1
|
Fan R, Huang K, Zhao Z, Hao Y, Guan X, Luo H, Hao C. Genome-Wide Identification, Characterization, and Expression Analysis of the MYB-R2R3 Gene Family in Black Pepper ( Piper nigrum L.). Int J Mol Sci 2024; 25:9851. [PMID: 39337340 PMCID: PMC11432665 DOI: 10.3390/ijms25189851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Black pepper (Piper nigrum L.), a prominent spice crop, known as the "king of spices", originated from India. The growth and development of black pepper are influenced by various environmental conditions. MYB transcription factors play a crucial role in controlling metabolic processes, abiotic stress management, and plant growth and development. In this study, we identified 160 PnMYB transcription factors in the black pepper genome. Phylogenetic analysis was performed using 125 R2R3-MYB proteins from black pepper and Arabidopsis thaliana, resulting in the mapping of 20 groups on the phylogenetic tree, each containing members from both species. Most members of the PnMYB family possess two introns, and motif 3 and motif 4 are conserved in all members. The number of genes on each chromosome ranges from 1 to 10. Collinear analysis indicated the creation of new members through gene fragments and tandem replication. The Ka/Ks ratio indicated that purifying selection and positive selection acted on PnMYB of pepper. The majority of pepper PnMYB family members were in the nucleus. Significant differences in gene expression levels were observed between different species and infection periods when Piper nigrum L. and Piper flaviflorum were infected with Phytophthora capsici. These findings are valuable for future studies on the biological role and molecular mechanism of the PnMYB gene.
Collapse
Affiliation(s)
- Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning 571533, China
| | - Kai Huang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Zhican Zhao
- College of Tropical Crops, Yunnan Agricultural University, Pu'er 665099, China
| | - Yupeng Hao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueying Guan
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Haiyan Luo
- Tropical Croups Genetic Resources, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning 571533, China
| |
Collapse
|
2
|
Tong Y, Xue J, Li Q, Zhang L. A generalist regulator: MYB transcription factors regulate the biosynthesis of active compounds in medicinal plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4729-4744. [PMID: 38767602 DOI: 10.1093/jxb/erae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time-consuming and labour-intensive. Transcription factor-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB transcription factors and summarizes research progress concerning MYB transcription factors involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB transcription factors regulate multiple synthase genes to mediate the biosynthesis of active compounds. This work will serve as a reference for an in-depth analysis of the MYB transcription factor family in medicinal plants.
Collapse
Affiliation(s)
- Yuqing Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jianping Xue
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhang J, Zhang Y, Feng C. Genome-Wide Analysis of MYB Genes in Primulina eburnea (Hance) and Identification of Members in Response to Drought Stress. Int J Mol Sci 2023; 25:465. [PMID: 38203634 PMCID: PMC10778706 DOI: 10.3390/ijms25010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Due to periodic water deficiency in karst environments, Primulina eburnea experiences sporadic drought stress in its habitat. Despite being one of the largest gene families and functionally diverse in terms of plant growth and development, MYB transcription factors in P. eburnea have not been studied. Here, a total of 230 MYB genes were identified in P. eburnea, including 67 1R-MYB, 155 R2R3-MYB, six 3R-MYB, and two 4R-MYB genes. The R2R3-type PebMYB genes could be classified into 16 subgroups, while the remaining PebMYB genes (1R-MYB, 3R-MYB, and 4R-MYB genes) were divided into 10 subgroups. Notably, the results of the phylogenetic analysis were further supported by the motif and gene structure analysis, which showed that individuals in the same subgroup had comparable motif and structure organization. Additionally, gene duplication and synteny analyses were performed to better understand the evolution of PebMYB genes, and 291 pairs of segmental duplicated genes were found. Moreover, RNA-seq analysis revealed that the PebMYB genes could be divided into five groups based on their expression characteristics. Furthermore, 11 PebMYB genes that may be involved in drought stress response were identified through comparative analysis with Arabidopsis thaliana. Notably, seven of these genes (PebMYB3, PebMYB13, PebMYB17, PebMYB51, PebMYB142, PebMYB69, and PebMYB95) exhibited significant differences in expression between the control and drought stress treatments, suggesting that they may play important roles in drought stress response. These findings clarified the characteristics of the MYB gene family in P. eburnea, augmenting our comprehension of their potential roles in drought stress adaptation.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (J.Z.); (Y.Z.)
| | - Yi Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (J.Z.); (Y.Z.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (J.Z.); (Y.Z.)
| |
Collapse
|
4
|
Li C, Wan Y, Shang X, Fang S. Integration of transcriptomic and metabolomic analysis unveils the response mechanism of sugar metabolism in Cyclocarya paliurus seedlings subjected to PEG-induced drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107856. [PMID: 37354727 DOI: 10.1016/j.plaphy.2023.107856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja is a multiple function tree species used for functional food and valued timber production. Carbohydrates, especially water-soluble carbohydrates, play an important role in osmotic protection, signal transduction and carbon storage. Under the circumstance of global climate change the abiotic stress would restrict the development of C. paliurus plantation, whereas there is few knowledge on the regulatory mechanisms of sugar metabolism under drought stress in C. paliurus. To investigate the drought response of C. paliurus at molecular level, we conducted an integrated analysis of transcriptomic and metabolomic of C. paliurus at three PEG-induced drought stress levels (0%: control; 15%: moderate drought; 25%: severe drought) in short term. Both moderate and severe drought treatments activated the chemical defense with lowering relative water content, and enhancing the contents of soluble protein, proline and malondialdehyde in the leaves. Meanwhile, alterations in the expression of differentially expressed genes and carbohydrate metabolism profiles were observed among the treatments. Weighted gene co-expression network analysis (WGCNA) showed 3 key modules, 8 structural genes (such as genes encoding beta-fructofuranosidase (INV), sucrose synthase (SUS), raffinose synthase (RS)) and 14 regulatory transcription factors were closely linked to sugar metabolism. Our results provided the foundation to understand the response mechanism of sugar metabolism in C. paliurus under drought stress, and would drive progress in breeding of drought-tolerant varieties and plantation development of the species.
Collapse
Affiliation(s)
- Chenhui Li
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Wan
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
5
|
Cao Y, Fan T, Wang L, Zhang L, Li Y. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC PLANT BIOLOGY 2023; 23:145. [PMID: 36927311 PMCID: PMC10022305 DOI: 10.1186/s12870-023-04163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND MYB transcription factors are widely distributed in the plant kingdom and play key roles in regulatory networks governing plant metabolism and biochemical and physiological processes. RESULTS Here, we first determined the R2R3-MYB genes in five Euphorbiaceae genomes. The three Trp (W) residues from the first MYB domain (R2) were absolutely conserved, whereas the first W residue from the second MYB domain (R3) was preferentially mutated. The R2R3-MYBs were clustered into 48 functional subfamilies, of which 34 had both R2R3-MYBs of Euphorbiaceae species and AtMYBs, and four contained only Euphorbiaceae R2R3-MYBs. The whole-genome duplication (WGD) and/or segmental duplication (SD) played key roles in the expansion of the R2R3-MYB family. Unlike paralogous R2R3-MYB family members, orthologous R2R3-MYB members contained a higher selective pressure and were subject to a constrained evolutionary rate. VfMYB36 was specifically expressed in fruit, and its trend was consistent with the change in oil content, indicating that it might be involved in oil biosynthesis. Overexpression experiments showed that VfMYB36 could significantly provide linolenic acid (C18:3) content, which eventually led to a significant increase in oil content. CONCLUSION Our study first provides insight into understanding the evolution and expression of R2R3-MYBs in Euphorbiaceae species, and also provides a target for the production of biomass diesel and a convenient way for breeding germplasm resources with high linolenic acid content in the future.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, China
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056009 Handan, China
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, 430065 Wuhan, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| |
Collapse
|
6
|
Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress. Int J Mol Sci 2023; 24:ijms24065389. [PMID: 36982459 PMCID: PMC10049292 DOI: 10.3390/ijms24065389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
R2R3-type MYB transcription factors are implicated in drought stress, which is a primary factor limiting the growth and development of woody plants. The identification of R2R3-MYB genes in the Populus trichocarpa genome has been previously reported. Nevertheless, the diversity and complexity of the conserved domain of the MYB gene caused inconsistencies in these identification results. There is still a lack of drought-responsive expression patterns and functional studies of R2R3-MYB transcription factors in Populus species. In this study, we identified a total of 210 R2R3-MYB genes in the P. trichocarpa genome, of which 207 genes were unevenly distributed across all 19 chromosomes. These poplar R2R3-MYB genes were phylogenetically divided into 23 subgroups. Collinear analysis demonstrated that the poplar R2R3-MYB genes underwent rapid expansion and that whole-genome duplication events were a dominant factor in the process of rapid gene expansion. Subcellular localization assays indicated that poplar R2R3-MYB TFs mainly played a transcriptional regulatory role in the nucleus. Ten R2R3-MYB genes were cloned from P. deltoides × P. euramericana cv. Nanlin895, and their expression patterns were tissue-specific. A majority of the genes showed similar drought-responsive expression patterns in two out of three tissues. This study provides a valid cue for further functional characterization of drought-responsive R2R3-MYB genes in poplar and provides support for the development of new poplar genotypes with elevated drought tolerance.
Collapse
|
7
|
Zhang Z, Fang J, Zhang L, Jin H, Fang S. Genome-wide identification of bHLH transcription factors and their response to salt stress in Cyclocarya paliurus. FRONTIERS IN PLANT SCIENCE 2023; 14:1117246. [PMID: 36968403 PMCID: PMC10035414 DOI: 10.3389/fpls.2023.1117246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As a highly valued and multiple function tree species, the leaves of Cyclocarya paliurus are enriched in diverse bioactive substances with healthy function. To meet the requirement for its leaf production and medical use, the land with salt stress would be a potential resource for developing C. paliurus plantations due to the limitation of land resources in China. The basic helix-loop-helix (bHLH) transcription factor protein family, the second largest protein family in plants, has been found to play essential roles in the response to multiple abiotic stresses, especially salt stress. However, the bHLH gene family in C.paliurus has not been investigated. In this study, 159 CpbHLH genes were successfully identified from the whole-genome sequence data, and were classified into 26 subfamilies. Meanwhile, the 159 members were also analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting elements analysis and DNA binding ability. Based on transcriptome profiling under a hydroponic experiment with four salt concentrations (0%, 0.15%, 0.3%, and 0.45% NaCl), 9 significantly up- or down-regulated genes were screened, while 3 genes associated with salt response were selected in term of the GO annotation results. Totally 12 candidate genes were selected in response to salt stress. Moreover, based on expression analysis of the 12 candidate genes sampled from a pot experiment with three salt concentrations (0%, 0.2% and 0.4% NaCl), CpbHLH36/68/146 were further verified to be involved in the regulation of salt tolerance genes, which is also confirmed by protein interaction network analysis. This study was the first analysis of the transcription factor family at the genome-wide level of C. paliurus, and our findings would not only provide insight into the function of the CpbHLH gene family members involved in salt stress but also drive progress in genetic improvement for the salt tolerance of C. paliurus.
Collapse
Affiliation(s)
- Zijie Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jie Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lei Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Huiyin Jin
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| |
Collapse
|
8
|
Tang M, Liu L, Hu X, Zheng H, Wang Z, Liu Y, Zhu Q, Cui L, Xie S. Genome-wide characterization of R2R3-MYB gene family in Santalum album and their expression analysis under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1142562. [PMID: 36938022 PMCID: PMC10017448 DOI: 10.3389/fpls.2023.1142562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Sandalwood (Santalum album) is a high-value multifunctional tree species that is rich in aromatic substances and is used in medicine and global cosmetics. Due to the scarcity of land resources in tropical and subtropical regions, land in temperate regions is a potential resource for the development of S. album plantations in order to meet the needs of S. album production and medicine. The R2R3-MYB transcription factor family is one of the largest in plants and plays an important role in the response to various abiotic stresses. However, the R2R3-MYB gene family of S. album has not been studied. In this study, 144 R2R3-MYB genes were successfully identified in the assembly genome sequence, and their characteristics and expression patterns were investigated under various durations of low temperature stress. According to the findings, 31 of the 114 R2R3-MYB genes showed significant differences in expression after cold treatment. Combining transcriptome and weighted gene co-expression network analysis (WGCNA) revealed three key candidate genes (SaMYB098, SaMYB015, and SaMYB068) to be significantly involved in the regulation of cold resistance in S. album. The structural characteristics, evolution, and expression pattern of the R2R3-MYB gene in S. album were systematically examined at the whole genome level for the first time in this study. It will provide important information for future research into the function of the R2R3-MYB genes and the mechanism of cold stress response in S. album.
Collapse
Affiliation(s)
- Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Le Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Xu Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Zukai Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shangqian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| |
Collapse
|
9
|
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast-Advances in Biosynthesis of Artemisinin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206888. [PMID: 36296479 PMCID: PMC9609949 DOI: 10.3390/molecules27206888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Malaria is a life-threatening disease. Artemisinin-based combination therapy (ACT) is the preferred choice for malaria treatment recommended by the World Health Organization. At present, the main source of artemisinin is extracted from Artemisia annua; however, the artemisinin content in A. annua is only 0.1-1%, which cannot meet global demand. Meanwhile, the chemical synthesis of artemisinin has disadvantages such as complicated steps, high cost and low yield. Therefore, the application of the synthetic biology approach to produce artemisinin in vivo has magnificent prospects. In this review, the biosynthesis pathway of artemisinin was summarized. Then we discussed the advances in the heterologous biosynthesis of artemisinin using microorganisms (Escherichia coli and Saccharomyces cerevisiae) as chassis cells. With yeast as the cell factory, the production of artemisinin was transferred from plant to yeast. Through the optimization of the fermentation process, the yield of artemisinic acid reached 25 g/L, thereby producing the semi-synthesis of artemisinin. Moreover, we reviewed the genetic engineering in A. annua to improve the artemisinin content, which included overexpressing artemisinin biosynthesis pathway genes, blocking key genes in competitive pathways, and regulating the expression of transcription factors related to artemisinin biosynthesis. Finally, the research progress of artemisinin production in other plants (Nicotiana, Physcomitrella, etc.) was discussed. The current advances in artemisinin biosynthesis may help lay the foundation for the remarkable up-regulation of artemisinin production in A. annua through gene editing or molecular design breeding in the future.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haoyu Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plant Research and Development, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| |
Collapse
|