1
|
Wang X, Li Y, Zhang L, Wang B. Comprehensive identification of LEA protein family genes and functional analysis of MdLEA60 involved in abiotic stress responses in apple (Malus domestica). Int J Biol Macromol 2024; 283:137641. [PMID: 39547624 DOI: 10.1016/j.ijbiomac.2024.137641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Late embryogenesis abundant (LEA) proteins are important proteins that exists widely in many plants and contribute to physiological processes of plant stress resistance. Despite LEA proteins being identified in many plants, none have been reported in apple (Malus domestica) until this study. In this study, a total of 87 MdLEA proteins were identified in apple, and a comprehensive analysis was conducted to elucidate the functions of MdLEA proteins in response to abiotic stress. Results showed that they were classified into 7 groups and distributed on 16 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of MdLEA genes. The MdLEA promoters were enriched with elements associated with various stress responses. Through transcriptome and qRT-PCR analysis, several MdLEA genes related to drought/salinity/cold were excavated, and MdLEA60 was selected for transgenic validation. The ectopic expression of MdLEA60 enhanced osmotic and extreme temperature tolerance in both prokaryotic and eukaryotic cells, providing stress resistance support via antioxidant protection. Overall, the comprehensive analyses and identification not only establish a basis for future investigation into the functional mechanism of MdLEA proteins but also provide potential candidate genes for apple resistance breeding optimization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuwei Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi 712100, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
2
|
Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought Tolerance in Plants: Physiological and Molecular Responses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2962. [PMID: 39519881 PMCID: PMC11548289 DOI: 10.3390/plants13212962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Drought, a significant environmental challenge, presents a substantial risk to worldwide agriculture and the security of food supplies. In response, plants can perceive stimuli from their environment and activate defense pathways via various modulating networks to cope with stress. Drought tolerance, a multifaceted attribute, can be dissected into distinct contributing mechanisms and factors. Osmotic stress, dehydration stress, dysfunction of plasma and endosome membranes, loss of cellular turgidity, inhibition of metabolite synthesis, cellular energy depletion, impaired chloroplast function, and oxidative stress are among the most critical consequences of drought on plant cells. Understanding the intricate interplay of these physiological and molecular responses provides insights into the adaptive strategies plants employ to navigate through drought stress. Plant cells express various mechanisms to withstand and reverse the cellular effects of drought stress. These mechanisms include osmotic adjustment to preserve cellular turgor, synthesis of protective proteins like dehydrins, and triggering antioxidant systems to counterbalance oxidative stress. A better understanding of drought tolerance is crucial for devising specific methods to improve crop resilience and promote sustainable agricultural practices in environments with limited water resources. This review explores the physiological and molecular responses employed by plants to address the challenges of drought stress.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, AREEO, Gachsaran 7589172050, Iran;
| | - Seyyedhamidreza Hashemipetroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari 4818166996, Iran;
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Lin Y, She M, Zhao M, Yu H, Xiao W, Zhang Y, Li M, Chen Q, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-wide analysis and functional validation reveal the role of late embryogenesis abundant genes in strawberry (Fragaria × ananassa) fruit ripening. BMC Genomics 2024; 25:228. [PMID: 38429694 PMCID: PMC10908092 DOI: 10.1186/s12864-024-10085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins play important roles in plant growth and development, as well as stresses responsiveness. Nowadays, it has been found that LEAs also have function in fruit ripening. However, the comprehensive analysis on a genome-wide basis of LEA family remains limited, and the role of LEA in fruit ripening has not been fully explored yet, especially in strawberry, an economic important plant and ideal material for studying fruit ripening. RESULTS In this study, a total of 266 putative LEA proteins were identified and characterized in strawberry genome. Subcellular localization prediction indicated that they were mostly localized in chloroplast, cytoplasm and nucleus. Duplication events detection revealed that whole genome duplication or segmental was the main driver for the expansion of LEA family in strawberry. The phylogenetic analysis suggested that FaLEAs were classified into eight groups, among which, LEA2 was the largest subgroup with 179 members, followed by LEA3, dehydrin (DHN), LEA4 and SMP (seed maturation protein). The LEA1 and DHN groups were speculated to play dominant roles in strawberry fruit development and ripening, according to their larger proportion of members detected as differentially expressed genes during such process. Notably, the expression of FaLEA167 belonging to LEA1 group was altered by strawberry maturation, and inhibited by overexpression of negative regulators of ripening (a cytosolic/plastid glyceraldehyde-3-phosphate dehydrogenase, FaGAPC2 and a cytosolic pyruvate kinase, FaPKc2.2). Subsequently, overexpression of FaLEA167 significantly increased the percentage of fruit at green stage, while reduced the full red fruit proportion. In consistent, the anthocyanins content and the fruit skin color variable reflecting a range from greenness to redness (a* value) were significantly reduced. Whereas, FaLEA167 overexpression apparently up-regulated citric acid, soluble protein and malondialdehyde content, but had no obvious effects on total soluble solids, sugar, flavonoids, phenolics content and antioxidant capacity. CONCLUSIONS These findings not only provided basic information of FaLEA family for further functional research, but also revealed the involvement of FaLEA167 in negatively regulating strawberry fruit ripening, giving new insights into understanding of FaLEA functions.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Musha She
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mantong Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang, China
| | - Wenfei Xiao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Zhao Y, Hao Y, Dong Z, Tang W, Wang X, Li J, Wang L, Hu Y, Fang L, Guan X, Gu F, Liu Z, Zhang Z. Identification and expression analysis of LEA gene family members in pepper (Capsicum annuum L.). FEBS Open Bio 2023; 13:2246-2262. [PMID: 37907961 PMCID: PMC10699114 DOI: 10.1002/2211-5463.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Pepper (Capsicum annuum L.) is an economically important crop containing capsaicinoids in the seed and placenta, which has various culinary, medical, and industrial applications. Late embryogenesis abundant (LEA) proteins are a large group of hydrophilic proteins participating in the plant stress response and seed development. However, to date there have been no genome-wide analyses of the LEA gene family in pepper. In the present study, 82 LEA genes were identified in the C. annuum genome and classified into nine subfamilies. Most CaLEA genes contain few introns (≤ 2) and are unevenly distributed across 10 chromosomes. Eight pairs of tandem duplication genes and two pairs of segmental duplication genes were identified in the LEA gene family; these duplicated genes were highly conserved and may have performed similar functions during evolution. Expression profile analysis indicated that CaLEA genes exhibited different tissue expression patterns, especially during embryonic development and stress response, particularly in cold stress. Three out of five CaLEA genes showed induced expression upon cold treatment. In summary, we have comprehensively reviewed the LEA gene family in pepper, offering a new perspective on the evolution of this family.
Collapse
Affiliation(s)
- Yongyan Zhao
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yupeng Hao
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zeyu Dong
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wenchen Tang
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | | | - Jun Li
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Luyao Wang
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yan Hu
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Lei Fang
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xueying Guan
- Hainan InstituteZhejiang UniversitySanyaChina
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Fenglin Gu
- Spice and Beverage Research Institute, Sanya Research InstituteChinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsSanyaChina
| | - Ziji Liu
- Tropical Crops Genetic Resources InstituteChinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of AgricultureHaikouChina
| | | |
Collapse
|
5
|
Zhou C, Niu S, El-Kassaby YA, Li W. Genome-wide identification of late embryogenesis abundant protein family and their key regulatory network in Pinus tabuliformis cold acclimation. TREE PHYSIOLOGY 2023; 43:1964-1985. [PMID: 37565812 DOI: 10.1093/treephys/tpad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Cold acclimation is a crucial biological process that enables conifers to overwinter safely. The late embryogenesis abundant (LEA) protein family plays a pivotal role in enhancing freezing tolerance during this process. Despite its importance, the identification, molecular functions and regulatory networks of the LEA protein family have not been extensively studied in conifers or gymnosperms. Pinus tabuliformis, a conifer with high ecological and economic values and with high-quality genome sequence, is an ideal candidate for such studies. Here, a total of 104 LEA genes were identified from P. tabuliformis, and we renamed them according to their subfamily group: PtLEA1-PtLEA92 (group LEA1-LEA6), PtSMP1-PtSMP6 (group seed maturation protein) and PtDHN1-PtDHN6 (group Dehydrin). While the sequence structure of P. tabuliformis LEA genes are conserved, their physicochemical properties exhibit unique characteristics within different subfamily groupings. Notably, the abundance of low-temperature responsive elements in PtLEA genes was observed. Using annual rhythm and temperature gradient transcriptome data, PtLEA22 was identified as a key gene that responds to low-temperature induction while conforming to the annual cycle of cold acclimation. Overexpression of PtLEA22 enhanced Arabidopsis freezing tolerance. Furthermore, several transcription factors potentially co-expressed with PtLEA22 were validated using yeast one-hybrid and dual-luciferase assays, revealing that PtDREB1 could directly bind PtLEA22 promoter to positively regulate its expression. These findings reveal the genome-wide characterization of P. tabuliformis LEA genes and their importance in the cold acclimation, while providing a theoretical basis for studying the molecular mechanisms of cold acclimation in conifers.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
6
|
Aziz MA, Sabeem M, Kutty MS, Rahman S, Alneyadi MK, Alkaabi AB, Almeqbali ES, Brini F, Vijayan R, Masmoudi K. Enzyme stabilization and thermotolerance function of the intrinsically disordered LEA2 proteins from date palm. Sci Rep 2023; 13:11878. [PMID: 37482543 PMCID: PMC10363547 DOI: 10.1038/s41598-023-38426-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
In date palm, the LEA2 genes are of abundance with sixty-two members that are nearly all ubiquitous. However, their functions and interactions with potential target molecules are largely unexplored. In this study, five date palm LEA2 genes, PdLEA2.2, PdLEA2.3, PdLEA2.4, PdLEA2.6, and PdLEA2.7 were cloned, sequenced, and three of them, PdLEA2.2, PdLEA2.3, and PdLEA2.4 were functionally characterized for their effects on the thermostability of two distinct enzymes, lactate dehydrogenase (LDH) and β-glucosidase (bglG) in vitro. Overall, PdLEA2.3 and PdLEA2.4 were moderately hydrophilic, PdLEA2.7 was slightly hydrophobic, and PdLEA2.2 and PdLEA2.6 were neither. Sequence and structure prediction indicated the presence of a stretch of hydrophobic residues near the N-terminus that could potentially form a transmembrane helix in PdLEA2.2, PdLEA2.4, PdLEA2.6 and PdLEA2.7. In addition to the transmembrane helix, secondary and tertiary structures prediction showed the presence of a disordered region followed by a stacked β-sheet region in all the PdLEA2 proteins. Moreover, three purified recombinant PdLEA2 proteins were produced in vitro, and their presence in the LDH enzymatic reaction enhanced the activity and reduced the aggregate formation of LDH under the heat stress. In the bglG enzymatic assays, PdLEA2 proteins further displayed their capacity to preserve and stabilize the bglG enzymatic activity.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - M Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, 680656, India
| | - Shafeeq Rahman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Maitha Khalfan Alneyadi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Alia Binghushoom Alkaabi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Eiman Saeed Almeqbali
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/ University of Sfax, Sfax, Tunisia
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE.
| |
Collapse
|
7
|
Contiliani DF, Nebó JFCDO, Ribeiro RV, Landell MGDA, Pereira TC, Ming R, Figueira A, Creste S. Drought-triggered leaf transcriptional responses disclose key molecular pathways underlying leaf water use efficiency in sugarcane ( Saccharum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1182461. [PMID: 37223790 PMCID: PMC10200899 DOI: 10.3389/fpls.2023.1182461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.
Collapse
Affiliation(s)
- Danyel F. Contiliani
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| | | | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Tiago C. Pereira
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Ray Ming
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Silvana Creste
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Mihailova G, Gashi B, Krastev N, Georgieva K. Acquisition of Freezing Tolerance of Resurrection Species from Gesneriaceae, a Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091893. [PMID: 37176950 PMCID: PMC10180725 DOI: 10.3390/plants12091893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Resurrection plants have the unique ability to restore normal physiological activity after desiccation to an air-dry state. In addition to their desiccation tolerance, some of them, such as Haberlea rhodopensis and Ramonda myconi, are also freezing-tolerant species, as they survive subzero temperatures during winter. Here, we compared the response of the photosynthetic apparatus of two other Gesneriaceae species, Ramonda serbica and Ramonda nathaliae, together with H. rhodopensis, to cold and freezing temperatures. The role of some protective proteins in freezing tolerance was also investigated. The water content of leaves was not affected during cold acclimation but exposure of plants to -10 °C induced dehydration of plants. Freezing stress strongly reduced the quantum yield of PSII photochemistry (Y(II)) and stomatal conductance (gs) on the abaxial leaf side. In addition, the decreased ratio of Fv/Fm suggested photoinhibition or sustained quenching. Freezing-induced desiccation resulted in the inhibition of PSII activity, which was accompanied by increased thermal energy dissipation. In addition, an increase of dehydrins and ELIPs was detected, but the protein pattern differed between species. During recovery, the protein abundance decreased and plants completely recovered their photosynthetic activity. Thus, our results showed that R. serbica, R. nathaliae, and H. rhodopensis survive freezing stress due to some resurrection-linked traits and confirmed their freezing tolerance.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Bekim Gashi
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Eqerem Cabej Str No 51, 10020 Prishtina, Kosovo
| | - Nikola Krastev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Genome-wide study and functional characterization elucidates the potential association of late embryogenesis abundant (LEA) genes with lotus seed development. Int J Biol Macromol 2023; 226:1-13. [PMID: 36481329 DOI: 10.1016/j.ijbiomac.2022.11.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins imperatively associated with plant growth and development, as well as cell protection from abiotic stress. However, the genome-wide characterization of LEA gene family remains limited, especially in aquatic species such as lotus (Nelumbo spp.). Here, 57 putative LEA genes, including 28 NnLEAs and 29 NlLEAs were identified in the N.nucifera and N.lutea genomes, respectively. A total of 27 homologous LEA gene pairs were identified, indicating high degree of sequence homologies between the two Nelumbo species. Secondary structure prediction indicated high prevalence of alpha (α) helix structure among LEA proteins in the LEA_1, LEA_4, and SMP groups. Screening of putative promoter cis-elements revealed that NnLEA genes were involved in diverse biological processes. Most NnLEA genes were predominantly expressed in the late cotyledons and plumules development stages, suggesting their potential vital roles in lotus seed maturation. In addition, genes co-expressed with NnLEAs were involved in ABA signaling, seed maturation, and development processes. Overall, this study provides new insights for the in-depth understanding of the functions of NnLEA proteins in lotus seed development, and could act as a useful reference for the molecular breeding of seeds with prolonged lifespan.
Collapse
|
10
|
Vidović M, Battisti I, Pantelić A, Morina F, Arrigoni G, Masi A, Jovanović SV. Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:1199. [PMID: 35567200 PMCID: PMC9104375 DOI: 10.3390/plants11091199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Marija Vidović
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (I.B.); (G.A.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Ana Pantelić
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Filis Morina
- Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovska 31/1160, 370 05 Ceske Budejovice, Czech Republic;
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (I.B.); (G.A.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia
| |
Collapse
|