1
|
Guo Y, Li L, Xu S, Zhang M, Jiang C. Ion coordination and chelation in Eu-MOFs matrices: Ultrafast fluorescence visual quantification monitoring of antibiotic residues. Talanta 2024; 278:126549. [PMID: 39018758 DOI: 10.1016/j.talanta.2024.126549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Rapid monitoring of trace antibiotics in the field in real time is essential for environment forewarning and human health. High sensitivity and real-time on-site quantitative monitoring of antibiotic residues can be accomplished by integrating portable sensors alongside fluorescent optics to construct an intelligent sensing platform that smoothly eliminates the instability of conventional detection methods. In this study, a ratiometric fluorescence sensor for the ultrasensitive detection of pefloxacin was built employing the photoinduced electron transfer (PET) mechanism from red Eu-MOFs to Mn2+-PEF complex. A visual color change results from the photoinduced electron transfer process from manganese ions to pefloxacin weakening the ligand metal charge transfer (LMCT) process in Eu-MOFs. This enables the ultrafast visible detection of pefloxacin and produces a transient shift in visual color with a detection limit as low as 15.4 nM. For the detection of pefloxacin in water, tomato, and raw pork samples, various sensing devices based on the developed fluorescent probes exhibit good practicability and accuracy. With the development of the ratiometric fluorescence sensing probe, it is now possible to quickly and quantitatively identify pefloxacin residues in the environment, offering a new method for ensuring the safety of food and people's health.
Collapse
Affiliation(s)
- Yujie Guo
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Xiong J, Sun B, Wang S, Zhang S, Qin L, Jiang H. Label-free direct detection of melamine using functionalized gold nanoparticles-based dual-fluorescence colorimetric nanoswitch sensing platform. Talanta 2024; 277:126335. [PMID: 38823323 DOI: 10.1016/j.talanta.2024.126335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Developing a simple, economical, sensitive, and selective method for label-free direct detection analytes is attractive, especially the strategies that could achieve signal amplification without complicated operations. Herein, a dual-fluorescence colorimetric nanoswitch sensing platform for label-free direct melamine (MEL) detection was established. We first explored the relationship between MEL-induced aggregation of gold nanoparticles (AuNPs) and size and determined the optimal size to be 37 nm. Using surfactant Triton X-100 to modify AuNPs and clarify possible interaction mechanisms to improve detection performance. The dynamic changes of surface plasmon resonance absorption peaks in the dispersed and aggregated states of AuNPs were skillfully utilized to match the emission of multicolor gold nanoclusters to trigger the multi-inner filter effect. Accompanied by the addition of MEL-induced AuNPs to change from dispersed to aggregated state, the fluorescence of green-emitting and red-emitting gradually turned on and turned off, respectively. The fluorescence turn-on mode detection limit was 10 times higher than the colorimetric method and as low as 5.5 ng/mL; the detection took only 10 min. The sensor detected MEL in spiked milk samples with a good recovery in the range of 81.2-111.0 % with a coefficient of variation less than 11.4 % and achieved a good correlation with commercial kits. The proposed sensor integrates numerous merits of label-free, multi-signal readout, self-calibration, simple operations, and economical, which provides a promising tool for convenient on-site detection of MEL.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Silva GBL, Campos FV, Guimarães MCC, Oliveira JP. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens 2023; 12:1441. [PMID: 38133324 PMCID: PMC10747123 DOI: 10.3390/pathogens12121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.
Collapse
Affiliation(s)
| | | | | | - Jairo P. Oliveira
- Morphology Department, Health Sciences Center, Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória 29040-090, Brazil; (G.B.L.S.); (F.V.C.); (M.C.C.G.)
| |
Collapse
|
4
|
Wen Y, Sun D, Zhang Y, Zhang Z, Chen L, Li J. Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 2023; 148:3971-3985. [PMID: 37528730 DOI: 10.1039/d3an00483j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Environmental protection and food safety are closely related to the healthy development of human society; there is an urgent need for relevant analytical methods to determine environmental pollutants and harmful substances in food. Molecular imprinting-based ratiometric fluorescence (MI-RFL) sensors, constructed by combining molecular imprinting recognition and ratiometric fluorescence detection, possess remarkable advantages such as high selectivity, anti-interference ability, high sensitivity, non-destruction and convenience, and have attracted increasing interest in the field of analytical determination. Herein, recent advances in MI-RFL sensors for environmental and food analysis are reviewed, aiming at new construction strategies and representative determination applications. Firstly, fluorescence sources and possible sensing principles are briefly outlined. Secondly, new imprinting techniques and dual/ternary-emission fluorescence types that improve sensing performances are highlighted. Thirdly, typical analytical applications of MI-RFL sensors in environmental and food samples are summarized. Lastly, the challenges and perspectives of the MI-RFL sensors are proposed, focusing on improving sensitivity/visualization and extending applications.
Collapse
Affiliation(s)
- Yuhao Wen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Dani Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yue Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical College, Yantai 264003, China
| | - Jinhua Li
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Gharaghani FM, Mostafapour S, Hemmateenejad B. A Paper-Based Biomimetic Sensing Device for the Discrimination of Original and Fraudulent Cigarette Brands Using Mixtures of MoS 2 Quantum Dots and Organic Dyes. BIOSENSORS 2023; 13:705. [PMID: 37504104 PMCID: PMC10377080 DOI: 10.3390/bios13070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
In this study, we investigated the combined effects of MoS2 QDs' catalytic properties and the colorimetric responses of organic reagents to create a sniffing device based on the sensor array concept of the mammalian olfactory system. The aim was to differentiate the volatile organic compounds (VOCs) present in cigarette smoke. The designed optical nose device was utilized for the classification of various cigarette VOCs. Unsupervised Principal Component Analysis (PCA) and supervised Linear Discriminant Analysis (LDA) methods were employed for data analysis. The LDA analysis showed promising results, with 100% accuracy in both training and cross-validation. To validate the sensor's performance, we assessed its ability to discriminate between five cigarette brands, achieving 100% accuracy in the training set and 82% in the cross-validation set. Additionally, we focused on studying four popular Iranian cigarette brands (Bahman Kootah, Omega, Montana Gold, and Williams), including fraudulent samples. Impressively, the developed sensor array achieved a perfect 100% accuracy in distinguishing these brands and detecting fraud. We further analyzed a total of 126 cigarette samples, including both original and fraudulent ones, using LDA with a matrix size of (126 × 27). The resulting LDA model demonstrated an accuracy of 98%. Our proposed analytical procedure is characterized by its efficiency, affordability, user-friendliness, and reliability. The selectivity exhibited by the developed sensor array positions it as a valuable tool for differentiating between original and counterfeit cigarettes, thus aiding in border control efforts worldwide.
Collapse
Affiliation(s)
| | - Sara Mostafapour
- Chemistry Department, Shiraz University, Shiraz 71456-85464, Iran
| | - Bahram Hemmateenejad
- Chemistry Department, Shiraz University, Shiraz 71456-85464, Iran
- Medicinal and Natural Products Chemistry Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran
| |
Collapse
|
6
|
Mir TUG, Shukla S, Malik AQ, Singh J, Kumar D. Microwave-assisted synthesis of N-doped carbon quantum dots for detection of methyl orange in saffron. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
7
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
8
|
Zhang J, Chen H, Xu K, Deng D, Zhang Q, Luo L. Current Progress of Ratiometric Fluorescence Sensors Based on Carbon Dots in Foodborne Contaminant Detection. BIOSENSORS 2023; 13:233. [PMID: 36831999 PMCID: PMC9953573 DOI: 10.3390/bios13020233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) are widely used in the detection of foodborne contaminants because of their biocompatibility, photoluminescence stability, and ease of chemical modification. In order to solve the interference problem of complexity in food matrices, the development of ratiometric fluorescence sensors shows great prospects. In this review, the progress of ratiometric fluorescence sensors based on CDs in foodborne contaminant detection in recent years will be summarized, focusing on the functionalized modification of CDs, the fluorescence sensing mechanism, the types of ratiometric fluorescence sensors, and the application of portable devices. In addition, the outlook on the development of the field will be presented, with the development of smartphone applications and related software helping to better enable the on-site detection of foodborne contaminants to ensure food safety and human health.
Collapse
Affiliation(s)
- Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kaidi Xu
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Sensitive and simultaneous detection of ractopamine and salbutamol using multiplex lateral flow immunoassay based on polyethyleneimine-mediated SiO2@QDs nanocomposites: Comparison and application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|