1
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Wei S, Ma X, Chen Y, Wang J, Hu L, Liu Z, Mo L, Zhou N, Chen W, Zhu H, Yan S. Alzheimer's Disease-Derived Outer Membrane Vesicles Exacerbate Cognitive Dysfunction, Modulate the Gut Microbiome, and Increase Neuroinflammation and Amyloid-β Production. Mol Neurobiol 2025; 62:5109-5132. [PMID: 39514171 DOI: 10.1007/s12035-024-04579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Although our understanding of the molecular biology of Alzheimer's disease (AD) continues to improve, the etiology of the disease, particularly the involvement of gut microbiota disturbances, remains a challenge. Outer membrane vesicles (OMVs) play a key role in central nervous system diseases, but the impact of OMVs on AD progression remains unclear. In this study, we hypothesized that AD-derived OMVs (OMVsAD) were a risk factor in AD pathology. To test our hypothesis, young APP/PS1 mice (AD mice) were given OMVsAD by gavage. Young AD mice were euthanized 120 days after gavage to assess the intestinal barrier, gut microbiota diversity, mediators of neuroinflammation, glial markers, amyloid burden, and short-chain fatty acid (SCFA) levels. Our results showed that OMVsAD accelerated cognitive dysfunction after 120 days of intragastric administration. Morris water maze experiment and new object recognition test showed that OMVsAD caused significantly poorer spatial ability learning and memory of the AD mice. We observed the OMVsAD-treated APP/PS1 mice display OMVs disrupting the intestinal barrier compared with controls of normal human-derived OMVs. Compared with the OMVsHC group, claudin-5 and ZO-1 related to the intestinal barrier were significantly downregulated in the OMVsAD group. The OMVsAD activate microglia in the cerebral cortex and hippocampus of AD mice, and the levels of IL-1β, IL-6, TNF-α, and NF-Κb were upregulated. We also found that OMVsAD increased Aβ production. 16S rRNA sequencing showed that OMVsAD negatively regulated the α- and β-diversity index of intestinal flora and reduced the levels of SCFA. OMVsAD may change the intestinal flora of young AD, damage the intestinal mucosa and blood-brain barrier, and accelerate AD neuropathological damage.
Collapse
Affiliation(s)
- Shouchao Wei
- The Third Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Xiaochen Ma
- The Third Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junjun Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Basic Medicine College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Basic Medicine College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lang Mo
- The Third Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Ning Zhou
- The Third Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Wenrong Chen
- The Third Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - He Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| | - Shian Yan
- The Third Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
3
|
Dewey CW. Poop for thought: Can fecal microbiome transplantation improve cognitive function in aging dogs? Open Vet J 2025; 15:556-564. [PMID: 40201831 PMCID: PMC11974304 DOI: 10.5455/ovj.2025.v15.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 04/10/2025] Open
Abstract
Canine cognitive dysfunction (CCD) is the dog version of human Alzheimer's disease (AD), and it has strikingly similar pathological features to those of this neurodegenerative disorder. The gastrointestinal system is in constant communication with the brain via several conduits collectively termed the gut-brain axis. The microbial population of the gut, referred to as the microbiota, has a profound effect on the interactions that occur along this communication route. Recent evidence suggests that dysbiosis, an abnormal gastrointestinal microbial population, is linked to cognitive impairment in rodent AD models and human AD. There is also evidence from rodent AD models that correcting dysbiosis by transferring fecal material from healthy donors to the gastrointestinal tracts of cognitively impaired recipients [fecal microbiome transplantation (FMT)] reverses AD-associated brain pathology and improves cognitive function. Although limited, some clinical reports have described the improvement of cognitive function with FMT in human AD. The goals of this review article are to provide an overview of the mechanisms involved in dysbiosis- associated cognitive decline and the role of FMT in therapy for such decline. The potential role of FMT in CCD is also discussed.
Collapse
|
4
|
Zhou XP, Sun LB, Liu WH, Zhu WM, Li LC, Song XY, Xing JP, Gao SH. The complex relationship between gut microbiota and Alzheimer's disease: A systematic review. Ageing Res Rev 2025; 104:102637. [PMID: 39662839 DOI: 10.1016/j.arr.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the central nervous system. Despite extensive research conducted on this disorder, its precise pathogenesis remains unclear. In recent years, the microbiota-gut-brain axis has attracted considerable attention within the field of AD. The gut microbiota communicates bidirectionally with the central nervous system through the gut-brain axis, and alterations in its structure and function can influence the progression of AD. Consequently, regulating the gut microbiota to mitigate the progression of AD has emerged as a novel therapeutic approach. Currently, numerous studies concentrate on the intrinsic relationship between the microbiota-gut-brain axis and AD. In this paper, we summarize the multifaceted role of the gut microbiota in AD and present detailed therapeutic strategies targeting the gut microbiota, including the treatment of AD with Traditional Chinese Medicine (TCM), which has garnered increasing attention in recent years. Finally, we discuss potential therapeutic strategies for modulating the gut microbiota to alleviate the progression of AD, the current challenges in this area of research, and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wu-Ming Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Lin-Chun Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
5
|
Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer's disease progression by a human-origin probiotics cocktail. Sci Rep 2025; 15:1589. [PMID: 39794404 PMCID: PMC11724051 DOI: 10.1038/s41598-024-84780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities. We aimed to determine the probiotics cocktail's efficacy in ameliorating AD pathology in a humanized AD mouse model of APP/PS1 strains. Remarkably, feeding mice with 1 × 1011 CFU per day in drinking water for 16 weeks significantly reduced cognitive decline (measured by the Morris Water Maze test) and AD pathology markers, such as Aβ aggregation, microglia activation, neuroinflammation, and preserved blood-brain barrier (BBB) tight junctions. The beneficial effects were linked to a reduced inflammatory microbiome, leading to decreased gut permeability and inflammation in both systemic circulation and the brain. Although both male and female mice showed overall improvements in cognition and biological markers, females did not exhibit improvements in specific markers related to inflammation and barrier permeability, suggesting that the underlying mechanisms may differ depending on sex. In conclusion, our results suggest that this unique probiotics cocktail could serve as a prophylactic agent to reduce the progression of cognitive decline and AD pathology. This is achieved by beneficially modulating the microbiome, improving intestinal tight junction proteins, reducing permeability in both gut and BBB, and decreasing inflammation in the gut, blood circulation, and brain, ultimately mitigating AD pathology and cognitive decline.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaohua Wang
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Biomedical Sciences, Infectious and Tropical Disease Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Internal Medicine-Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
6
|
Zhang X, Wu W, Mao Y, Cheng J, Zhou Z, Tang Y, Zhao Q, Yan H. Exploring causal relationship of traumatic brain injury and comorbidities: A Mendelian randomization study. J Alzheimers Dis Rep 2024; 8:1670-1676. [PMID: 40034368 PMCID: PMC11863744 DOI: 10.1177/25424823241304393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Background Previous observational studies demonstrated a link existed between traumatic brain injury (TBI) and cerebral disease and multisystem complications, such as dementia, pneumonia, and gastrointestinal disease, but they could be confused by confounding and reverse causality. Objective We aimed to figure out the causal correlation between TBI and the following complications. Methods Database concerning TBI and complications from genome-wide association study (GWAS) and two-sample Mendelian randomization (MR) analysis was employed to examine whether TBI was causally associated with the risk of some complications. All the analysis was carried out through R, version 4.3.3. Results MR analyses indicated that any dementia has a promotional effect on TBI (OR = 1.067, 95% CI, 1.011-1.123, p = 0.017). However, there was no causal genetically association between TBI and Alzheimer's disease (AD), Parkinson's disease (PD), pneumonia, or gastrointestinal disease. Conclusions Contrary to observational studies, our results uncovered little causal association between TBI and PD, AD, depression, pneumonia, and gastrointestinal diseases. Interestingly, we found any dementia might be the risk of TBI, which was a new discovery.
Collapse
Affiliation(s)
- Xiaohang Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenze Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaqing Mao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxin Cheng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Zhou
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaqi Tang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiulong Zhao
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Dong X, Su Y, Luo Z, Li C, Gao J, Han X, Yao S, Wu W, Tian L, Bai Y, Wang G, Ren W. Fecal microbiota transplantation alleviates cognitive impairment by improving gut microbiome composition and barrier function in male rats of traumatic brain injury following gas explosion. Front Microbiol 2024; 15:1485936. [PMID: 39552646 PMCID: PMC11564976 DOI: 10.3389/fmicb.2024.1485936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background Dysbiosis of gut microbiota (GM) is intricately linked with cognitive impairment and the incidence of traumatic brain injury (TBI) in both animal models and human subjects. However, there is limited understanding of the impact and mechanisms of fecal microbiota transplantation (FMT) on brain and gut barrier function in the treatment of TBI induced by gas explosion (GE). Methods We have employed FMT technology to establish models of gut microbiota dysbiosis in male rats, and subsequently conducted non-targeted metabolomics and microbiota diversity analysis to explore the bacteria with potential functional roles. Results Hematoxylin-eosin and transmission electron microscopy revealed that GE induced significant pathological damage and inflammation responses, as well as varying degrees of mitochondrial impairment in neuronal cells in the brains of rats, which was associated with cognitive decline. Furthermore, GE markedly elevated the levels of regulatory T cell (Tregs)-related factors interleukin-10, programmed death 1, and fork head box protein P3 in the brains of rats. Similar changes in these indicators were also observed in the colon; however, these alterations were reversed upon transfer of normal flora into the GE-exposed rats. Combined microbiome and metabolome analysis indicated up-regulation of Clostridium_T and Allobaculum, along with activation of fatty acid biosynthesis after FMT. Correlation network analysis indirectly suggested a causal relationship between FMT and alleviation of GE-induced TBI. FMT improved intestinal structure and up-regulated expression of tight junction proteins Claudin-1, Occludin, and ZO-1, potentially contributing to its protective effects on both brain and gut. Conclusion Transplantation of gut microbiota from healthy rats significantly enhanced cognitive function in male rats with traumatic brain injury caused by a gas explosion, through the modulation of gut microbiome composition and the improvement of both gut and brain barrier integrity via the gut-brain axis. These findings may offer a scientific foundation for potential clinical interventions targeting gas explosion-induced TBI using FMT.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yaguang Su
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zheng Luo
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Cuiying Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jie Gao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xiaofeng Han
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Linqiang Tian
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Yichun Bai
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Guizhi Wang
- Department of Pathology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjie Ren
- Institute of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
11
|
Holcomb M, Marshall A, Flinn H, Lozano M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment causes sex-specific neuroprotection after traumatic brain injury in mice. RESEARCH SQUARE 2024:rs.3.rs-4196801. [PMID: 38645104 PMCID: PMC11030542 DOI: 10.21203/rs.3.rs-4196801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Recent studies have shed light on the potential role of gut dysbiosis in shaping traumatic brain injury (TBI) outcomes. Changes in the levels and types of Lactobacillus bacteria present might impact the immune system disturbances, neuroinflammatory responses, anxiety and depressive-like behaviors, and compromised neuroprotection mechanisms triggered by TBI. Objective This study aimed to investigate the effects of a daily pan-probiotic (PP) mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticus, L. fermentum, L. rhamnosus, L. gasseri, and L. casei, administered for either two or seven weeks before inducing TBI on both male and female mice. Methods Mice were subjected to controlled cortical impact (CCI) injury. Short-chain fatty acids (SCFAs) analysis was performed for metabolite measurements. The taxonomic profiles of murine fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis. Histological analyses were used to assess neuroinflammation and gut changes post-TBI, while behavioral tests were conducted to evaluate sensorimotor and cognitive functions. Results Our findings suggest that PP administration modulates the diversity and composition of the microbiome and increases the levels of SCFAs in a sex-dependent manner. We also observed a reduction of lesion volume, cell death, and microglial and macrophage activation after PP treatment following TBI in male mice. Furthermore, PP-treated mice show motor function improvements and decreases in anxiety and depressive-like behaviors. Conclusion Our findings suggest that PP administration can mitigate neuroinflammation and ameliorate motor and anxiety and depressive-like behavior deficits following TBI. These results underscore the potential of probiotic interventions as a viable therapeutic strategy to address TBI-induced impairments, emphasizing the need for gender-specific treatment approaches.
Collapse
|
12
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
13
|
Yan L, Li H, Qian Y, Liu Q, Cong S, Dou B, Wang Y, Wang M, Yu T. Acupuncture modulates the gut microbiota in Alzheimer's disease: current evidence, challenges, and future opportunities. Front Neurosci 2024; 18:1334735. [PMID: 38495110 PMCID: PMC10940355 DOI: 10.3389/fnins.2024.1334735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease, one of the most severe and common neurodegenerative diseases, has no effective cure. Therefore it is crucial to explore novel and effective therapeutic targets. The gut microbiota - brain axis has been found to play a role in Alzheimer's disease by regulating the neuro-immune and endocrine systems. At the same time, acupuncture can modulate the gut microbiota and may impact the course of Alzheimer's disease. In this Review, we discuss recent studies on the role of acupuncture on the gut microbiota as well current challenges and future opportunities of acupuncture as potential treatment for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qidi Liu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Baomin Dou
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Zhang Y, Liu J, Liu X, Zhou Y, Geng J, Shi Z, Ma L. Fecal Microbiota Transplantation-Mediated Ghrelin Restoration Improves Neurological Functions After Traumatic Brain Injury: Evidence from 16S rRNA Sequencing and In Vivo Studies. Mol Neurobiol 2024; 61:919-934. [PMID: 37668964 DOI: 10.1007/s12035-023-03595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
This study aimed to investigate how gut microbiota dysbiosis impacts the repair of the blood-brain barrier and neurological deficits following traumatic brain injury (TBI). Through 16S rRNA sequencing analysis, we compared the gut microbiota of TBI rats and normal controls, discovering significant differences in abundance, species composition, and ecological function, potentially linked to Ghrelin-mediated brain-gut axis functionality. Further, in vivo experiments showed that fecal microbiota transplantation or Ghrelin injection could block the intracerebral TNF signaling pathway, enhance GLP-1 expression, significantly reduce brain edema post-TBI, promote the repair of the blood-brain barrier, and improve neurological deficits. However, the TNF signaling pathway activation could reverse these beneficial effects. In summary, our research suggests that by restoring the balance of gut microbiota, the levels of Ghrelin can be elevated, leading to the blockade of intracerebral TNF signaling pathway and enhanced GLP-1 expression, thereby mitigating post-TBI blood-brain barrier disruption and neurological injuries.
Collapse
Affiliation(s)
- Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China.
| | - Junying Liu
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Jia Geng
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, People's Republic of China
| | - Zheng Shi
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, No. 76, Huacai Road, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.
| |
Collapse
|
15
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
16
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
17
|
What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington's Disease? Int J Mol Sci 2023; 24:ijms24054477. [PMID: 36901907 PMCID: PMC10003333 DOI: 10.3390/ijms24054477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host's metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington's disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease.
Collapse
|
18
|
Matheson JAT, Holsinger RMD. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. Int J Mol Sci 2023; 24:1001. [PMID: 36674517 PMCID: PMC9864694 DOI: 10.3390/ijms24021001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are highly prevalent but poorly understood, and with few treatment options despite decades of intense research, attention has recently shifted toward other mediators of neurological disease that may present future targets for therapeutic research. One such mediator is the gut microbiome, which communicates with the brain through the gut-brain axis and has been implicated in various neurological disorders. Alterations in the gut microbiome have been associated with numerous neurological and other diseases, and restoration of the dysbiotic gut has been shown to improve disease conditions. One method of restoring a dysbiotic gut is via fecal microbiota transplantation (FMT), recolonizing the "diseased" gut with normal microbiome. Fecal microbiota transplantation is a treatment method traditionally used for Clostridium difficile infections, but it has recently been used in neurodegenerative disease research as a potential treatment method. This review aims to present a summary of neurodegenerative research that has used FMT, whether as a treatment or to investigate how the microbiome influences pathogenesis.
Collapse
Affiliation(s)
- Julie-Anne T. Matheson
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
19
|
Wei W, Wang S, Xu C, Zhou X, Lian X, He L, Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 2022; 13:959856. [PMID: 36466655 PMCID: PMC9715766 DOI: 10.3389/fmicb.2022.959856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/20/2023] Open
Abstract
As the world's population ages, neurodegenerative diseases (NDs) have brought a great burden to the world. However, effective treatment measures have not been found to alleviate the occurrence and development of NDs. Abnormal accumulation of pathogenic proteins is an important cause of NDs. Therefore, effective inhibition of the accumulation of pathogenic proteins has become a priority. As the second brain of human, the gut plays an important role in regulate emotion and cognition functions. Recent studies have reported that the disturbance of gut microbiota (GM) is closely related to accumulation of pathogenic proteins in NDs. On the one hand, pathogenic proteins directly produced by GM are transmitted from the gut to the central center via vagus nerve. On the other hand, The harmful substances produced by GM enter the peripheral circulation through intestinal barrier and cause inflammation, or cross the blood-brain barrier into the central center to cause inflammation, and cytokines produced by the central center cause the production of pathogenic proteins. These pathogenic proteins can produced by the above two aspects can cause the activation of central microglia and further lead to NDs development. In addition, certain GM and metabolites have been shown to have neuroprotective effects. Therefore, modulating GM may be a potential clinical therapeutic approach for NDs. In this review, we summarized the possible mechanism of NDs caused by abnormal accumulation of pathogenic proteins mediated by GM to induce the activation of central microglia, cause central inflammation and explore the therapeutic potential of dietary therapy and fecal microbiota transplantation (FMT) in NDs.
Collapse
Affiliation(s)
- Wei Wei
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Nigam M, Panwar AS, Singh RK. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:961569. [PMID: 36212607 PMCID: PMC9535080 DOI: 10.3389/fmedt.2022.961569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 01/10/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been proved to be an effective treatment for gastrointestinal disorders caused due to microbial disbalance. Nowadays, this approach is being used to treat extragastrointestinal conditions like metabolic and neurological disorders, which are considered to have their provenance in microbial dysbiosis in the intestine. Even though case studies and clinical trials have demonstrated the potential of FMT in treating a variety of ailments, safety and ethical concerns must be answered before the technique is widely used to the community's overall benefit. From this perspective, it is not unexpected that techniques for altering gut microbiota may represent a form of medication whose potential has not yet been thoroughly addressed. This review intends to gather data on recent developments in FMT and its safety, constraints, and ethical considerations.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| |
Collapse
|
21
|
Zheng Z, Wang S, Wu C, Cao Y, Gu Q, Zhu Y, Zhang W, Hu W. Gut Microbiota Dysbiosis after Traumatic Brain Injury Contributes to Persistent Microglial Activation Associated with Upregulated Lyz2 and Shifted Tryptophan Metabolic Phenotype. Nutrients 2022; 14:3467. [PMID: 36079724 PMCID: PMC9459947 DOI: 10.3390/nu14173467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and mortality, affecting millions of people every year. The neuroinflammation and immune response post-TBI initially have neuroprotective and reparative effects, but prolonged neuroinflammation leads to secondary injury and increases the risk of chronic neurodegenerative diseases. Persistent microglial activation plays a critical role in chronic neuroinflammation post-TBI. Given the bidirectional communication along the brain-gut axis, it is plausible to suppose that gut microbiota dysbiosis post-TBI influences microglial activation. In the present study, hippocampal microglial activation was observed at 7 days and 28 days post-TBI. However, in TBI mice with a depletion of gut microbiota, microglia were activated at 7 days post-TBI, but not at 28 days post-TBI, indicating that gut microbiota contributes to the long-term activation of microglia post-TBI. In addition, in conventional mice colonized by the gut microbiota of TBI mice using fecal microbiota transplant (FMT), microglial activation was observed at 28 days post-TBI, but not at 7 days post-TBI, supporting the role of gut microbiota dysbiosis in persistent microglial activation post-TBI. The RNA sequencing of the hippocampus identified a microglial activation gene, Lyz2, which kept upregulation post-TBI. This persistent upregulation was inhibited by oral antibiotics and partly induced by FMT. 16s rRNA gene sequencing showed that the composition and function of gut microbiota shifted over time post-TBI with progressive dysbiosis, and untargeted metabolomics profiling revealed that the tryptophan metabolic phenotype was differently reshaped at 7 days and 28 days post-TBI, which may play a role in the persistent upregulation of Lyz2 and the activation of microglia. This study implicates that gut microbiota and Lyz2 are potential targets for the development of novel strategies to address persistent microglial activation and chronic neuroinflammation post-TBI, and further investigations are warranted to elucidate the specific mechanism.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Department of Critical Care Medicine, Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, China
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chenghao Wu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - Qiao Gu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Zhang
- Department of General Surgery, Secondary Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
22
|
Roles of Fatty Acids in Microglial Polarization: Evidence from In Vitro and In Vivo Studies on Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23137300. [PMID: 35806302 PMCID: PMC9266841 DOI: 10.3390/ijms23137300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Microglial polarization to the M1 phenotype (classically activated) or the M2 phenotype (alternatively activated) is critical in determining the fate of immune responses in neurodegenerative diseases (NDs). M1 macrophages contribute to neurotoxicity, neuronal and synaptic damage, and oxidative stress and are the first line of defense, and M2 macrophages elicit an anti-inflammatory response to regulate neuroinflammation, clear cell debris, and promote neuroregeneration. Various studies have focused on the ability of natural compounds to promote microglial polarization from the M1 phenotype to the M2 phenotype in several diseases, including NDs. However, studies on the roles of fatty acids in microglial polarization and their implications in NDs are a rare find. Most of the studies support the role of polyunsaturated fatty acids (PUFAs) in microglial polarization using cell and animal models. Thus, we aimed to collect data and provide a narrative account of microglial types, markers, and studies pertaining to fatty acids, particularly PUFAs, on microglial polarization and their neuroprotective effects. The involvement of only PUFAs in the chosen topic necessitates more in-depth research into the role of unexplored fatty acids in microglial polarization and their mechanistic implications. The review also highlights limitations and future challenges.
Collapse
|