1
|
Huang Y, Bai J. Ferroptosis in the neurovascular unit after spinal cord injury. Exp Neurol 2024; 381:114943. [PMID: 39242069 DOI: 10.1016/j.expneurol.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The mechanisms of secondary injury following spinal cord injury are complicated. The role of ferroptosis, which is a newly discovered form of regulated cell death in the neurovascular unit(NVU), is increasingly important. Ferroptosis inhibitors have been shown to improve neurovascular homeostasis and attenuate secondary spinal cord injury(SCI). This review focuses on the mechanisms of ferroptosis in NVU cells and NVU-targeted therapeutic strategies according to the stages of SCI, and analyzes possible future research directions.
Collapse
Affiliation(s)
- Yushan Huang
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- School of Rehabilitation, Capital Medical University, Beijing, China; Department of Spine and Spinal Cord Surgery, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China; Department of Orthopedics, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Chen T, Liu J, Wang C, Wang Z, Zhou J, Lin J, Mao J, Pan T, Wang J, Xu H, He X, Wu D, Liu Z. ALOX5 contributes to glioma progression by promoting 5-HETE-mediated immunosuppressive M2 polarization and PD-L1 expression of glioma-associated microglia/macrophages. J Immunother Cancer 2024; 12:e009492. [PMID: 39142719 PMCID: PMC11332009 DOI: 10.1136/jitc-2024-009492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Oxylipin metabolism plays an essential role in glioma progression and immune modulation in the tumor microenvironment. Lipid metabolic reprogramming has been linked to macrophage remodeling, while the understanding of oxylipins and their catalyzed enzymes lipoxygenases in the regulation of glioma-associated microglia/macrophages (GAMs) remains largely unexplored. METHODS To explore the pathophysiological relevance of oxylipin in human glioma, we performed Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) analysis in human glioma and non-tumor brain tissues. To comprehensively investigate the role of arachidonate lipoxygenase 5 (ALOX5) in glioma, we performed in vivo bioluminescent imaging, immunofluorescence staining and flow cytometry analysis on tumors from orthotopic glioma-bearing mice. We developed an ALOX5-targeted nanobody, and tested its anti-glioma efficacy of combination therapy with α-programmed cell death protein-1 (PD-1). RESULTS In this study, we found that ALOX5 and its oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE) are upregulated in glioma, accumulating programmed death-ligand 1 (PD-L1)+ M2-GAMs and orchestrating an immunosuppressive tumor microenvironment. Mechanistically, 5-HETE derived from ALOX5-overexpressing glioma cells, promotes GAMs migration, PD-L1 expression, and M2 polarization by facilitating nuclear translocation of nuclear factor erythroid 2-related factor 2. Additionally, a nanobody targeting ALOX5 is developed that markedly suppresses 5-HETE efflux from glioma cells, attenuates M2 polarization of GAMs, and consequently ameliorates glioma progression. Furthermore, the combination therapy of the ALOX5-targeted nanobody plus α-PD-1 exhibits superior anti-glioma efficacy. CONCLUSIONS Our findings reveal a pivotal role of the ALOX5/5-HETE axis in regulating GAMs and highlight the ALOX5-targeted nanobody as a potential therapeutic agent, which could potentiate immune checkpoint therapy for glioma.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Jiangang Liu
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Chenci Wang
- Department of Oncology, Funan County People's Hospital, Fuyang, Anhui, China
| | - Zhengwei Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jiayi Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiani Lin
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Jie Mao
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tingzheng Pan
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Jianwei Wang
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Hongchao Xu
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Xiaosheng He
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| | - Zhuohao Liu
- Department of Neurosurgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Kizhakedathil MPJ, Madasu PK, Chandran T, Vijaykumar SD. In-silico structural studies on anti-inflammatory activity of phytocompounds from the genus Andrographis. J Biomol Struct Dyn 2024; 42:6543-6555. [PMID: 37440290 DOI: 10.1080/07391102.2023.2234486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Plant species from the genus Andrographis were used in Ayurveda and in other folklore medicines for treating ailments for centuries. In this study, we have hypothesized to evaluate the secondary metabolites as potent anti-inflammatory agents from the genus Andrographis. A library of secondary metabolites of the said genus was curated from the PubChem database and was subjected to energy minimization using UCSF Chimera software employing the AMBER force field. Initially, molecular docking was performed to evaluate the binding affinity of the curated library against the enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and 5-Lipoxygenase (5-LOX) using AutoDock Vina. This resulted in shortlisting of two metabolites Echioidinin 5-O-glucoside was bound and 5,2',6'-Trihydroxy-6,7,8-trimethoxy flavone 2'-O-glucoside with high binding affinity than standard drugs Ibuprofen and Zileuton. In addition, molecular dynamic simulation studies confirm that these compounds form relatively more stable complexes than standard drugs with the above-said enzymes. The free binding energy values using MMGBSA of the above said ligands with COX-1, COX-2, and 5-LOX were found to be -49.18 kcal/mol, -38.60 kcal/mol, and -54.27 kcal/mol respectively, Whereas the standards have -21.77 kcal/mol, -9.96 kcal/mol, and -10.29 kcal/mol. Moreover, the in-silico ADMET analysis confirms the druggability of the shortlisted compounds. Later, this work will act as a base for in-vitro and in-vivo experimental studies to validate the anti-inflammatory potential of the same.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Pavan K Madasu
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Thyageshwar Chandran
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | | |
Collapse
|
4
|
Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem 2024; 269:116290. [PMID: 38518522 DOI: 10.1016/j.ejmech.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingwu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongshan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Keke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
6
|
Yu Z, Su G, Zhang L, Liu G, Zhou Y, Fang S, Zhang Q, Wang T, Huang C, Huang Z, Li L. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER-ERK-NF-κB signaling pathway. Mol Med 2022; 28:142. [PMID: 36447154 PMCID: PMC9706854 DOI: 10.1186/s10020-022-00573-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Activated microglia play a key role in initiating the inflammatory cascade following ischemic stroke and exert proinflammatory or anti-inflammatory effects, depending on whether they are polarized toward the M1 or M2 phenotype. The present study investigated the regulatory effect of icaritin (ICT) on microglial polarization in rats after cerebral ischemia/reperfusion injury (CI/RI) and explored the possible anti-inflammatory mechanisms of ICT. METHODS A rat model of transient middle cerebral artery occlusion (tMCAO) was established. Following treatment with ICT, a G protein-coupled estrogen receptor (GPER) inhibitor or an extracellular signal-regulated kinase (ERK) inhibitor, the Garcia scale and rotarod test were used to assess neurological and locomotor function. 2,3,5-Triphenyltetrazolium chloride (TTC) and Fluoro-Jade C (FJC) staining were used to evaluate the infarct volume and neuronal death. The levels of inflammatory factors in the ischemic penumbra were evaluated using enzyme-linked immunosorbent assays (ELISAs). In addition, western blotting, immunofluorescence staining and quantitative PCR (qPCR) were performed to measure the expression levels of markers of different microglial phenotypes and proteins related to the GPER-ERK-nuclear factor kappa B (NF-κB) signaling pathway. RESULTS ICT treatment significantly decreased the cerebral infarct volume, brain water content and fluorescence intensity of FJC; improved the Garcia score; increased the latency to fall and rotation speed in the rotarod test; decreased the levels of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), Iba1, CD40, CD68 and p-P65-NF-κB; and increased the levels of CD206 and p-ERK. U0126 (an inhibitor of ERK) and G15 (a selective antagonist of GPER) antagonized these effects. CONCLUSIONS These findings indicate that ICT plays roles in inhibiting the inflammatory response and achieving neuroprotection by regulating GPER-ERK-NF-κB signaling and then inhibiting microglial activation and M1 polarization while promoting M2 polarization, which provides a new therapeutic for against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Zining Yu
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Guangjun Su
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Limei Zhang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Gaigai Liu
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Yonggang Zhou
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Shicai Fang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Qian Zhang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Graduate School, Gannan Medical University, Ganzhou, 341000 China
| | - Tianyun Wang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Cheng Huang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Zhihua Huang
- grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000 China
| | - Liangdong Li
- grid.452437.3First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000 China ,grid.440714.20000 0004 1797 9454Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou, 341000 China
| |
Collapse
|
7
|
Chen H, Lin J, Zhu S, Zeng K, Tu P, Jiang Y. Anti-inflammatory constituents from the stems and leaves of Glycosmis ovoidea Pierre. PHYTOCHEMISTRY 2022; 203:113369. [PMID: 35973615 DOI: 10.1016/j.phytochem.2022.113369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Seven undescribed compounds, including four acridones, two coumarins, and a phenylpropanoid, together with 13 known acridone analogues were isolated from the ethanolic extract of the stems and leaves of Glycosmis ovoidea Pierre. Their structures were elucidated on the basis of comprehensive analysis of 1D and 2D NMR and HRESIMS spectroscopic data, and the absolute configurations were assigned by comparison of the experimental and calculated ECD data. Five compounds showed moderate inhibitory effects on nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells with IC50 values in the range of 18.30-30.84 μM, and three compounds showed potent inhibition on 5-lipoxygenase (5-LOX) with IC50 values in the range of 2.08-10.26 μM. The possible binding sites of the active compounds with 5-LOX were further performed by molecular docking.
Collapse
Affiliation(s)
- Hongwei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sisi Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|