daily intakes.
Collapse
Affiliation(s)
- Aida H. Shobier
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mona M. Ismail
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | |
Collapse
|
10
|
Gold Nanoparticles Synthesized by an Aqueous Extract of Codium tomentosum as Potential Antitumoral Enhancers of Gemcitabine. Mar Drugs 2022; 21:md21010020. [PMID: 36662193 PMCID: PMC9865996 DOI: 10.3390/md21010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer still poses a global threat, since a lot of tumors remain untreatable despite all the available chemotherapeutic drugs, whose side effects, it must also be noted, still raise concerns. The antitumoral properties of marine seaweeds make them a potential source of new, less toxic, and more active antitumoral agents. Furthermore, these natural extracts can be combined with nanotechnology to increase their efficacy and improve targeting. In this work, a Codium tomentosum (CT) aqueous extract was employed for the green synthesis of gold nanoparticles (Au@CT). The complete characterization of Au@CT was performed by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Zeta potential, electron microscopy, X-ray powder diffraction (XRD), high-performance steric exclusion chromatography (HPSEC), and by the determination of their antioxidant capacity. The antiproliferative activity of Au@CT was then tested in hepatic (HEPG-2) and pancreatic (BxPC-3) cell lines. Their potential capacity as enhancers of gemcitabine, a drug frequently used to treat both types of tumors, was also tested. The activity of Au@CT was compared to the activity of the CT extract alone. A synergistic effect with gemcitabine was proven for HEPG-2. Our results showed that gold nanoparticles synthesized from seaweed extracts with antitumoral activity could be a good gemcitabine enhancer.
Collapse
|
11
|
Ferreira M, Salgado JM, Fernandes H, Peres H, Belo I. Potential of Red, Green and Brown Seaweeds as Substrates for Solid State Fermentation to Increase Their Nutritional Value and to Produce Enzymes. Foods 2022; 11:foods11233864. [PMID: 36496673 PMCID: PMC9741140 DOI: 10.3390/foods11233864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Seaweeds are valuable feedstocks with the potential to be used as ingredients in aquafeeds. However, their use are still limited, given their recalcitrant polysaccharide structure. To break this structure, a biotechnological approach such as solid-state fermentation (SSF) by filamentous fungi can be used, which simultaneously increases the nutritional value of the biomass. However, SSF has hardly been studied in seaweeds; thus, in this study, five different seaweeds (Gracilaria sp., Porphyra dioica, Codium tomentosum, Ulva rigida, and Alaria esculenta) were used as substrates in SSF with Aspergillus ibericus MUM 03.49 and A. niger CECT 2915. Firstly, the seaweeds were fully characterized, and, then, changes in the crude protein and carbohydrate contents were assessed in the fermented biomass, as well as any carbohydrases production. The SSF of U. rigida with both fungi resulted in the maximum xylanase and β-glucosidase activities. The maximum cellulase activity was achieved using Gracilaria sp. and U. rigida in the SSF with A. niger. The protein content increased in C. tomentosum after SSF with A. ibericus and in U. rigida after SSF with both fungi. Moreover, U. rigida's carbohydrate content decreased by 54% and 62% after SSF with A. ibericus and A. niger, respectively. Seaweed bioprocessing using SSF is a sustainable and cost-effective strategy that simultaneously produces high-value enzymes and nutritionally enhanced seaweeds to be included in aquafeeds.
Collapse
Affiliation(s)
- Marta Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Manuel Salgado
- Biotecnia Group, Department of Chemical Engineering, Campus Agua, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Helena Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
12
|
Bioconversion of the Brown Tunisian Seaweed Halopteris scoparia: Application to Energy. ENERGIES 2022. [DOI: 10.3390/en15124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The brown Tunisian seaweed Halopteris scoparia was used as a feedstock for producing renewable bioethanol, biogas, and biodiesel to demonstrate the proof of concept for the North African energy sector. A quantitative and qualitative quantification of H. scoparia composition using different colorimetric methods was completed to highlight its bioconversion potential. These substrate inputs were subjected to anaerobic fermentation by Saccharomyces cerevisiae to produce bioethanol. The materials were also used to generate bio-hydrogen and volatile fatty acids during dark fermentation by a bacterial consortium and using the oleaginous yeast Yarrowia lipolytica. The lipids were extracted and trans-esterified to Fatty Acid Methyl Esters (FAMEs), and their profiles were then analyzed with gas chromatography (GC). A significant ratio of the bioethanol, e.g., 0.35 g ethanol/g DW substrate, was produced without pretreatment, consistent with the theoretical Gay-Lussac yield. The production of the biohydrogen and lipids were up to 1.3 mL H2/g DW substrate and 0.04 g/g DW substrate, respectively, from the raw biomass. These results were higher than those reported for other well-studied seaweeds such as L. japonica. Overall, this work contributes to the current investigations in Tunisia for producing alternative energies from algae and finding new solutions to the current energy situation and environmental challenges in Maghreb.
Collapse
|