1
|
Kim HJ, Ryu YK, Shin YJ. Impact of COVID-19 pandemic on ocular disease: KNHANES 2015-2021. Sci Rep 2024; 14:20706. [PMID: 39237530 PMCID: PMC11377421 DOI: 10.1038/s41598-024-70767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
The aim of this study was to evaluate the impact of COVID-19 on ocular diseases and changes in risk factors before and after the COVID-19 pandemic. This study was conducted using data from the Korea National Health and Nutrition Examination Survey (KNHANES) 2015-2021, a national cross-sectional health examination and survey. Associations between ocular diseases and risk factors were determined using the chi-squared test and logistic regression analysis. Bivariable adjusted logistic regression analysis was performed to examine the odds ratio (OR) and 95% confidence interval (CI) to evaluate of the impact of COVID-19 on ocular diseases. Individuals were divided into two age groups (< 60 and ≥ 60 years). A total of 50,158 people were diagnosed, of whom 7270 were diagnosed with cataract, 921 with glaucoma, and 439 with age-related macular degeneration (AMD). Risk factors for cataract were COVID-19 pandemic (OR 1.161), hypertension (OR 1.608), diabetes (OR 1.573), dyslipidemia (OR 1.167), stroke (OR 1.272), and depression (OR 1.567). Risk factors for AMD were COVID-19 pandemic (OR 1.600), dyslipidemia (OR 1.610), and depression (OR 1.466). Risk factors for glaucoma were hypertension (OR 1.234), dyslipidemia (OR 1.529), diabetes (OR 1.323), and depression (OR 1.830). The COVID-19 pandemic was a risk factor for cataracts and AMD, but not for glaucoma. Cataracts and AMD may be more influenced by the acquired health conditions or the environment.
Collapse
Affiliation(s)
- Hyeon Jung Kim
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-Ro, Youngdeungpo-Gu, Seoul, 07441, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Yun Kyoung Ryu
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-Ro, Youngdeungpo-Gu, Seoul, 07441, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-Ro, Youngdeungpo-Gu, Seoul, 07441, Republic of Korea.
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Metzdorf K, Jacobsen H, Kim Y, Teixeira Alves LG, Kulkarni U, Brdovčak MC, Materljan J, Eschke K, Chaudhry MZ, Hoffmann M, Bertoglio F, Ruschig M, Hust M, Šustić M, Krmpotić A, Jonjić S, Widera M, Ciesek S, Pöhlmann S, Landthaler M, Čičin-Šain L. A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants. Front Immunol 2024; 15:1383086. [PMID: 39119342 PMCID: PMC11306140 DOI: 10.3389/fimmu.2024.1383086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Current vaccines against COVID-19 elicit immune responses that are overall strong but wane rapidly. As a consequence, the necessary booster shots have contributed to vaccine fatigue. Hence, vaccines that would provide lasting protection against COVID-19 are needed, but are still unavailable. Cytomegaloviruses (CMVs) elicit lasting and uniquely strong immune responses. Used as vaccine vectors, they may be attractive tools that obviate the need for boosters. Therefore, we tested the murine CMV (MCMV) as a vaccine vector against COVID-19 in relevant preclinical models of immunization and challenge. We have previously developed a recombinant MCMV vaccine vector expressing the spike protein of the ancestral SARS-CoV-2 (MCMVS). In this study, we show that the MCMVS elicits a robust and lasting protection in young and aged mice. Notably, spike-specific humoral and cellular immunity was not only maintained but also even increased over a period of at least 6 months. During that time, antibody avidity continuously increased and expanded in breadth, resulting in neutralization of genetically distant variants, like Omicron BA.1. A single dose of MCMVS conferred rapid virus clearance upon challenge. Moreover, MCMVS vaccination controlled two variants of concern (VOCs), the Beta (B.1.135) and the Omicron (BA.1) variants. Thus, CMV vectors provide unique advantages over other vaccine technologies, eliciting broadly reactive and long-lasting immune responses against COVID-19.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Muromegalovirus/immunology
- Muromegalovirus/genetics
- Female
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred BALB C
- Humans
- Genetic Vectors
- Immunity, Cellular
- Immunity, Humoral
- Disease Models, Animal
Collapse
Affiliation(s)
- Kristin Metzdorf
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Yeonsu Kim
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| | | | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Kathrin Eschke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- German Centre for Infection Research (DZIF), External Partner Site Frankfurt, Frankfurt, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of the Helmholtz Centre for Infection Medicine and the Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Sakai K, Yonaha T, Shinzato T, Taira T. Subacute Thyroiditis Following COVID-19: A Case of Diagnostic Challenge in the Absence of Neck Pain. Cureus 2024; 16:e62203. [PMID: 39006627 PMCID: PMC11240006 DOI: 10.7759/cureus.62203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
This case report presents a 77-year-old woman who developed subacute thyroiditis following COVID-19. The patient exhibited atypical symptoms, including fever, fatigue, anorexia, significant weight loss, headaches, and palpitations, without the typical neck pain or tenderness associated with thyroiditis. One week later, a follow-up examination showed mild enlargement and tenderness of the thyroid. Laboratory tests indicated elevated thyroid hormone levels and suppressed thyroid-stimulating hormone. Ultrasonography revealed diffuse thyroid enlargement with poor blood flow, consistent with subacute thyroiditis. Despite the absence of typical neck pain, the diagnosis was supported by clinical, laboratory, and imaging findings. This case suggests the importance of considering subacute thyroiditis as a potential secondary condition following COVID-19, even in the absence of typical symptoms. Clinicians should consider that and perform thorough evaluations in patients with recent COVID-19 exposure and nonspecific symptoms.
Collapse
Affiliation(s)
- Kan Sakai
- General Internal Medicine, Nakagami Hospital, Okinawa, JPN
| | | | | | - Takahiro Taira
- General Internal Medicine, Nakagami Hospital, Okinawa, JPN
| |
Collapse
|
4
|
Gollapudi S, Chimurkar V. Comprehensive Insights Into the Multi-faceted Manifestations of COVID-19: A Narrative Review. Cureus 2024; 16:e63493. [PMID: 39081420 PMCID: PMC11287236 DOI: 10.7759/cureus.63493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the ensuing COVID-19 pandemic had far-reaching and multifaceted effects on global health. This paper provides a comprehensive overview of the physical, extrapulmonary, and psychological manifestations associated with COVID-19. It highlights the wide-ranging impact of the virus on various organ systems, including the respiratory, cardiovascular, renal, gastrointestinal, ocular, dermatologic, and nervous systems. Additionally, it explores the complex connections between COVID-19 infection and neuropsychiatric symptoms, shedding light on the potential underlying mechanisms. The paper also delves into the phenomenon of "long COVID," a condition characterized by persistent symptoms extending well beyond the disease's acute phase. It discusses the diverse and often debilitating symptoms that individuals with long COVID may experience, encompassing physical, cognitive, and psychological aspects. The complexity and variability of long COVID underscore the challenges it poses to healthcare professionals and the importance of ongoing research to understand its underlying mechanisms. Furthermore, the paper touches on the current state of knowledge regarding the aetiology of long COVID and the various approaches to symptom management and treatment. While a definitive cure remains elusive, efforts are underway to alleviate the burden of long COVID through pharmacological interventions, physical therapy, cognitive-behavioral therapy, and support networks. This paper comprehensively explores COVID-19's far-reaching effects, emphasizing the need for a holistic and interdisciplinary approach to understanding and managing the diverse manifestations of this global health challenge. Ongoing research and collaborative efforts are essential in addressing the complex and evolving nature of COVID-19 and its aftermath.
Collapse
Affiliation(s)
- Sairama Gollapudi
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vilas Chimurkar
- Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Mansueto G, Fusco G, Colonna G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024; 14:541. [PMID: 38785948 PMCID: PMC11118181 DOI: 10.3390/biom14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b protein (43 aa), using a protein-protein interaction network analysis. After pruning, we selected from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network of 551 nodes via STRING. We performed topological analysis and calculated topological distributions by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and the dysregulated processes within the limits of the poor knowledge that these sectors still impose.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università della Campania, L. Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Giovanni Colonna
- Medical Informatics AOU, Università della Campania, L. Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
6
|
Michalak A, Lach T, Szczygieł K, Cichoż-Lach H. COVID-19, Possible Hepatic Pathways and Alcohol Abuse-What Do We Know up to 2023? Int J Mol Sci 2024; 25:2212. [PMID: 38396888 PMCID: PMC10888568 DOI: 10.3390/ijms25042212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The pandemic period due to coronavirus disease 2019 (COVID-19) revolutionized all possible areas of global health. Significant consequences were also related to diverse extrapulmonary manifestations of this pathology. The liver was found to be a relatively common organ, beyond the respiratory tract, affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple studies revealed the essential role of chronic liver disease (CLD) in the general outcome of coronavirus infection. Present concerns in this field are related to the direct hepatic consequences caused by COVID-19 and pre-existing liver disorders as risk factors for the severe course of the infection. Which mechanism has a key role in this phenomenon-previously existing hepatic disorder or acute liver failure due to SARS-CoV-2-is still not fully clarified. Alcoholic liver disease (ALD) constitutes another not fully elucidated context of coronavirus infection. Should the toxic effects of ethanol or already developed liver cirrhosis and its consequences be perceived as a causative or triggering factor of hepatic impairment in COVID-19 patients? In the face of these discrepancies, we decided to summarize the role of the liver in the whole picture of coronavirus infection, paying special attention to ALD and focusing on the pathological pathways related to COVID-19, ethanol toxicity and liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
7
|
Salazar-Ardiles C, Asserella-Rebollo L, Cornejo C, Arias D, Vasquez-Muñoz M, Toledo C, Andrade DC. Molecular diagnostic approaches for SARS-CoV-2 detection and pathophysiological consequences. Mol Biol Rep 2023; 50:10367-10382. [PMID: 37817022 DOI: 10.1007/s11033-023-08844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
SARS-CoV-2, a novel coronavirus within the Coronaviridae family, is the causative agent behind the respiratory ailment referred to as COVID-19. Operating on a global scale, COVID-19 has led to a substantial number of fatalities, exerting profound effects on both public health and the global economy. The most frequently reported symptoms encompass fever, cough, muscle or body aches, loss of taste or smell, headaches, and fatigue. Furthermore, a subset of individuals may manifest more severe symptoms, including those consistent with viral pneumonitis, which can be so profound as to result in fatalities. Consequently, this situation has spurred the rapid advancement of disease diagnostic technologies worldwide. Predominantly employed in diagnosing COVID-19, the real-time quantitative reverse transcription PCR has been the foremost diagnostic method, effectively detecting SARS-CoV-2 viral RNA. As the pandemic has evolved, antigen and serological tests have emerged as valuable diagnostic tools. Antigen tests pinpoint specific viral proteins of SARS-CoV-2, offering swift results, while serological tests identify the presence of antibodies in blood samples. Additionally, there have been notable strides in sample collection methods, notably with the introduction of saliva-based tests, presenting a non-invasive substitute to nasopharyngeal swabs. Given the ongoing mutations in SARS-CoV-2, there has been a continuous need for genomic surveillance, encompassing full genome sequencing and the identification of new variants through Illumina technology and, more recently, nanopore metagenomic sequencing (SMTN). Consequently, while diagnostic testing methods for COVID-19 have experienced remarkable progress, no test is flawless, and there exist limitations with each technique, including sensitivity, specificity, sample collection, and the minimum viral load necessary for accurate detection. These aspects are comprehensively addressed within this current review.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | | | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Dayana Arias
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Manuel Vasquez-Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory and Sleep Physiology, Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - David C Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile.
| |
Collapse
|
8
|
Panner Selvam MK, Kapoor A, Baskaran S, Moharana AK, Sikka SC. A Scientometric Evaluation of COVID-19 and Male Reproductive Research. Clin Pract 2023; 13:1319-1330. [PMID: 37987419 PMCID: PMC10660474 DOI: 10.3390/clinpract13060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
The COVID-19 pandemic due to the SARS-CoV-2 coronavirus showed acute and prolonged effects on human health. In addition, over the past four years, there has been a tremendous surge in COVID-19-related scientific publications, as shown by bibliometric and scientometric studies. However, such analysis of the scientific literature is lacking in the area of male reproduction. The current scientometric study analyzes publication characteristics of articles related to male reproduction and COVID-19 infection. We used the Scopus database to analyze scientometric data (the number of publications, journals, countries, type of documents, and subject area) related to COVID-19 and male reproductive research. Our literature search identified 345 articles related to COVID-19 and male reproductive research. Most of the articles were published in the USA (n = 72), Italy (n = 55), and China (n = 51). Such research was mainly focused around medicine (57.1%), followed by biochemistry, genetics, and molecular biology (25.7%). Also, in the area of male reproduction, only 37.1% (n = 128) of the articles contributed towards original research, whereas 52.8% (n = 182) were review articles and editorials focusing more on sexual dysfunction than infertility. Such a small number of studies published on COVID-19-related effects on male reproduction warrants a significant increase in research, which is required to decipher the mechanism(s) underlying SARS-CoV-2 infection-associated impairment of male reproductive function.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (S.B.); (A.K.M.)
| | | | - Saradha Baskaran
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (S.B.); (A.K.M.)
| | - Ajaya Kumar Moharana
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (S.B.); (A.K.M.)
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Suresh C. Sikka
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (S.B.); (A.K.M.)
| |
Collapse
|
9
|
Villalva C, Patil G, Narayanan S, Chanda D, Ghimire R, Snider T, Ramachandran A, Channappanavar R, More S. Klebsiella pneumoniae C o-infection Leads to Fatal Pneumonia in SARS-CoV-2-infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551035. [PMID: 37577517 PMCID: PMC10418095 DOI: 10.1101/2023.07.28.551035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SARS-CoV-2 patients have been reported to have high rates of secondary Klebsiella pneumoniae infections. Klebsiella pneumoniae is a commensal that is typically found in the respiratory and gastrointestinal tracts. However, it can cause severe disease when a person's immune system is compromised. Despite a high number of K. pneumoniae cases reported in SARS-CoV-2 patients, a co-infection animal model evaluating the pathogenesis is not available. We describe a mouse model to study disease pathogenesis of SARS-CoV-2 and K. pneumoniae co-infection. BALB/cJ mice were inoculated with mouse-adapted SARS-CoV-2 followed by a challenge with K. pneumoniae . Mice were monitored for body weight change, clinical signs, and survival during infection. The bacterial load, viral titers, immune cell accumulation and phenotype, and histopathology were evaluated in the lungs. The co-infected mice showed severe clinical disease and a higher mortality rate within 48 h of K. pneumoniae infection. The co-infected mice had significantly elevated bacterial load in the lungs, however, viral loads were similar between co-infected and single-infected mice. Histopathology of co-infected mice showed severe bronchointerstitial pneumonia with copious intralesional bacteria. Flow cytometry analysis showed significantly higher numbers of neutrophils and macrophages in the lungs. Collectively, our results demonstrated that co-infection of SARS-CoV-2 with K. pneumoniae causes severe disease with increased mortality in mice.
Collapse
|
10
|
Ahmad W, Gull B, Baby J, Panicker NG, Khader TA, Akhlaq S, Rizvi TA, Mustafa F. Differentially-regulated miRNAs in COVID-19: A systematic review. Rev Med Virol 2023:e2449. [PMID: 37145095 DOI: 10.1002/rmv.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Mullins J, Bewley DJ, Oviedo A. COVID-19 and Placental Infection: Are Fetal Survivors at Risk of Long-Term Cardiovascular Complications? Cureus 2023; 15:e38077. [PMID: 37234143 PMCID: PMC10208680 DOI: 10.7759/cureus.38077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
As we enter the fourth year of the coronavirus disease 2019 (COVID-19) pandemic, it has become obvious that adult survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are susceptible to numerous complications in various organ systems. SARS-CoV-2 placental infection is an unanticipated complication of COVID-19 during pregnancy. We hypothesize that fetal survivors of SARS-CoV-2 placentitis are susceptible to long-term cardiovascular complications.
Collapse
Affiliation(s)
- Jordyn Mullins
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Dominic J Bewley
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Angelica Oviedo
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, USA
| |
Collapse
|
12
|
Meng T, Zhang Y, Lv J, Zhu C, Lan L, Zhang T. Effect of the COVID-19 pandemic on women's fertility intentions and its policy implications for China and the rest of the world: a perspective essay. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2023; 68:87-100. [PMID: 37309161 DOI: 10.1080/19485565.2023.2221842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The COVID-19 pandemic and its social, economic, and health implications have generally reduced women's fertility intentions in different countries. In this article, we aimed to review studies of the impact of COVID-19 infection on women's fertility intentions and interventions to provide a theoretical basis and practical benchmark for the development of effective intervention strategies in China, which lifted its zero COVID system in early December 2022.
Collapse
Affiliation(s)
- Tiantian Meng
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Yongmei Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Jiayu Lv
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Chunle Zhu
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Lan Lan
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Ting Zhang
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, Zhejiang, P.R. China
| |
Collapse
|
13
|
Kalicińska E, Szymczak D, Andrasiak I, Milanowska A, Kiraga A, Majeranowski A, Jabłonowska P, Rybka J, Maciej Z, Wróbel T. Impaired adaptive immune response in COVID-19 convalescent patients with hematological malignancies. Eur J Haematol 2023; 110:396-406. [PMID: 36562254 PMCID: PMC9880695 DOI: 10.1111/ejh.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The immune dysregulation during SARS-CoV-2 has the potential to worsen immune homeostasis after recovery. Patients with hematological malignancies with COVID-19 have changes both in the innate and adaptive immune responses. Little is known about the severity of immune dysfunction following recovery from COVID-19 in hematological patients. METHODS Here, we performed a comprehensive analysis of the lymphocyte subsets in peripheral blood mononuclear cells by FACS Canto II in 55 patients, including 42 with hematological malignancies 4-6 weeks after COVID-19. RESULTS Hematological COVID-19 convalescents had deep reduction in CD3+ T cells, including helper T cells (CD3 + CD4+), naïve helper T cells (CD3 + CD4 + CD45RA+), and memory CD4+ T cells among with extremely low levels of Treg cells and decreased expression of both TCRα/β and TCRγ/δ. Severe immune dysregulation in hematological convalescents was expressed by increased activation of T lymphocytes, both as elevated levels of activated T cells (CD3 + HLA-DR+) and activated cytotoxic T cells (CD3 + CD8 + HLA-DR+). CONCLUSIONS Our findings showed a profound impairment of the adaptive immune response in hematological convalescents which might be a result of persistent activation of T cells. Convalescents with lymphoid malignancies showed more pronounced depletion of key T lymphocytes subpopulations in creating an effective adaptive response and immune memory.
Collapse
Affiliation(s)
- Elżbieta Kalicińska
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Szymczak
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | | | - Aneta Milanowska
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Kiraga
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Alan Majeranowski
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paula Jabłonowska
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Rybka
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Zaucha Maciej
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
Costa dos Santos J, Ximenes Rabelo M, Mattana Sebben L, de Souza Carneiro MV, Bosco Lopes Botelho J, Cardoso Neto J, Nogueira Barbosa A, Monteiro de Carvalho D, Pontes GS. Persistence of SARS-CoV-2 Antigens in the Nasal Mucosa of Eight Patients with Inflammatory Rhinopathy for over 80 Days following Mild COVID-19 Diagnosis. Viruses 2023; 15:v15040899. [PMID: 37112879 PMCID: PMC10143909 DOI: 10.3390/v15040899] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The nasal mucosa is the main gateway for entry, replication and elimination of the SARS-CoV-2 virus, the pathogen that causes severe acute respiratory syndrome (COVID-19). The presence of the virus in the epithelium causes damage to the nasal mucosa and compromises mucociliary clearance. The aim of this study was to investigate the presence of SARS-CoV-2 viral antigens in the nasal mucociliary mucosa of patients with a history of mild COVID-19 and persistent inflammatory rhinopathy. We evaluated eight adults without previous nasal diseases and with a history of COVID-19 and persistent olfactory dysfunction for more than 80 days after diagnosis of SARS-CoV-2 infection. Samples of the nasal mucosa were collected via brushing of the middle nasal concha. The detection of viral antigens was performed using immunofluorescence through confocal microscopy. Viral antigens were detected in the nasal mucosa of all patients. Persistent anosmia was observed in four patients. Our findings suggest that persistent SARS-CoV-2 antigens in the nasal mucosa of mild COVID-19 patients may lead to inflammatory rhinopathy and prolonged or relapsing anosmia. This study sheds light on the potential mechanisms underlying persistent symptoms of COVID-19 and highlights the importance of monitoring patients with persistent anosmia and nasal-related symptoms.
Collapse
|
15
|
Xu SC, Zhao XY, Xing HP, Wu W, Zhang SY. Cardiac Involvement in COVID-19: A Global Bibliometric and Visualized Analysis. Front Cardiovasc Med 2022; 9:955237. [PMID: 35966543 PMCID: PMC9365052 DOI: 10.3389/fcvm.2022.955237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
ObjectiveCoronavirus disease 2019 (COVID-19), which was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), had already resulted in widespread epidemics worldwide and millions of people's deaths since its outbreak in 2019. COVID-19 had also been demonstrated to affect people's cardiac function. However, the specific mechanism and influence of this damage were not clear yet. The purpose of the present study was to provide a bibliometric analysis of the current studies related to cardiac involvement after SARS-CoV-2 infection.MethodsA bibliometric literature search was performed on the web of science. The number and type of publications, countries, institutional sources, journals, and citation patterns were analyzed. In addition, qualitative and quantitative evaluations were carried out to visualize the scientific achievements in this field by using the VOSviewer software.ResultsWeb of science had recorded 2,24,097 documents on COVID-19 at the time of data collection (May 12, 2022). A total of 2,025 documents related to cardiac involvement were recorded at last. The countries with the most published articles were the United States of America (USA) (n =747, 36.9%), Italy (n =324, 16%), and England (n =213, 10.5%). Although the countries and institutions that published the most articles were mainly from the USA, the top three authors were from Germany, England, and Poland. Frontiers in Cardiovascular Medicine was the journal with the most studies (65 3.2%), followed by ESC Heart Failure (59 2.9%) and Journal of Clinical Medicine (56 2.8%). We identified 13,739 authors, among which Karin Klingel and Amer Harky had the most articles, and Shaobo Shi was co-cited most often. There existed some cooperation between different authors, but the scope was limited. Myocarditis and heart failure (HF) were the main research hotspots of COVID-19 on cardiac dysfunction and may be crucial to the prognosis of patients.ConclusionsIt was the first bibliometric analysis of publications related to COVID-19-associated cardiac disorder. This study provided academics and researchers with useful information on the most influential articles of COVID-19 and cardiac dysfunction. Cooperation between countries and institutions must be strengthened on myocarditis and HF during COVID-19 pandemic.
Collapse
|
16
|
Awan MAE, Waseem M, Sahito AF, Sahito AM, Khatri G, Butt MA, Ramproshad S, Mondal B, Hasan MM. Monkeypox has devastated the world; should we prepare for the outbreak of a new pandemic? Ann Med Surg (Lond) 2022; 79:104051. [PMID: 35860122 PMCID: PMC9289421 DOI: 10.1016/j.amsu.2022.104051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022] Open
Abstract
The monkeypox virus, which belongs to the orthopoxy virus family, causes fever, lethargy, headache, lymphadenopathy, myalgia, and rash, as well as various complications such as superimposed infections, sepsis, keratitis, encephalitis, and bronchopneumonia. Following replication at the site of injection, the virus often enters by the oropharynx, nasopharynx, or intradermal pathway, spreading to lymph nodes before viremia, promoting viral dissemination to other organ systems. Monkeypox cases have recently been brought to WHO's notice from 12 presently non-endemic member nations spread over three WHO regions, with 92 laboratory-confirmed cases and 28 cases of suspicion as of May 21, 2022. Monkeypox is presently endemic in the Central African Republic, the Democratic Republic of the Congo, Benin, Cameroon, Gabon, Sierra Leone, and South Sudan. Monkeypox cases have been detected all across the world, posing a challenge to healthcare infrastructure that is still recovering from the COVID-19 outbreak. Close monitoring and exact data collecting, the implementation of successful programs across the world, and public support of preventative measures are some of the strategies being used to cope with the increasing incidence of monkeypox.
Collapse
Affiliation(s)
| | - Maria Waseem
- Dow University of Health Sciences, Karachi, Pakistan
| | - Areesh Fatima Sahito
- Peoples University of Medical and Health Sciences for Women (PUMHSW), Nawabshah, Pakistan
| | | | | | - Masood Ahmed Butt
- Pir Abdul Qadir Shah Jeelani Institute of Medical Sciences, Gambat, Pakistan
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|