1
|
Yaghi R, Wylie DC, Andrews CL, Dickert OH, Ram A, Iverson BL. An Investigation of Nirmatrelvir (Paxlovid) Resistance in SARS-CoV-2 M pro. ACS BIO & MED CHEM AU 2024; 4:280-290. [PMID: 39712205 PMCID: PMC11659887 DOI: 10.1021/acsbiomedchemau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 12/24/2024]
Abstract
The high throughput YESS 2.0 platform was used to screen a large library of SARS-CoV-2 Mpro variants in the presence of nirmatrelvir. Of the 100 individual most prevalent mutations identified in the screen and reported here, the most common were E166V, L27V, N142S, A173V, and Y154N, along with their various combinations. In vitro analysis revealed that resistance to nirmatrelvir for these individual mutations, as well as all of the combinations we analyzed, was accompanied by decreased catalytic activity with the native substrate. Importantly, the mutations we identified have not appeared as significantly enriched in SARS-CoV-2 Mpro sequences isolated from COVID-19 patients following the introduction of nirmatrelvir. We also analyzed three of the most common SARS-CoV-2 Mpro mutations that have been seen in patients recently, and only a measured increase in nirmatrelvir resistance was seen when the more recently appearing A285V is added to both P132H and K90R. Taken together, our results predict that resistance to nirmatrelvir will be slower to develop than expected based on experience with other viral protease inhibitors, perhaps due in part to the close structural correspondence between nirmatrelvir and SARS-CoV-2 Mpro's preferred substrates.
Collapse
Affiliation(s)
- Rasha
M. Yaghi
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Dennis C. Wylie
- Center
of Biomedical Research Support, The University
of Texas at Austin, Austin, Texas 78712, The United States of America
| | - Collin L. Andrews
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Olivia H. Dickert
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Anjana Ram
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Brent L. Iverson
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| |
Collapse
|
2
|
Barazorda-Ccahuana HL, Cárcamo Rodriguez EG, Centeno-Lopez A, Paco-Chipana M, Goyzueta-Mamani LD, Chavez-Fumagalli MA. Identification of compounds from natural Peruvian sources as potential inhibitors of SARS-CoV-2 Mpro mutations by virtual screening and computational simulations. F1000Res 2024; 13:246. [PMID: 39583212 PMCID: PMC11585855 DOI: 10.12688/f1000research.143633.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although the COVID-19 pandemic has diminished in intensity, the virus continues to circulate globally. The SARS-CoV-2 main protease (Mpro) is a key enzyme in the life cycle of the virus, making it important for the development of treatments against future variants of the virus. In this work, Peruvian natural compounds were evaluated against different mutations of the SARS-CoV-2 Mpro. Methods In silico techniques such as virtual screening, all-atom molecular dynamics simulations, and energy estimation analysis were applied. Results Of the tested compounds by virtual screening, rutin was identified as the best binding agent against the different proposed Mpro mutations. In addition, computational simulations and energy estimation analysis demonstrated the high structural and energetic stability between the Mpro-rutin systems. Conclusions Overall, our study identified rutin as the most promising compound with a strong affinity for various Mpro mutations, potentially playing a key role in the development of new treatments for emerging viral variants.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Eymi Gladys Cárcamo Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
- Sustainable Innovative Biomaterials, Le Qara Research Center, Arequipa, Peru
| | - Miguel Angel Chavez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| |
Collapse
|
3
|
Kovalevsky A, Aniana A, Ghirlando R, Coates L, Drago VN, Wear L, Gerlits O, Nashed NT, Louis JM. Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors. J Med Chem 2024; 67:18478-18490. [PMID: 39370853 DOI: 10.1021/acs.jmedchem.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 propagation under nirmatrelvir and ensitrelvir pressure selects for main protease (MPro) drug-resistant mutations E166V (DRM2), L50F/E166V (DRM3), E166A/L167F (DRM4), and L50F/E166A/L167F (DRM5). DRM2-DRM5 undergoes N-terminal autoprocessing to produce mature MPro with dimer dissociation constants (Kdimer) 2-3 times larger than that of the wildtype. Co-selection of L50F restores catalytic activity of DRM2 and DRM4 from ∼10 to 30%, relative to that of the wild-type enzyme, without altering Kdimer. Binding affinities and thermodynamic profiles that parallel the drug selection pressure, exhibiting significant decreases in affinity through entropy/enthalpy compensation, were compared with GC373. Reorganization of the active sites due to mutations observed in the inhibitor-free DRM3 and DRM4 structures as compared to MProWT may account for the reduced binding affinities, although DRM2 and DRM3 complexes with ensitrelvir are almost identical to MProWT-ensitrelvir. Chemical reactivity changes of the mutant active sites due to differences in electrostatic and protein dynamics effects likely contribute to losses in binding affinities.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0540, United States
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Lauren Wear
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
4
|
Jiang H, Li W, Zhou X, Zhang J, Li J. Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77. Int J Biol Macromol 2024; 276:133706. [PMID: 38981557 DOI: 10.1016/j.ijbiomac.2024.133706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Wenwen Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Xuelan Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Lefin N, Herrera-Belén L, Farias JG, Beltrán JF. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol Divers 2024; 28:2365-2374. [PMID: 37626205 DOI: 10.1007/s11030-023-10718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
6
|
Choga WT, Bareng OT, Moraka NO, Maruapula D, Gobe I, Ndlovu NS, Zuze BJL, Motshosi PC, Seru KB, Matsuru T, Boitswarelo M, Matshaba M, Gaolathe T, Mosepele M, Makhema J, Tamura TJM, Li JZ, Shapiro R, Lockman S, Gaseitsiwe S, Moyo S. Low Prevalence of Nirmatrelvir-Ritonavir Resistance-Associated Mutations in SARS-CoV-2 Lineages From Botswana. Open Forum Infect Dis 2024; 11:ofae344. [PMID: 39015352 PMCID: PMC11250512 DOI: 10.1093/ofid/ofae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Background We evaluated naturally occurring nirmatrelvir-ritonavir (NTV/r) resistance-associated mutations (RAMs) among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains from Botswana, a country with no NTV/r use to date, in order to recommend the usage of the agent for high-risk patients with coronavirus disease 2019 (COVID-19). Methods We conducted a retrospective analysis using 5254 complete SARS-CoV-2 sequences from Botswana (September 2020-September 2023). We evaluated the mutational landscape of SARS-CoV-2 3-Chymotrypsin-like protease (3CLpro) relative to the highlighted list of RAMs granted Food and Drug Administration Emergency Use Authorization in 2023. Results The sequenced 5254 samples included Beta variants of concerns (VOCs; n = 323), Delta VOCs (n = 1314), and Omicron VOCs (n = 3354). Overall, 77.8% of the sequences exhibited at least 1 polymorphism within 76/306 amino acid positions in the nsp5 gene. NTV/rRAMs were identified in 34/5254 (0.65%; 95% CI, 0.43%-0.87%) and occurred at 5 distinct positions. Among the NTV/r RAMS detected, A191V was the most prevalent (24/34; 70.6%). Notably, T21I mutation had a prevalence of 20.6% (7/34) and coexisted with either K90R (n = 3) polymorphism in Beta sequences with RAMs or P132H (n = 3) polymorphism for Omicron sequences with RAMs. Other NTV/r RAMs detected included P108S, with a prevalence of 5.88% (2/34), and L50F, with a prevalence of 2.94% (1/34). NTV/r RAMs were significantly higher (P < .001) in Delta (24/35) compared with Beta (4/34) and Omicron (6/34) sequences. Conclusions The frequency of NTV/r RAMs in Botswana was low. Higher rates were observed in Delta VOCs compared to Omicron and Beta VOCs. As NTV/r use expands globally, continuous surveillance for drug-resistant variants is essential, given the RAMs identified in our study.
Collapse
Affiliation(s)
- Wonderful T Choga
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Ontlametse T Bareng
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Natasha O Moraka
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Irene Gobe
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Nokuthula S Ndlovu
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | | | | | | | - Teko Matsuru
- Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Matshwenyego Boitswarelo
- Department of Health Systems Management, Clinical Services, Ministry of Health Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Tendani Gaolathe
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Mosepele Mosepele
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Trevor J M Tamura
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Roger Shapiro
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shahin Lockman
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simani Gaseitsiwe
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone, Botswana
- School of Applied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
9
|
Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG, Ratangee BA, Sealy TT, Vallone KT, Clements TP. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J 2024; 291:1632-1662. [PMID: 36266238 PMCID: PMC9874604 DOI: 10.1111/febs.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antiviral therapies are integral in the fight against SARS-CoV-2 (i.e. severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Antiviral therapeutics can be divided into categories based on how they combat the virus, including viral entry into the host cell, viral replication, protein trafficking, post-translational processing, and immune response regulation. Drugs that target how the virus enters the cell include: Evusheld, REGEN-COV, bamlanivimab and etesevimab, bebtelovimab, sotrovimab, Arbidol, nitazoxanide, and chloroquine. Drugs that prevent the virus from replicating include: Paxlovid, remdesivir, molnupiravir, favipiravir, ribavirin, and Kaletra. Drugs that interfere with protein trafficking and post-translational processing include nitazoxanide and ivermectin. Lastly, drugs that target immune response regulation include interferons and the use of anti-inflammatory drugs such as dexamethasone. Antiviral therapies offer an alternative solution for those unable or unwilling to be vaccinated and are a vital weapon in the battle against the global pandemic. Learning more about these therapies helps raise awareness in the general population about the options available to them with respect to aiding in the reduction of the severity of COVID-19 infection. In this 'A Guide To' article, we provide an in-depth insight into the development of antiviral therapeutics against SARS-CoV-2 and their ability to help fight COVID-19.
Collapse
Affiliation(s)
- Drugan K. Brady
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Aashi R. Gurijala
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Liyu Huang
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ali A. Hussain
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Audrey L. Lingan
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | | - Brina A. Ratangee
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tristan T. Sealy
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Kyle T. Vallone
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | |
Collapse
|
10
|
Li X, Cheng N, Shi D, Li Y, Li C, Zhu M, Jin Q, Wu Z, Zhu L, He Y, Yao H, Ji J. Sulfated liposome-based artificial cell membrane glycocalyx nanodecoys for coronavirus inactivation by membrane fusion. Bioact Mater 2024; 33:1-13. [PMID: 38024234 PMCID: PMC10660003 DOI: 10.1016/j.bioactmat.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
As a broad-spectrum antiviral nanoparticle, the cell membrane nanodecoy is a promising strategy for preventing viral infections. However, most of the cell membrane nanodecoys can only catch virus and cannot induce inactivation, which may bring about a considerably high risk of re-infection owing to the possible viral escape from the nanodecoys. To tackle this challenge, sulfated liposomes are employed to mimic the cell membrane glycocalyx for constructing an artificial cell membrane glycocalyx nanodecoy that exhibits excellent anti-coronavirus activity against HCoV-OC43, wild-type SARS-CoV-2, Alpha and Delta variant SARS-CoV-2 pseudovirus. In addition, this nanodecoy, loaded with surface sulfate groups as SARS-CoV-2 receptor arrays, can enhance the antiviral capability to virus inactivation through destroying the virus membrane structure and transfer the spike protein to postfusion conformation. Integrating bio-inspired recognition and inactivation of viruses in a single supramolecular entity, the artificial cell membrane nanodecoy opens a new avenue for the development of theranostic antiviral nanosystems, whose mass production is favored due to the facile engineering of sulfated liposomes.
Collapse
Affiliation(s)
- Xu Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yutong Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chen Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| |
Collapse
|
11
|
Hao Z, Liu Y, Guan W, Pan J, Li M, Wu J, Liu Y, Kuang H, Yang B. Syringa reticulata potently inhibits the activity of SARS-CoV-2 3CL protease. Biochem Biophys Rep 2024; 37:101626. [PMID: 38371528 PMCID: PMC10873874 DOI: 10.1016/j.bbrep.2023.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 02/20/2024] Open
Abstract
The ongoing coronavirus infectious disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still urgently requires effective treatments. The 3C-like (3CL) protease of SARS-CoV-2 is a highly conserved cysteine protease that plays an important role in the viral life cycle and host inflammation, providing an ideal target for developing broad-spectrum antiviral drugs. Herein, we describe the discovery of a large number of herbs mainly produced in Heilongjiang Province, China, that exhibited different inhibitory activities against SARS-CoV-2 3CL protease. We confirmed that Syringa reticulata, which is used for clinical treatment of chronic bronchitis and asthma, is a specific and potent inhibitor of 3CL protease. A 70 % ethanol extract of S. reticulata dose-dependently inhibited the cleavage activity of 3CL protease in a fluorescence resonance energy transfer assay with an IC50 value of 0.0018 mg/mL, but had minimal effect in pseudovirus-based cell entry and luciferase-based RNA-dependent RNA polymerase assays. These results suggest that S. reticulata will be a potential leading candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Zhichao Hao
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - MengMeng Li
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Jiatong Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| |
Collapse
|
12
|
Bege M, Borbás A. The Design, Synthesis and Mechanism of Action of Paxlovid, a Protease Inhibitor Drug Combination for the Treatment of COVID-19. Pharmaceutics 2024; 16:217. [PMID: 38399271 PMCID: PMC10891713 DOI: 10.3390/pharmaceutics16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key proteins in the viral cycle have been developed. The most effective small-molecule drug approved to date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors, nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is also overviewed.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- HUN-REN-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- HUN-REN-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Colson P, Delerce J, Pontarotti P, Devaux C, La Scola B, Fantini J, Raoult D. Resistance-associated mutations to the anti-SARS-CoV-2 agent nirmatrelvir: Selection not induction. J Med Virol 2024; 96:e29462. [PMID: 38363015 DOI: 10.1002/jmv.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Mutations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance to antiprotease nirmatrelvir were reported. We aimed to detect them in SARS-CoV-2 genomes and quasispecies retrieved in our institute before drug availability in January 2022 and to analyze the impact of mutations on protease (3CLpro) structure. We sought for 38 3CLpro nirmatrelvir resistance mutations in a set of 62 673 SARS-CoV-2 genomes obtained in our institute from respiratory samples collected between 2020 and 2023 and for these mutations in SARS-CoV-2 quasispecies for 90 samples collected in 2020, using Python. SARS-CoV-2 protease with major mutation E166V was generated with Swiss Pdb Viewer and Molegro Molecular Viewer. We detected 22 (58%) of the resistance-associated mutations in 417 (0.67%) of the genomes analyzed; 325 (78%) of these genomes had been obtained from samples collected in 2020-2021. APOBEC signatures were found for 12/22 mutations. We also detected among viral quasispecies from 90 samples some minority reads harboring any of 15 nirmatrelvir resistance mutations, including E166V. Also, we predicted that E166V has a very limited effect on 3CLpro structure but may prevent drug attachment. Thus, we evidenced that mutations associated with nirmatrelvir resistance pre-existed in SARS-CoV-2 before drug availability. These findings further warrant SARS-CoV-2 genomic surveillance and SARS-CoV-2 quasispecies characterization.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | | | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
| |
Collapse
|
14
|
Romero ME, McElhenney SJ, Yu J. Trapping a non-cognate nucleotide upon initial binding for replication fidelity control in SARS-CoV-2 RNA dependent RNA polymerase. Phys Chem Chem Phys 2024; 26:1792-1808. [PMID: 38168789 DOI: 10.1039/d3cp04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The RNA dependent RNA polymerase (RdRp) in SARS-CoV-2 is a highly conserved enzyme responsible for viral genome replication/transcription. To understand how the viral RdRp achieves fidelity control during such processes, here we computationally investigate the natural non-cognate vs. cognate nucleotide addition and selectivity during viral RdRp elongation. We focus on the nucleotide substrate initial binding (RdRp active site open) to the prechemical insertion (active site closed) of the RdRp. The current studies were first carried out using microsecond ensemble equilibrium all-atom molecular dynamics (MD) simulations. Due to the slow conformational changes (from open to closed) during nucleotide insertion and selection, enhanced or umbrella sampling methods have been further employed to calculate the free energy profiles of the nucleotide insertion. Our studies find notable stability of noncognate dATP and GTP upon initial binding in the active-site open state. The results indicate that while natural cognate ATP and Remdesivir drug analogue (RDV-TP) are biased toward stabilization in the closed state to facilitate insertion, the natural non-cognate dATP and GTP can be well trapped in off-path initial binding configurations and prevented from insertion so that to be further rejected. The current work thus presents the intrinsic nucleotide selectivity of SARS-CoV-2 RdRp for natural substrate fidelity control, which should be considered in antiviral drug design.
Collapse
Affiliation(s)
- Moises E Romero
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | | | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simmons Center for Multi-scale Cell Fate Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Kijak GH, Ahani B, Arbetter D, Chuecos F, Gopalakrishnan V, Beloor J, Brady T, Nguyen A, Roe TL, Schuko N, Zhang T, Hobbs FDR, Padilla F, Kelly EJ, Montgomery H, Streicher K. Analysis of SARS-CoV-2 Emergent Variants Following AZD7442 (Tixagevimab/Cilgavimab) for Early Outpatient Treatment of COVID-19 (TACKLE Trial). Infect Dis Ther 2023; 12:2691-2707. [PMID: 37914983 PMCID: PMC10746613 DOI: 10.1007/s40121-023-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION AZD7442 (tixagevimab/cilgavimab) comprises neutralising monoclonal antibodies (mAbs) that bind to distinct non-overlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Viral evolution during mAb therapy can select for variants with reduced neutralisation susceptibility. We examined treatment-emergent SARS-CoV-2 variants during TACKLE (NCT04723394), a phase 3 study of AZD7442 for early outpatient treatment of coronavirus disease 2019 (COVID-19). METHODS Non-hospitalised adults with mild-to-moderate COVID-19 were randomised and dosed ≤ 7 days from symptom onset with AZD7442 (n = 452) or placebo (n = 451). Next-generation sequencing of the spike gene was performed on SARS-CoV-2 reverse-transcription polymerase chain reaction-positive nasopharyngeal swabs at baseline and study days 3, 6, and 15 post dosing. SARS-CoV-2 lineages were assigned using spike nucleotide sequences. Amino acid substitutions were analysed at allele fractions (AF; % of sequence reads represented by substitution) ≥ 25% and 3% to 25%. In vitro susceptibility to tixagevimab, cilgavimab, and AZD7442 was evaluated for all identified treatment-emergent variants using a pseudotyped microneutralisation assay. RESULTS Longitudinal spike sequences were available for 461 participants (AZD7442, n = 235; placebo, n = 226) and showed that treatment-emergent variants at any time were rare, with 5 (2.1%) AZD7442 participants presenting ≥ 1 substitution in tixagevimab/cilgavimab binding sites at AF ≥ 25%. At AF 3% to 25%, treatment-emergent variants were observed in 15 (6.4%) AZD7442 and 12 (5.3%) placebo participants. All treatment-emergent variants showed in vitro susceptibility to AZD7442. CONCLUSION These data indicate that AZD7442 creates a high genetic barrier for resistance and is a feasible option for COVID-19 treatment.
Collapse
Affiliation(s)
- Gustavo H Kijak
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Bahar Ahani
- Bioinformatics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Douglas Arbetter
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Fernando Chuecos
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Barcelona, Spain
| | | | - Jagadish Beloor
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Tyler Brady
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Amy Nguyen
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Tiffany L Roe
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicolette Schuko
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Tianhui Zhang
- Formerly Data Sciences and Quantitative Biology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Francisco Padilla
- Centro de Investigación en Cardiología y Metabolismo, Guadalajara, Jalisco, Mexico
| | - Elizabeth J Kelly
- Formerly Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Hugh Montgomery
- Department of Medicine, University College London, London, UK
| | - Katie Streicher
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
16
|
Bischof E. Mitigating COVID-19 Mortality and Morbidity in China's Aging Population: A Focus on Available Medications and Future Developments. Aging Dis 2023; 14:1967-1976. [PMID: 37199593 PMCID: PMC10676792 DOI: 10.14336/ad.2023.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/18/2023] [Indexed: 05/19/2023] Open
Abstract
The COVID-19 pandemic, often referred to as the geropandemic, has put immense pressure on global healthcare systems worldwide, leading to a rush in the development and approval of medications for the treatment of the viral infection. Clinical trials on efficacy and safety had a limited spectrum on inclusion and endpoints because of the urgent need for fast results. The chronologically and biologically aged population is especially at risk for severe or lethal disease, as well as treatment-associated toxicity. In China, the growing elderly population segment has been a focus in public health measurements of COVID-19, guiding towards herd immunity with a mild variant, thus minimizing overall deaths and morbidity. While the COVID-19 pandemic has now been reclassified and the virus weakened, there is a clear need for novel therapies to protect the elderly. This paper reviews the current safety and efficacy of available COVID-19 medications in China, with a specific focus on 3CL protease inhibitors and the aging population. The current COVID wave in China has demonstrated a significant impact on the elderly and the need for new drugs that are effective at low doses and can be used alone, without harmful side effects, generation of viral resistance, and drug-drug interactions. The rush to develop and approve COVID-19 medications has brought up important questions about the balance between speed and caution, resulting in a pipeline of novel therapies now moving through clinical trials, including third-generation 3CL protease inhibitors. A majority of those therapeutics are being developed in China.
Collapse
Affiliation(s)
- Evelyne Bischof
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy.
- Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
17
|
Pojtanadithee P, Isswanich K, Buaban K, Chamni S, Wilasluck P, Deetanya P, Wangkanont K, Langer T, Wolschann P, Sanachai K, Rungrotmongkol T. A combination of structure-based virtual screening and experimental strategies to identify the potency of caffeic acid ester derivatives as SARS-CoV-2 3CL pro inhibitor from an in-house database. Biophys Chem 2023; 304:107125. [PMID: 39491914 DOI: 10.1016/j.bpc.2023.107125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Drug development requires significant time and resources, and computer-aided drug discovery techniques that integrate chemical and biological spaces offer valuable tools for the process. This study focused on the field of COVID-19 therapeutics and aimed to identify new active non-covalent inhibitors for 3CLpro, a key protein target. By combining in silico and in vitro approaches, an in-house database was utilized to identify potential inhibitors. The drug-likeness criteria were considered to pre-filter 553 compounds from 12 groups of natural products. Using structure-based virtual screening, 296 compounds were identified that matched the chemical features of SARS-CoV-2 3CLpro peptidomimetic inhibitor pharmacophore models. Subsequent molecular docking resulted in 43 hits with high binding affinities. Among the hits, caffeic acid analogs showed significant interactions with the 3CLpro active site, indicating their potential as promising candidates. To further evaluate their efficacy, enzyme-based assays were conducted, revealing that two ester derivatives of caffeic acid (4k and 4l) exhibited more than a 30% reduction in 3CLpro activity. Overall, these findings suggest that the screening approach employed in this study holds promise for the discovery of novel anti-SARS-CoV-2 therapeutics. Furthermore, the methodology could be extended for optimization or retrospective evaluation to enhance molecular targeting and antiviral efficacy of potential drug candidates.
Collapse
Affiliation(s)
- Piyatida Pojtanadithee
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kulpornsorn Isswanich
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonchira Buaban
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | | | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
Liu M, Li J, Liu W, Yang Y, Zhang M, Ye Y, Zhu W, Zhou C, Zhai H, Xu Z, Zhang G, Huang H. The S1'-S3' Pocket of the SARS-CoV-2 Main Protease Is Critical for Substrate Selectivity and Can Be Targeted with Covalent Inhibitors. Angew Chem Int Ed Engl 2023; 62:e202309657. [PMID: 37609788 DOI: 10.1002/anie.202309657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
The main protease (Mpro ) of SARS-CoV-2 is a well-characterized target for antiviral drug discovery. To date, most antiviral drug discovery efforts have focused on the S4-S1' pocket of Mpro ; however, it is still unclear whether the S1'-S3' pocket per se can serve as a new site for drug discovery. In this study, the S1'-S3' pocket of Mpro was found to differentially recognize viral peptidyl substrates. For instance, S3' in Mpro strongly favors Phe or Trp, and S1' favors Ala. The peptidyl inhibitor D-4-77, which possesses an α-bromoacetamide warhead, was discovered to be a promising inhibitor of Mpro , with an IC50 of 0.95 μM and an antiviral EC50 of 0.49 μM. The Mpro /inhibitor co-crystal structure confirmed the binding mode of the inhibitor to the S1'-S3' pocket and revealed a covalent mechanism. In addition, D-4-77 functions as an immune protectant and suppresses SARS-CoV-2 Mpro -induced antagonism of the host NF-κB innate immune response. These findings indicate that the S1'-S3' pocket of SARS-CoV-2 Mpro is druggable, and that inhibiting SARS-CoV-2 Mpro can simultaneously protect human innate immunity and inhibit virion assembly.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Jihui Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Wenqi Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Ying Yang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Manman Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Wenning Zhu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Cuiyan Zhou
- National Protein Science Facility, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Zhengshuang Xu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| |
Collapse
|
19
|
Borhani SG, Levine MZ, Krumpe LH, Wilson J, Henrich CJ, O'Keefe BR, Lo DC, Sittampalam GS, Godfrey AG, Lunsford RD, Mangalampalli V, Tao D, LeClair CA, Thole AP, Frey D, Swartz J, Rao G. An approach to rapid distributed manufacturing of broad spectrum anti-viral griffithsin using cell-free systems to mitigate pandemics. N Biotechnol 2023; 76:13-22. [PMID: 37054948 PMCID: PMC10330340 DOI: 10.1016/j.nbt.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.
Collapse
Affiliation(s)
- Shayan G Borhani
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Max Z Levine
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Lauren H Krumpe
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Alexander G Godfrey
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - R Dwayne Lunsford
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Venkata Mangalampalli
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Aaron P Thole
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Douglas Frey
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - James Swartz
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
20
|
Zhuang W, Xu J, Wu Y, Yang J, Lin X, Liao Y, Wan J, Weng L, Lin W. Post-marketing safety concerns with nirmatrelvir: A disproportionality analysis of spontaneous reports submitted to the FDA Adverse Event Reporting System. Br J Clin Pharmacol 2023; 89:2830-2842. [PMID: 37170890 DOI: 10.1111/bcp.15783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
AIMS Nirmatrelvir is an antiviral drug with a novel mechanism of action, targeting the 3-CL protease, and is used in the treatment of COVID-19. However, the potential side effects have not yet been fully studied. The aim of this study was to identify potential safety signals of nirmatrelvir by analysing post-marketing safety data based on the largest publicly available worldwide pharmacovigilance database. METHODS We analysed nirmatrelvir adverse events to identify and characterize relevant safety signals based on the FDA Adverse Event Reporting System database in 2022. The case/non-case approach was used to estimate the reporting odds ratio (ROR) and information component (IC) with relevant confidence intervals (95% CI) for adverse events (AEs) that numbered 4 or more. RESULTS A total of 26 846 cases were included. Disease recurrence (ROR [95% CI] = 413.2 [395.6-431.59]), dysgeusia (ROR [95% CI] = 110.84 [106.04-115.85]), anosmia (ROR [95% CI] = 15.21 [12.76-18.11]), ageusia (ROR [95% CI] = 9.80 [8.50-11.3]) and urticaria (ROR [95% CI] = 1.91 [1.69-2.17]) were the main safety signals. In addition, abdominal pain upper and skin toxicity were two specific safety signals of nirmatrelvir. In the pregnant population, there was a significant increased ROR for life-threatening conditions (ROR [95% CI] = 8.00 [1.77-36.20]). CONCLUSIONS Our study identified that the main and specific safety signals of nirmatrelvir were disease recurrence, dysgeusia, abdominal pain upper and skin toxicity. Clinicians and pharmacists should be vigilant of these AEs, although differentiating between COVID-19 symptoms and AEs can be challenging. Notably, a potential safety concern of nirmatrelvir should be a warning based on a small number of events in the pregnant population. However, the available data are insufficient, and further continued pharmacovigilance and surveillance is needed to fully understand this issue.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jiabing Xu
- School of Pharmaceutical, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ye Wu
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianhui Yang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiuxian Lin
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yufang Liao
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Wan
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Lizhu Weng
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wanlong Lin
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Pojtanadithee P, Hengphasatporn K, Suroengrit A, Boonyasuppayakorn S, Wilasluck P, Deetanya P, Wangkanont K, Sukanadi IP, Chavasiri W, Wolschann P, Langer T, Shigeta Y, Maitarad P, Sanachai K, Rungrotmongkol T. Identification of Promising Sulfonamide Chalcones as Inhibitors of SARS-CoV-2 3CL pro through Structure-Based Virtual Screening and Experimental Approaches. J Chem Inf Model 2023; 63:5244-5258. [PMID: 37581276 DOI: 10.1021/acs.jcim.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
3CLpro is a viable target for developing antiviral therapies against the coronavirus. With the urgent need to find new possible inhibitors, a structure-based virtual screening approach was developed. This study recognized 75 pharmacologically bioactive compounds from our in-house library of 1052 natural product-based compounds that satisfied drug-likeness criteria and exhibited good bioavailability and membrane permeability. Among these compounds, three promising sulfonamide chalcones were identified by combined theoretical and experimental approaches, with SWC423 being the most suitable representative compound due to its competitive inhibition and low cytotoxicity in Vero E6 cells (EC50 = 0.89 ± 0.32 μM; CC50 = 25.54 ± 1.38 μM; SI = 28.70). The binding and stability of SWC423 in the 3CLpro active site were investigated through all-atom molecular dynamics simulation and fragment molecular orbital calculation, indicating its potential as a 3CLpro inhibitor for further SARS-CoV-2 therapeutic research. These findings suggested that inhibiting 3CLpro with a sulfonamide chalcone such as SWC423 may pave the effective way for developing COVID-19 treatments.
Collapse
Affiliation(s)
- Piyatida Pojtanadithee
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Aphinya Suroengrit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - I Putu Sukanadi
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Wolschann
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Liu W, Song Q, Li F, Cao Y, Han Y, Wu J, Hu Z, Zhang Y, Ma Y. Real-World Effectiveness of Nirmatrelvir/Ritonavir and Dexamethasone Among Hospitalized Patients with COVID-19: A Prospective Cohort Study. Infect Drug Resist 2023; 16:5223-5231. [PMID: 37589014 PMCID: PMC10426452 DOI: 10.2147/idr.s419373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Purpose Anti-viral and anti-inflammatory therapies were effective in altering virus repletion and immune dysregulation in Coronavirus Disease 2019 (COVID-19) patients. This study aimed to explore the effect of combination therapy on disease progression in a real-world setting. Patients and Methods A total of 836 patients confirmed with SARS-CoV-2 infection participated in the study from 15 November to 25 December 2022 at Beijing Youan Hospital, Capital Medical University. A prospective cohort study was implemented to investigate the prognostic effect of the combination therapy on virus shedding and clinical recovery. Results About 78% of patients used nirmatrelvir/ritonavir (N/R, Paxlovid®, Pfizer) negatively, 16% of patients were prescribed nirmatrelvir/ritonavir beyond five days of symptom onset, 4% of patients received N/R monotherapy within five days of symptom onset and 2% of patients received N/R combined with dexamethasone. Compared with untreated patients, N/R monotherapy reduced the median time to 10.0 days from 12.0 days according to the negative conversion of nucleic acid amplification test (NAAT), and combination therapy reduced the time to 7.0 days, and increased to a 1.99 (95% CI 0.92, 4.32) and 14.23-fold (95% CI 4.50, 44.95) probability of negative NAAT, respectively. N/R monotherapy reduced the clinical recovery time to 10.0 days from 13.0 days. Single-use and combined-use non-significantly increased the recovery probability by 61% and 69%, respectively. In mild and moderate patients, the HRs for clinical recovery increased to 1.69 (95% CI 0.73, 3.94) and 2.18 (95% CI 0.29, 16.62), respectively. Conclusion Combination therapy of N/R and dexamethasone increased negative conversion of NAAT and was associated with a non-significant improvement in clinical recovery. Further studies are warranted to confirm this efficacy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacy, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Qingkun Song
- Department of Clinical Epidemiology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fang Li
- Department of Pharmacy, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yu Cao
- Department of Clinical Epidemiology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ying Han
- Center of Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiangping Wu
- Department of Clinical Epidemiology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhongjie Hu
- Department of Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yonghong Zhang
- Department of Hepatic Intervention, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yingmin Ma
- Department of Respiratory and Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
23
|
Liang T, Xiao S, Wu Z, Lv X, Liu S, Hu M, Li G, Li P, Ma X. Phenothiazines Inhibit SARS-CoV-2 Entry through Targeting Spike Protein. Viruses 2023; 15:1666. [PMID: 37632009 PMCID: PMC10458444 DOI: 10.3390/v15081666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and continues to threaten humanity due to the persistent emergence of new variants. Therefore, developing more effective and broad-spectrum therapeutic and prophylactic drugs against infection by SARS-CoV-2 and its variants, as well as future emerging CoVs, is urgently needed. In this study, we screened several US FDA-approved drugs and identified phenothiazine derivatives with the ability to potently inhibit the infection of pseudotyped SARS-CoV-2 and distinct variants of concern (VOCs), including B.1.617.2 (Delta) and currently circulating Omicron sublineages XBB and BQ.1.1, as well as pseudotyped SARS-CoV and MERS-CoV. Mechanistic studies suggested that phenothiazines predominantly inhibited SARS-CoV-2 pseudovirus (PsV) infection at the early stage and potentially bound to the spike (S) protein of SARS-CoV-2, which may prevent the proteolytic cleavage of the S protein, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that phenothiazines can serve as a potential broad-spectrum therapeutic drug for the treatment of SARS-CoV-2 infection as well as the infection of future emerging human coronaviruses (HCoVs).
Collapse
Affiliation(s)
- Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Xi Lv
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
| | - Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Guojie Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
24
|
Ayoup MS, ElShafey MM, Abdel-Hamid H, Ghareeb DA, Abu-Serie MM, Heikal LA, Teleb M. Repurposing 1,2,4-oxadiazoles as SARS-CoV-2 PLpro inhibitors and investigation of their possible viral entry blockade potential. Eur J Med Chem 2023; 252:115272. [PMID: 36966652 PMCID: PMC10008816 DOI: 10.1016/j.ejmech.2023.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Although vaccines are obviously mitigating the COVID-19 pandemic diffusion, efficient complementary antiviral agents are urgently needed to combat SARS-CoV-2. The viral papain-like protease (PLpro) is a promising therapeutic target being one of only two essential proteases crucial for viral replication. Nevertheless, it dysregulates the host immune sensing response. Here we report repositioning of the privileged 1,2,4-oxadiazole scaffold as promising SARS-CoV-2 PLpro inhibitor with potential viral entry inhibition profile. The design strategy relied on mimicking the general structural features of the lead benzamide PLpro inhibitor GRL0617 with isosteric replacement of its pharmacophoric amide backbone by 1,2,4-oxadiazole core. Inspired by the multitarget antiviral agents, the substitution pattern was rationalized to tune the scaffold's potency against other additional viral targets, especially the spike receptor binding domain (RBD) that is responsible for the viral invasion. The Adopted facial synthetic protocol allowed easy access to various rationally substituted derivatives. Among the evaluated series, the 2-[5-(pyridin-4-yl)-1,2,4-oxadiazol-3-yl]aniline (5) displayed the most balanced dual inhibitory potential against SARS-CoV-2 PLpro (IC50=7.197 μM) and spike protein RBD (IC50 = 8.673 μM), with acceptable ligand efficiency metrics, practical LogP (3.8) and safety profile on Wi-38 (CC50 = 51.78 μM) and LT-A549 (CC50 = 45.77 μM) lung cells. Docking simulations declared the possible structural determinants of activities and enriched the SAR data for further optimization studies.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Mariam M ElShafey
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Doaa A Ghareeb
- Bio‑screening and preclinical trial lab, Biochemistry Department, Faculty of Science, Alexandria University, P.O. Box 21511, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
25
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
26
|
Khunte M, Kumar S, Salomon JA, Bilinski A. Projected COVID-19 Mortality Reduction From Paxlovid Rollout. JAMA HEALTH FORUM 2023; 4:e230046. [PMID: 36930169 PMCID: PMC10024200 DOI: 10.1001/jamahealthforum.2023.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
This decision analytical model study assesses projections of simulated effects of Paxlovid rollout on hospitalizations and mortality using 10 models.
Collapse
Affiliation(s)
- Mihir Khunte
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Soryan Kumar
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Joshua A. Salomon
- Center for Health Policy and Center for Primary Care and Outcomes Research, Stanford University School of Medicine, Stanford, California
| | - Alyssa Bilinski
- Department of Health Services, Policy, and Practice and Department of Biostatistics, Brown School of Public Health, Providence, Rhode Island
| |
Collapse
|
27
|
Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. J Med Chem 2023; 66:2663-2680. [PMID: 36757959 PMCID: PMC9924091 DOI: 10.1021/acs.jmedchem.2c01627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/10/2023]
Abstract
Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leo Dumjahn
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yilin Zhao
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - C. David Owen
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Stephen M. Laidlaw
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tika R. Malla
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dung Nguyen
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Petra Lukacik
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Adam D. Crawshaw
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Anna J. Warren
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jose Trincao
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Claire Strain-Damerell
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Miles W. Carroll
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Martin A. Walsh
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
28
|
Diessner EM, Takahashi GR, Cross TJ, Martin RW, Butts CT. Mutation Effects on Structure and Dynamics: Adaptive Evolution of the SARS-CoV-2 Main Protease. Biochemistry 2023; 62:747-758. [PMID: 36656653 PMCID: PMC9888416 DOI: 10.1021/acs.biochem.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/29/2022] [Indexed: 01/20/2023]
Abstract
The main protease of SARS-CoV-2 (Mpro) plays a critical role in viral replication; although it is relatively conserved, Mpro has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of Mpro, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics. In addition to basic structural properties such as variation in surface area and torsion angles, we use protein structure networks and active site networks to evaluate functionally relevant characters related to global cohesion and active site constraint. Substitution analysis shows a continuing trend toward more hydrophobic residues that are dependent on the location of the residue in primary, secondary, tertiary, and quaternary structures. Phylogenetic analysis provides additional evidence for the impact of selective pressure on mutation of Mpro. Overall, these analyses suggest evolutionary adaptation of Mpro toward more hydrophobicity and a less-constrained active site in response to the selective pressures of a novel host environment.
Collapse
Affiliation(s)
- Elizabeth M Diessner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Gemma R Takahashi
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Thomas J Cross
- Department of Chemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Rachel W Martin
- Departments of Chemistry and Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
29
|
Sargsyan K, Mazmanian K, Lim C. A strategy for evaluating potential antiviral resistance to small molecule drugs and application to SARS-CoV-2. Sci Rep 2023; 13:502. [PMID: 36627366 PMCID: PMC9831016 DOI: 10.1038/s41598-023-27649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Alterations in viral fitness cannot be inferred from only mutagenesis studies of an isolated viral protein. To-date, no systematic analysis has been performed to identify mutations that improve virus fitness and reduce drug efficacy. We present a generic strategy to evaluate which viral mutations might diminish drug efficacy and applied it to assess how SARS-CoV-2 evolution may affect the efficacy of current approved/candidate small-molecule antivirals for Mpro, PLpro, and RdRp. For each drug target, we determined the drug-interacting virus residues from available structures and the selection pressure of the virus residues from the SARS-CoV-2 genomes. This enabled the identification of promising drug target regions and small-molecule antivirals that the virus can develop resistance. Our strategy of utilizing sequence and structural information from genomic sequence and protein structure databanks can rapidly assess the fitness of any emerging virus variants and can aid antiviral drug design for future pathogens.
Collapse
Affiliation(s)
- Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
30
|
Nag A, Dasgupta A, Sengupta S, Lai TK, Acharya K. An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Comput Biol Med 2023; 152:106433. [PMID: 36565483 PMCID: PMC9767885 DOI: 10.1016/j.compbiomed.2022.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The main protease is an important structural protein of SARS-CoV-2, essential for its survivability inside a human host. Considering current vaccines' limitations and the absence of approved therapeutic targets, Mpro may be regarded as the potential candidate drug target. Novel fungal phytocompound Astrakurkurone may be studied as the potential Mpro inhibitor, considering its medicinal properties reported elsewhere. METHODS In silico molecular docking was performed with Astrakurkurone and its twenty pharmacophore-based analogues against the native Mpro protein. A hypothetical Mpro was also constructed with seven mutations and targeted by Astrakurkurone and its analogues. Furthermore, multiple parameters such as statistical analysis (Principal Component Analysis), pharmacophore alignment, and drug likeness evaluation were performed to understand the mechanism of protein-ligand molecular interaction. Finally, molecular dynamic simulation was done for the top-ranking ligands to validate the result. RESULT We identified twenty Astrakurkurone analogues through pharmacophore screening methodology. Among these twenty compounds, two analogues namely, ZINC89341287 and ZINC12128321 showed the highest inhibitory potentials against native and our hypothetical mutant Mpro, respectively (-7.7 and -7.3 kcal mol-1) when compared with the control drug Telaprevir (-5.9 and -6.0 kcal mol-1). Finally, we observed that functional groups of ligands namely two aromatic and one acceptor groups were responsible for the residual interaction with the target proteins. The molecular dynamic simulation further revealed that these compounds could make a stable complex with their respective protein targets in the near-native physiological condition. CONCLUSION To conclude, Astrakurkurone analogues ZINC89341287 and ZINC12128321 can be potential therapeutic agents against the highly infectious SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Adhiraj Dasgupta
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Sutirtha Sengupta
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Metropolitan College, Kolkata, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
31
|
Zhou Y, Gammeltoft KA, Ryberg LA, Pham LV, Tjørnelund HD, Binderup A, Duarte Hernandez CR, Fernandez-Antunez C, Offersgaard A, Fahnøe U, Peters GHJ, Ramirez S, Bukh J, Gottwein JM. Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. SCIENCE ADVANCES 2022; 8:eadd7197. [PMID: 36542720 PMCID: PMC9770952 DOI: 10.1126/sciadv.add7197] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karen Anbro Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Line Abildgaard Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Corresponding author.
| |
Collapse
|
32
|
Zhou Y, Gammeltoft KA, Ryberg LA, Pham LV, Tjørnelund HD, Binderup A, Duarte Hernandez CR, Fernandez-Antunez C, Offersgaard A, Fahnøe U, Peters GHJ, Ramirez S, Bukh J, Gottwein JM. Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. SCIENCE ADVANCES 2022; 8:eadd7197. [PMID: 36542720 DOI: 10.1101/2022.06.06.494921] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses.
Collapse
Affiliation(s)
- Yuyong Zhou
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karen Anbro Gammeltoft
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Line Abildgaard Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Borhani SG, Levine MZ, Krumpe LH, Wilson J, Henrich CJ, O’Keefe BR, Lo D, Sittampalam GS, Godfrey AG, Lunsford RD, Mangalampalli V, Tao D, LeClair CA, Thole A, Frey D, Swartz J, Rao G. An approach to rapid distributed manufacturing of broad spectrum anti-viral griffithsin using cell-free systems to mitigate pandemics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.19.521044. [PMID: 36597541 PMCID: PMC9810220 DOI: 10.1101/2022.12.19.521044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced with consistent purity and potency in less than 24 hours. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo . The proposed production process is efficient and can be readily scaled up and deployed anywhere in the world where a viral pathogen might emerge. The current emergence of viral variants has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.
Collapse
|
34
|
HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122089. [PMID: 36556453 PMCID: PMC9781275 DOI: 10.3390/life12122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused two major viral outbreaks during the last century. Two major aspects of HIV-1 and SARS-CoV-2 co-infection have been extensively investigated and deserve attention. First, the impact of the co-infection on the progression of disease caused by HIV-1 or SARS-CoV-2. Second, the impact of the HIV-1 anti-retroviral treatment on SARS-CoV-2 infection. In this review, we aim to summarize and discuss the works produced since the beginning of the SARS-CoV-2 pandemic ranging from clinical studies to in vitro experiments in the context of co-infection and drug development.
Collapse
|
35
|
Wong CKH, Au ICH, Lau KTK, Lau EHY, Cowling BJ, Leung GM. Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong's omicron BA.2 wave: a retrospective cohort study. THE LANCET. INFECTIOUS DISEASES 2022; 22:1681-1693. [PMID: 36029795 PMCID: PMC9401976 DOI: 10.1016/s1473-3099(22)00507-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Data on the effectiveness of oral antivirals in patients with mild-to-moderate COVID-19 are urgently needed. This retrospective cohort study aimed to evaluate the clinical and virological outcomes associated with molnupiravir or nirmatrelvir-ritonavir use in hospitalised patients with mild-to-moderate COVID-19 during a pandemic wave dominated by the omicron BA.2 subvariant. METHODS We analysed data from a territory-wide retrospective cohort of patients in Hong Kong who were hospitalised with a confirmed diagnosis of SARS-CoV-2 infection between Feb 26 and April 26, 2022. Data were extracted from the Hospital Authority, the Department of Health, and the Hong Kong Death Registry. Patients were eligible for inclusion if their admission date was within 3 days before or after confirmation of their COVID-19 diagnosis. Those who were admitted to hospital more than 5 days after symptom onset, were younger than 18 years, had a history of oral antiviral use before admission, required supplemental oxygen on admission, had drug-related contraindications to nirmatrelvir-ritonavir use, or had severe renal or severe liver impairment were excluded. Patients who received the oral antivirals molnupiravir or nirmatrelvir-ritonavir were matched with controls using propensity-score matching in a ratio of 1:1. The primary outcome was all-cause mortality and secondary outcomes included a composite outcome of disease progression (all-cause mortality, initiation of invasive mechanical ventilation [IMV], intensive care unit [ICU] admission, or the need for oxygen therapy) and each of these individual disease progression outcomes, and time to reaching a low viral burden (RT-PCR cycle threshold value ≥30). For each event outcome, crude incidence rates were calculated and hazard ratios (HRs) estimated using Cox regression models. FINDINGS We identified 40 776 patients hospitalised with SARS-CoV-2 infection during the study period, with a mean follow-up of 41·3 days (total 925 713 person-days). After exclusions and propensity-score matching, we included 1856 molnupiravir recipients and 1856 matched controls, and 890 nirmatrelvir-ritonavir recipients and 890 matched controls. A lower risk of all-cause mortality was observed in molnupiravir recipients (crude incidence rate per 10 000 person-days 19·98 events [95% CI 16·91-23·45]) versus matched controls (38·07 events [33·85-42·67]; HR 0·48 [95% CI 0·40-0·59], p<0·0001) and in nirmatrelvir-ritonavir recipients (10·28 events [7·03-14·51]) versus matched controls (26·47 events [21·34-32·46]; HR 0·34 [0·23-0·50], p<0·0001). Oral antiviral recipients also had lower risks of the composite disease progression outcome (molnupiravir HR 0·60 [95% CI 0·52-0·69], p<0·0001; nirmatrelvir-ritonavir 0·57 [0·45-0·72], p<0·0001) and need for oxygen therapy (molnupiravir 0·69 [0·57-0·83], p=0·0001; nirmatrelvir-ritonavir 0·73 [0·54-0·97], p=0·032) compared with controls. Time to achieving a low viral burden was significantly shorter among oral antiviral recipients than matched controls (molnupiravir HR 1·38 [95% CI 1·15-1·64], p=0·0005; nirmatrelvir-ritonavir 1·38 [1·07-1·79], p=0·013). Significant differences in initiation of IMV and ICU admission were not found. INTERPRETATION During a wave of SARS-CoV-2 omicron BA.2, initiation of novel oral antiviral treatments in hospitalised patients not requiring oxygen therapy on admission showed substantial clinical benefit. Our findings support the early use of oral antivirals in this population of patients. FUNDING Health and Medical Research Fund (Health Bureau, Government of the Hong Kong Special Administrative Region). TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Carlos K H Wong
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| | - Ivan C H Au
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kristy T K Lau
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric H Y Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| |
Collapse
|
36
|
van Vliet VJE, Huynh N, Palà J, Patel A, Singer A, Slater C, Chung J, van Huizen M, Teyra J, Miersch S, Luu GK, Ye W, Sharma N, Ganaie SS, Russell R, Chen C, Maynard M, Amarasinghe GK, Mark BL, Kikkert M, Sidhu SS. Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site. PLoS Pathog 2022; 18:e1011065. [PMID: 36548304 PMCID: PMC9822107 DOI: 10.1371/journal.ppat.1011065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.
Collapse
Affiliation(s)
- Vera J. E. van Vliet
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Nhan Huynh
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Judith Palà
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Ankoor Patel
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alex Singer
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Cole Slater
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacky Chung
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mariska van Huizen
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Joan Teyra
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Shane Miersch
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Gia-Khanh Luu
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Wei Ye
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Safder S. Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Raquel Russell
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chao Chen
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mindy Maynard
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Sachdev S. Sidhu
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
37
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
38
|
Xiong D, Zhang X, Yu J, Wei H. Distribution of intra-host variations and mutations in the genomes of SARS-CoV-2 and their implications on detection and therapeutics. MedComm (Beijing) 2022; 3:e186. [PMID: 36474856 PMCID: PMC9717708 DOI: 10.1002/mco2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing circulation of SARS-CoV-2 variants of concern (VOCs) has caused global concerns, because VOCs could escape current vaccines, antiviral drugs, and diagnosis. Analyzing mutations and intra-host diversities in different and widespread VOCs can provide important insights to virus adaptive evolution and validity of vaccines, antiviral drugs, and diagnosis. In this study, by analyzing 1744 high-throughput sequencing data for intra-host single-nucleotide variations (iSNVs) and 3,668,205 genome sequences for mutations in different VOCs, it was found that Omicron variant is still evolving at high speed, especially having high iSNVs frequency in its S and N genes. The efficacies of antibodies or detection primers targeting these two genes are at high risks to be invalid. Instead, highly conserved regions such as NSP8 gene could be better therapeutic and detection targets. Furthermore, mutations in later VOCs could be traced to the minor alleles in the previous variant samples such as Alpha and Delta in different countries. Finally, it was found that mutations C14408T in RdRp and A18163G in NSP14 gene might be associated with the higher genetic diversity in Omicron. Our findings not only contribute to understanding the adaptive evolution of SARS-CoV-2 VOCs, but also provide useful information for both drugs and diagnostic kits development.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
39
|
Akinosoglou K, Schinas G, Gogos C. Oral Antiviral Treatment for COVID-19: A Comprehensive Review on Nirmatrelvir/Ritonavir. Viruses 2022; 14:2540. [PMID: 36423149 PMCID: PMC9696049 DOI: 10.3390/v14112540] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the rapid development of efficient and safe vaccines against COVID-19, the need to confine the pandemic and treat infected individuals on an outpatient basis has led to the approval of oral antiviral agents. Taking into account the viral kinetic pattern of SARS-CoV-2, it is of high importance to intervene at the early stages of the disease. A protease inhibitor called nirmatrelvir coupled with ritonavir (NMV/r), which acts as a CYP3A inhibitor, delivered as an oral formulation, has shown much promise in preventing disease progression in high-risk patients with no need for supplemental oxygen administration. Real-world data seem to confirm the drug combination's efficacy and safety against all viral variants of concern in adult populations. Although, not fully clarified, viral rebound and recurrence of COVID-19 symptoms have been described following treatment; however, more data on potential resistance issues concerning the Mpro gene, which acts as the drug's therapeutic target, are needed. NMV/r has been a gamechanger in the fight against the pandemic by preventing hospitalizations and halting disease severity; therefore, more research on future development and greater awareness on its use are warranted.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- Department of Internal Medicine, Medical School, University of Patras, 26504 Rio, Greece
| | | | | |
Collapse
|
40
|
Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. PRECISION CLINICAL MEDICINE 2022; 5:pbac024. [PMID: 36268466 PMCID: PMC9579963 DOI: 10.1093/pcmedi/pbac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic poses a fundamental challenge to global health. Since the outbreak of SARS-CoV-2, great efforts have been made to identify antiviral strategies and develop therapeutic drugs to combat the disease. There are different strategies for developing small molecular anti-SARS-CoV-2 drugs, including targeting coronavirus structural proteins (e.g. spike protein), non-structural proteins (nsp) (e.g. RdRp, Mpro, PLpro, helicase, nsp14, and nsp16), host proteases (e.g. TMPRSS2, cathepsin, and furin) and the pivotal proteins mediating endocytosis (e.g. PIKfyve), as well as developing endosome acidification agents and immune response modulators. Favipiravir and chloroquine are the anti-SARS-CoV-2 agents that were identified earlier in this epidemic and repurposed for COVID-19 clinical therapy based on these strategies. However, their efficacies are controversial. Currently, three small molecular anti-SARS-CoV-2 agents, remdesivir, molnupiravir, and Paxlovid (PF-07321332 plus ritonavir), have been granted emergency use authorization or approved for COVID-19 therapy in many countries due to their significant curative effects in phase III trials. Meanwhile, a large number of promising anti-SARS-CoV-2 drug candidates have entered clinical evaluation. The development of these drugs brings hope for us to finally conquer COVID-19. In this account, we conducted a comprehensive review of the recent advances in small molecule anti-SARS-CoV-2 agents according to the target classification. Here we present all the approved drugs and most of the important drug candidates for each target, and discuss the challenges and perspectives for the future research and development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
| | | | - Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Abdel-Halim H, Hajar M, Hasouneh L, Abdelmalek SMA. Identification of Drug Combination Therapies for SARS-CoV-2: A Molecular Dynamics Simulations Approach. Drug Des Devel Ther 2022; 16:2995-3013. [PMID: 36110398 PMCID: PMC9469804 DOI: 10.2147/dddt.s366423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The development of effective treatments for coronavirus infectious disease 19 (COVID-19) caused by SARS-Coronavirus-2 was hindered by the little data available about this virus at the start of the pandemic. Drug repurposing provides a good strategy to explore approved drugs' possible SARS-CoV-2 antiviral activity. Moreover, drug synergism is essential in antiviral treatment due to improved efficacy and reduced toxicity. In this work, we studied the effect of approved and investigational drugs on one of SARS-CoV-2 essential proteins, the main protease (Mpro), in search of antiviral treatments and/or drug combinations. Methods Different possible druggable sites of Mpro were identified and screened against an in-house library of more than 4000 chemical compounds. Molecular dynamics simulations were carried out to explore conformational changes induced by different ligands' binding. Subsequently, the inhibitory effect of the identified compounds and the suggested drug combinations on the Mpro were established using a 3CL protease (SARS-CoV-2) assay kit. Results Three potential inhibitors in three different binding sites were identified; favipiravir, cefixime, and carvedilol. Molecular dynamics simulations predicted the synergistic effect of two drug combinations: favipiravir/cefixime, and favipiravir/carvedilol. The in vitro inhibitory effect of the predicted drug combinations was established on this enzyme. Conclusion In this work, we could study one of the promising SARS-CoV-2 viral protein targets in searching for treatments for COVID-19. The inhibitory effect of several drugs on Mpro was established in silico and in vitro assays. Molecular dynamics simulations showed promising results in predicting the synergistic effect of drug combinations.
Collapse
Affiliation(s)
- Heba Abdel-Halim
- Department of Medicinal Chemistry, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Malak Hajar
- Department of Medicinal Chemistry, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Luma Hasouneh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Suzanne M A Abdelmalek
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
42
|
Ton AT, Pandey M, Smith JR, Ban F, Fernandez M, Cherkasov A. Targeting SARS-CoV-2 Papain-Like Protease in the Post-Vaccine Era. Trends Pharmacol Sci 2022; 43:906-919. [PMID: 36114026 PMCID: PMC9399131 DOI: 10.1016/j.tips.2022.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
While vaccines remain at the forefront of global healthcare responses, pioneering therapeutics against SARS-CoV-2 are expected to fill the gaps for waning immunity. Rapid development and approval of orally available direct-acting antivirals targeting crucial SARS-CoV-2 proteins marked the beginning of the era of small-molecule drugs for COVID-19. In that regard, the papain-like protease (PLpro) can be considered a major SARS-CoV-2 therapeutic target due to its dual biological role in suppressing host innate immune responses and in ensuring viral replication. Here, we summarize the challenges of targeting PLpro and innovative early-stage PLpro-specific small molecules. We propose that state-of-the-art computer-aided drug design (CADD) methodologies will play a critical role in the discovery of PLpro compounds as a novel class of COVID-19 drugs.
Collapse
Affiliation(s)
- Anh-Tien Ton
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Mohit Pandey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Smith
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael Fernandez
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|
44
|
Costa AS, Martins JPA, de Melo EB. SMILES-based 2D-QSAR and similarity search for identification of potential new scaffolds for development of SARS-CoV-2 MPRO inhibitors. Struct Chem 2022; 33:1691-1706. [PMID: 35811781 PMCID: PMC9257568 DOI: 10.1007/s11224-022-02008-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
COVID-19, whose etiological agent is the SARS-CoV-2 virus, has caused over 537.5 million cases and killed over 6.3 million people since its discovery in 2019. Despite the recent development of the first drugs indicated for treating people already infected, the great need to develop new anti-SARS-CoV-2 drugs still exists, mainly due to the possible emergence of new variants of this virus and resistant strains of the current variants. Thus, this work presents the results of QSAR and similarity search studies based only on 2D structures from a set of 32 bicycloproline derivatives, aiming to quickly, reproducibly, and reliably identify potentially useful compounds as scaffolds of new major protease inhibitors (Mpro) of the virus. The obtained QSAR model is based only on topological molecular descriptors. The model has good internal and external statistics, is robust, and does not present a chance correlation. This model was used as one of the tools to support the virtual screening stage carried out in the SwissADME web tool. Five molecules, from an initial set of 2695 molecules, proved to be the most promising, as they were within the model’s applicability domain and linearity range, with low potential to cause carcinogenic, teratogenic, and reproductive toxicity effects and promising pharmacokinetic properties. These five compounds were then selected as the most competent to generate, in future studies, new anti-SARS-CoV-2 agents with drug-likeness properties suitable for use in therapy.
Collapse
Affiliation(s)
- Adriana Santos Costa
- Theoretical Medicinal and Environmental Chemistry Laboratory (LQMAT), Department of Pharmacy, Western Paraná State University (UNIOESTE), 2069 Universitária St, Cascavel, Paraná, 85819-110 Brazil
| | - João Paulo Ataide Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), 6627 Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901 Brazil
| | - Eduardo Borges de Melo
- Theoretical Medicinal and Environmental Chemistry Laboratory (LQMAT), Department of Pharmacy, Western Paraná State University (UNIOESTE), 2069 Universitária St, Cascavel, Paraná, 85819-110 Brazil
| |
Collapse
|