1
|
Guo ZL, Zhou J, Lin XJ, Yuan Q, Dong YL, Liu QB, Wang T. Regulation of the AGEs-induced inflammatory response in human periodontal ligament cells via the AMPK/NF-κB/ NLRP3 signaling pathway. Exp Cell Res 2024; 437:113999. [PMID: 38494067 DOI: 10.1016/j.yexcr.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Xue-Jing Lin
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Qing Yuan
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Yu-Lei Dong
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Qi-Bing Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital, Haikou, 571199, China; Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
| | - Tao Wang
- Dental Medical Center, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital),19 Xiuhua Road, Haikou, 570311, Hainan, China.
| |
Collapse
|
2
|
Shrivastav D, Singh DD. Emerging roles of microRNAs as diagnostics and potential therapeutic interest in type 2 diabetes mellitus. World J Clin Cases 2024; 12:525-537. [PMID: 38322458 PMCID: PMC10841963 DOI: 10.12998/wjcc.v12.i3.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disease of impaired glucose utilization. Uncontrolled high sugar levels lead to advanced glycation end products (AGEs), which affects several metabolic pathways by its receptor of advanced glycation end products (RAGE) and causes diabetic complication. MiRNAs are small RNA molecules which regulate genes linked to diabetes and affect AGEs pathogenesis, and target tissues, influencing health and disease processes. AIM To explore miRNA roles in T2DM's metabolic pathways for potential therapeutic and diagnostic advancements in diabetes complications. METHODS We systematically searched the electronic database PubMed using keywords. We included free, full-length research articles that evaluate the role of miRNAs in T2DM and its complications, focusing on genetic and molecular disease mechanisms. After assessing the full-length papers of the shortlisted articles, we included 12 research articles. RESULTS Several types of miRNAs are linked in metabolic pathways which are affected by AGE/RAGE axis in T2DM and its complications. miR-96-5p, miR-7-5p, miR-132, has_circ_0071106, miR-143, miR-21, miR-145-5p, and more are associated with various aspects of T2DM, including disease risk, diagnostic markers, complications, and gene regulation. CONCLUSION Targeting the AGE/RAGE axis, with a focus on miRNA regulation, holds promise for managing T2DM and its complications. MiRNAs have therapeutic potential as they can influence the metabolic pathways affected by AGEs and RAGE, potentially reducing inflammation, oxidative stress, and vascular complications. Additionally, miRNAs may serve as early diagnostic biomarkers for T2DM. Further research in this area may lead to innovative therapeutic strategies for diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
3
|
Li S, Fan C, Li X, Li S, Yu T, Zhang W, Ma T, Zhao M, Li D, Xiao W, Shan A. Cannabidiol ameliorates inflammatory response partly by AGE-RAGE pathway in diabetic mice. Drug Dev Res 2023; 84:1427-1436. [PMID: 37486107 DOI: 10.1002/ddr.22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Cannabidiol (CBD), the most abundant nonpsychoactive constituent of Cannabis sativa plant, is a promising potential pharmacotherapy for the treatment of diabetes and associated comorbidities. Previous studies have shown the potential of CBD to prevent diabetes in mice, the precise mechanisms of action remain unclear. The purpose of this study was to explore the mechanism of CBD alleviating hyperglycemia. The results demonstrated that CBD reduced blood glucose of STZ-induced diabetic mice without causing hypoglycemia. To elucidate the possible mechanisms of CBD effect, RNA-seq analysis was performed on high glucose-induced human mesangial cells (HMCs). By cluster analysis of differential genes, the results showed that advanced glycation end products-receptor of advanced glycation endproducts (AGE-RAGE) pathway-related genes CCL2 and interleukin-1β (IL-1β) play an important role in the biological of CBD. The expression of CCL2 and IL-1β were significantly increased in HMCs. Whereas, treatment with CBD decreased the expression of CCL2 and IL-1β. In addition, CBD significantly reduced AGE-RAGE levels in high glucose-induced HMCs. Similar results were confirmed in diabetic mice. In conclusion, we discovered for the first time that CBD ameliorates hyperglycemia partly through AGE-RAGE mediated CCL2/IL-1β pathway.
Collapse
Affiliation(s)
- Shuai Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Chunxiang Fan
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xu Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Tianfei Yu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Weiwei Zhang
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Tianyi Ma
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Deshan Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Ramasamy R, Shekhtman A, Schmidt AM. RAGE/DIAPH1 and atherosclerosis through an evolving lens: Viewing the cell from the "Inside - Out". Atherosclerosis 2023; 394:117304. [PMID: 39492058 PMCID: PMC11309734 DOI: 10.1016/j.atherosclerosis.2023.117304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS In hyperglycemia, inflammation, oxidative stress and aging, Damage Associated Molecular Patterns (DAMPs) accumulate in conditions such as atherosclerosis. Binding of DAMPs to receptors such as the receptor for advanced glycation end products (RAGE) activates signal transduction cascades that contribute to cellular stress. The cytoplasmic domain (tail) of RAGE (ctRAGE) binds to the formin Diaphanous1 (DIAPH1), which is important for RAGE signaling. This Review will detail the evidence linking the RAGE/DIAPH1 signaling pathway to atherosclerosis and envisages future therapeutic opportunities from the "inside-out" point of view in affected cells. METHODS PubMed was searched using a variety of search terms, including "receptor for advanced glycation end products" along with various combinations including "and atherosclerosis," "soluble RAGE and atherosclerosis," "statins and RAGE," "PPAR and RAGE" and "SGLT2 inhibitor and RAGE." RESULTS In non-diabetic and diabetic mice, antagonism or global deletion of Ager (the gene encoding RAGE) retards progression and accelerates regression of atherosclerosis. Global deletion of Diaph1 in mice devoid of the low density lipoprotein receptor (Ldlr) significantly attenuates atherosclerosis; mice devoid of both Diaph1 and Ldlr display significantly lower plasma and liver concentrations of cholesterol and triglyceride compared to mice devoid of Ldlr. Associations between RAGE pathway and human atherosclerosis have been identified based on relationships between plasma/serum concentrations of RAGE ligands, soluble RAGEs and atherosclerosis. CONCLUSIONS Efforts to target RAGE/DIAPH1 signaling through a small molecule antagonist therapeutic strategy hold promise to quell accelerated atherosclerosis in diabetes and in other forms of cardiovascular disease.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Medical Center, NY, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Medical Center, NY, USA.
| |
Collapse
|
5
|
Schwertner K, Gelles K, Leitner J, Steinberger P, Gundacker C, Vrticka R, Hoffmann-Sommergruber K, Ellinger I, Geiselhart S. Human intestine and placenta exhibit tissue-specific expression of RAGE isoforms. Heliyon 2023; 9:e18247. [PMID: 37533998 PMCID: PMC10391957 DOI: 10.1016/j.heliyon.2023.e18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is encoded by AGER, a gene that is subjected to tissue-specific alternative splicing. Splice variants of RAGE in intestine and placenta are unknown and contradictory data concerning RAGE protein expression in these tissues have been published. As a basis for future functional studies, we examined RAGE expression in small intestine, colon and placentas. PCR cloning revealed that full-length RAGE is the only RAGE transcript isoform expressed in placenta. In the small intestine, the major transcript isoform detected was RAGE_v1 encoding the C-terminally truncated soluble receptor. In the colon, both full-length RAGE as well as several splice variants were identified. Four antibodies were used to study protein expression by immunoblotting and were carefully validated. Appropriate controls were essential to avoid misinterpretation of bands caused by non-specific reactivity of antibodies. Only one of four antibodies tested detected full-length RAGE in placenta, whereas no RAGE-specific band was detected in intestinal tissues despite loading >30-fold more intestinal tissue than the positive control, human lung. RAGE expression levels in the placenta were 100-fold lower compared with human lung when analyzed by ELISA, and no significant differences in RAGE expression were detected between healthy placentas and placentas from women with preeclampsia, gestational diabetes mellitus, or fetal growth restriction. We conclude that healthy placental chorionic tissue expresses low levels of full-length RAGE, whereas expression of the tissue-specific intestinal isoforms is below the limit of detection. Low RAGE expression levels in combination with a lack of antibody validation may explain the conflicting published results on RAGE protein expression in intestine and placenta.
Collapse
Affiliation(s)
- Katharina Schwertner
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudia Gundacker
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruben Vrticka
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Zglejc-Waszak K, Mukherjee K, Korytko A, Lewczuk B, Pomianowski A, Wojtkiewicz J, Banach M, Załęcki M, Nowicka N, Jarosławska J, Kordas B, Wąsowicz K, Juranek JK. Novel insights into the nervous system affected by prolonged hyperglycemia. J Mol Med (Berl) 2023; 101:1015-1028. [PMID: 37462767 PMCID: PMC10400689 DOI: 10.1007/s00109-023-02347-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple molecular pathways including the receptor for advanced glycation end-products-diaphanous related formin 1 (RAGE-Diaph1) signaling are known to play a role in diabetic peripheral neuropathy (DPN). Evidence suggests that neuropathological alterations in type 1 diabetic spinal cord may occur at the same time as or following peripheral nerve abnormalities. We demonstrated that DPN was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. More than 500 differentially expressed genes (DEGs) belonging to multiple functional pathways were identified in diabetic spinal cord and of those the most enriched was RAGE-Diaph1 related PI3K-Akt pathway. Only seven of spinal cord DEGs overlapped with DEGs from type 1 diabetic sciatic nerve and only a single gene cathepsin E (CTSE) was common for both type 1 and type 2 diabetic mice. In silico analysis suggests that molecular changes in spinal cord may act synergistically with RAGE-Diaph1 signaling axis in the peripheral nerve. KEY MESSAGES: Molecular perturbations in spinal cord may be involved in the progression of diabetic peripheral neuropathy. Diabetic peripheral neuropathy was associated with perturbations of RAGE-Diaph1 signaling pathway in peripheral nerve accompanied by widespread spinal cord molecular changes. In silico analysis revealed that PI3K-Akt signaling axis related to RAGE-Diaph1 was the most enriched biological pathway in diabetic spinal cord. Cathepsin E may be the target molecular hub for intervention against diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, VA, 24016, USA
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andrzej Pomianowski
- Internal Medicine Department, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Krakow, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Natalia Nowicka
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-085, Olsztyn, Poland.
| |
Collapse
|
7
|
Schleicher E, Didangelos T, Kotzakioulafi E, Cegan A, Peter A, Kantartzis K. Clinical Pathobiochemistry of Vitamin B 12 Deficiency: Improving Our Understanding by Exploring Novel Mechanisms with a Focus on Diabetic Neuropathy. Nutrients 2023; 15:nu15112597. [PMID: 37299560 DOI: 10.3390/nu15112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Vitamin B12 (B12) is an essential cofactor of two important biochemical pathways, the degradation of methylmalonic acid and the synthesis of methionine from homocysteine. Methionine is an important donor of methyl groups for numerous biochemical reactions, including DNA synthesis and gene regulation. Besides hematological abnormalities (megaloblastic anemia or even pancytopenia), a deficiency in B12 may cause neurological symptoms, including symptoms resembling diabetic neuropathy. Although extensively studied, the underlining molecular mechanism for the development of diabetic peripheral neuropathy (DPN) is still unclear. Most studies have found a contribution of oxidative stress in the development of DPN. Detailed immunohistochemical investigations in sural nerve biopsies obtained from diabetic patients with DPN point to an activation of inflammatory pathways induced via elevated advanced glycation end products (AGE), ultimately resulting in increased oxidative stress. Similar results have been found in patients with B12 deficiency, indicating that the observed neural changes in patients with DPN might be caused by cellular B12 deficiency. Since novel results show that B12 exerts intrinsic antioxidative activity in vitro and in vivo, B12 may act as an intracellular, particularly as an intramitochondrial, antioxidant, independent from its classical, well-known cofactor function. These novel findings may provide a rationale for the use of B12 for the treatment of DPN, even in subclinical early states.
Collapse
Affiliation(s)
- Erwin Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Konstantinos Kantartzis
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Conklin DJ. How Irritating! Electronic Cigarettes Not "95% Safer" Than Combustible Cigarettes: Recent Mechanistic Insights Into Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:1351-1354. [PMID: 36288291 PMCID: PMC10038145 DOI: 10.1161/atvbaha.122.318468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Daniel J. Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville
- Christina Lee Brown Envirome Institute, University of Louisville
- Superfund Research Center, University of Louisville
- Center of Cardiovascular Metabolism Science, University of Louisville
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Rabbani N, Thornalley PJ. An Introduction to the Special Issue "Protein Glycation in Food, Nutrition, Health and Disease". Int J Mol Sci 2022; 23:13053. [PMID: 36361833 PMCID: PMC9656604 DOI: 10.3390/ijms232113053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
On 20-24 September 2021, leading researchers in the field of glycation met online at the 14th International Symposium on the Maillard Reaction (IMARS-14), hosted by the authors of this introductory editorial, who are from Doha, Qatar [...].
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|