1
|
Bockorny B, Muthuswamy L, Huang L, Hadisurya M, Lim CM, Tsai LL, Gill RR, Wei JL, Bullock AJ, Grossman JE, Besaw RJ, Narasimhan S, Tao WA, Perea S, Sawhney MS, Freedman SD, Hidalgo M, Iliuk A, Muthuswamy SK. A Large-Scale Proteomics Resource of Circulating Extracellular Vesicles for Biomarker Discovery in Pancreatic Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.03.13.23287216. [PMID: 36993200 PMCID: PMC10055460 DOI: 10.1101/2023.03.13.23287216] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using 'liquid biopsies' offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12 and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2 and ANKAR were associated with metastasis, and those with CRP, RALB and CD55 correlated with poor clinical prognosis. Finally, we validated a 7-EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.
Collapse
|
2
|
Leanza G, Cannata F, Faraj M, Pedone C, Viola V, Tramontana F, Pellegrini N, Vadalà G, Piccoli A, Strollo R, Zalfa F, Beeve AT, Scheller EL, Tang SY, Civitelli R, Maccarrone M, Papalia R, Napoli N. Bone canonical Wnt signaling is downregulated in type 2 diabetes and associates with higher advanced glycation end-products (AGEs) content and reduced bone strength. eLife 2024; 12:RP90437. [PMID: 38598270 PMCID: PMC11006415 DOI: 10.7554/elife.90437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.
Collapse
Affiliation(s)
- Giulia Leanza
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Francesca Cannata
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Malak Faraj
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Claudio Pedone
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio Medico, Via Alvaro del PortilloRomaItaly
| | - Viola Viola
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Flavia Tramontana
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Niccolò Pellegrini
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Gianluca Vadalà
- Operative Research Unit of Orthopedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Alessandra Piccoli
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Rocky Strollo
- Department of Human Sciences and Promotion of the Quality of Life San Raffaele Roma Open University Via di Val CannutaRomaItaly
| | - Francesca Zalfa
- Predictive Molecular Diagnostic Unit, Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Alec T Beeve
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University in St. LouisSt LouisUnited States
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio sncAquilaItaly
- European Center for Brain Research, Santa Lucia Foundation IRCCSRomaItaly
| | - Rocco Papalia
- Operative Research Unit of Orthopedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Nicola Napoli
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
3
|
Arredondo-Damián JG, Martínez-Soto JM, Molina-Pelayo FA, Soto-Guzmán JA, Castro-Sánchez L, López-Soto LF, Candia-Plata MDC. Systematic review and bioinformatics analysis of plasma and serum extracellular vesicles proteome in type 2 diabetes. Heliyon 2024; 10:e25537. [PMID: 38356516 PMCID: PMC10865249 DOI: 10.1016/j.heliyon.2024.e25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Background Type 2 diabetes (T2D) is a complex metabolic ailment marked by a global high prevalence and significant attention in primary healthcare settings due to its elevated morbidity and mortality rates. The pathophysiological mechanisms underlying the onset and progression of this disease remain subjects of ongoing investigation. Recent evidence underscores the pivotal role of the intricate intercellular communication network, wherein cell-derived vesicles, commonly referred to as extracellular vesicles (EVs), emerge as dynamic regulators of diabetes-related complications. Given that the protein cargo carried by EVs is contingent upon the metabolic conditions of the originating cells, particular proteins may serve as informative indicators for the risk of activating or inhibiting signaling pathways crucial to the progression of T2D complications. Methods In this study, we conducted a systematic review to analyze the published evidence on the proteome of EVs from the plasma or serum of patients with T2D, both with and without complications (PROSPERO: CRD42023431464). Results Nine eligible articles were systematically identified from the databases, and the proteins featured in these articles underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We identified changes in the level of 426 proteins, with CST6, CD55, HBA1, S100A8, and S100A9 reported to have high levels, while FGL1 exhibited low levels. Conclusion These proteins are implicated in pathophysiological mechanisms such as inflammation, complement, and platelet activation, suggesting their potential as risk markers for T2D development and progression. Further studies are required to explore this topic in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Luis Castro-Sánchez
- University Center for Biomedical Research, University of Colima, Colima, Colima, Mexico
- CONAHCYT-University of Colima, Colima, Colima, Mexico
| | | | | |
Collapse
|
4
|
Cissé YM, Montgomery KR, Zierden HC, Hill EM, Kane PJ, Huang W, Kane MA, Bale TL. Maternal preconception stress produces sex-specific effects at the maternal:fetal interface to impact offspring development and phenotypic outcomes†. Biol Reprod 2024; 110:339-354. [PMID: 37971364 PMCID: PMC10873277 DOI: 10.1093/biolre/ioad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Hill
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
6
|
Casu A, Nunez Lopez YO, Yu G, Clifford C, Bilal A, Petrilli AM, Cornnell H, Carnero EA, Bhatheja A, Corbin KD, Iliuk A, Maahs DM, Pratley RE. The proteome and phosphoproteome of circulating extracellular vesicle-enriched preparations are associated with characteristic clinical features in type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1219293. [PMID: 37576973 PMCID: PMC10417723 DOI: 10.3389/fendo.2023.1219293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction There are no validated clinical or laboratory biomarkers to identify and differentiate endotypes of type 1 diabetes (T1D) or the risk of progression to chronic complications. Extracellular vesicles (EVs) have been studied as biomarkers in several different disease states but have not been well studied in T1D. Methods As the initial step towards circulating biomarker identification in T1D, this pilot study aimed to provide an initial characterization of the proteomic and phosphoproteomic landscape of circulating EV-enriched preparations in participants with established T1D (N=10) and healthy normal volunteers (Controls) (N=7) (NCT03379792) carefully matched by age, race/ethnicity, sex, and BMI. EV-enriched preparations were obtained using EVtrap® technology. Proteins were identified and quantified by LC-MS analysis. Differential abundance and coexpression network (WGCNA), and pathway enrichment analyses were implemented. Results The detected proteins and phosphoproteins were enriched (75%) in exosomal proteins cataloged in the ExoCarta database. A total of 181 proteins and 8 phosphoproteins were differentially abundant in participants with T1D compared to controls, including some well-known EVproteins (i.e., CD63, RAB14, BSG, LAMP2, and EZR). Enrichment analyses of differentially abundant proteins and phosphoproteins of EV-enriched preparations identified associations with neutrophil, platelet, and immune response functions, as well as prion protein aggregation. Downregulated proteins were involved in MHC class II signaling and the regulation of monocyte differentiation. Potential key roles in T1D for C1q, plasminogen, IL6ST, CD40, HLA-DQB1, HLA-DRB1, CD74, NUCB1, and SAP, are highlighted. Remarkably, WGCNA uncovered two protein modules significantly associated with pancreas size, which may be implicated in the pathogenesis of T1D. Similarly, these modules showed significant enrichment for membrane compartments, processes associated with inflammation and the immune response, and regulation of viral processes, among others. Discussion This study demonstrates the potential of proteomic and phosphoproteomic signatures of EV-enriched preparations to provide insight into the pathobiology of T1D. The WGCNA analysis could be a powerful tool to discriminate signatures associated with different pathobiological components of the disease.
Collapse
Affiliation(s)
- Anna Casu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Yury O. Nunez Lopez
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Gongxin Yu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Christopher Clifford
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anika Bilal
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Heather Cornnell
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Ananya Bhatheja
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Karen D. Corbin
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anton Iliuk
- Biomarker Discovery Department, Tymora Analytical Operations, West Lafayette, IN, United States
| | - David M. Maahs
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Richard E. Pratley
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| |
Collapse
|
7
|
Li Q, Zhang J, Fang Y, Dai Y, Jia P, Shen Z, Xu S, Ding X, Zhou F. Phosphoproteome Profiling of uEVs Reveals p-AQP2 and p-GSK3β as Potential Markers for Diabetic Nephropathy. Molecules 2023; 28:5605. [PMID: 37513479 PMCID: PMC10383182 DOI: 10.3390/molecules28145605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3β (p-GSK3β[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.
Collapse
Affiliation(s)
- Qing Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Yan Dai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Sujuan Xu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Feng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Minister of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Swolin-Eide D, Forsander G, Pundziute Lyckå A, Novak D, Grillari J, Diendorfer AB, Hackl M, Magnusson P. Circulating microRNAs in young individuals with long-duration type 1 diabetes in comparison with healthy controls. Sci Rep 2023; 13:11634. [PMID: 37468555 DOI: 10.1038/s41598-023-38615-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in post-transcriptional control of gene expression and might be used as biomarkers for diabetes-related complications. The aim of this case-control study was to explore potential differences in circulating miRNAs in young individuals with long-duration type 1 diabetes (T1D) compared to healthy controls, and how identified miRNAs are expressed across different tissues. Twelve adolescents, age 15.0-17.9 years, with T1D duration of more than 8 years (mean 11.1 years), were enrolled from the Swedish diabetes quality registry. An age-matched control group was recruited. Circulating miRNAs (n = 187) were analyzed by quantitative PCR. We observed that 27 miRNAs were upregulated and one was downregulated in T1D. Six of these miRNAs were tissue-enriched (blood cells, gastrointestinal, nerve, and thyroid tissues). Six miRNAs with the largest difference in plasma, five up-regulated (hsa-miR-101-3p, hsa-miR-135a-5p, hsa-miR-143-3p, hsa-miR-223-3p and hsa-miR-410-3p (novel for T1D)) and one down-regulated (hsa-miR-495-3p), with P-values below 0.01, were selected for further in-silico analyses. AKT1, VEGFA and IGF-1 were identified as common targets. In conclusion, 28 of the investigated miRNAs were differently regulated in long-duration T1D in comparison with controls. Several associations with cancer were found for the six miRNAs with the largest difference in plasma.
Collapse
Affiliation(s)
- Diana Swolin-Eide
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Gun Forsander
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Auste Pundziute Lyckå
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Daniel Novak
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, the Research Center in Cooperation With AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | | | - Per Magnusson
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, 581 85, Linköping, Sweden.
| |
Collapse
|
9
|
Meng X, Liu X, Tan J, Sheng Q, Zhang D, Li B, Zhang J, Zhang F, Chen H, Cui T, Li M, Zhang S. From Xiaoke to diabetes mellitus: a review of the research progress in traditional Chinese medicine for diabetes mellitus treatment. Chin Med 2023; 18:75. [PMID: 37349778 DOI: 10.1186/s13020-023-00783-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia resulting from insulin secretion defects or insulin resistance. The global incidence of DM has been gradually increasing due to improvements in living standards and changes in dietary habits, making it a major non-communicable disease that poses a significant threat to human health and life. The pathogenesis of DM remains incompletely understood till now, and current pharmacotherapeutic interventions are largely inadequate, resulting in relapses and severe adverse reactions. Although DM is not explicitly mentioned in traditional Chinese medicine (TCM) theory and clinical practice, it is often classified as "Xiaoke" due to similarities in etiology, pathogenesis, and symptoms. With its overall regulation, multiple targets, and personalized medication approach, TCM treatment can effectively alleviate the clinical manifestations of DM and prevent or treat its complications. Furthermore, TCM exhibits desirable therapeutic effects with minimal side effects and a favorable safety profile. This paper provides a comprehensive comparison and contrast of Xiaoke and DM by examining the involvement of TCM in their etiology, pathogenesis, treatment guidelines, and other relevant aspects based on classical literature and research reports. The current TCM experimental research on the treatment of DM by lowering blood glucose levels also be generalized. This innovative focus not only illuminates the role of TCM in DM treatment, but also underscores the potential of TCM in DM management.
Collapse
Affiliation(s)
- Xianglong Meng
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Tradition Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Xiaoqin Liu
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Tradition Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Jiaying Tan
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Qi Sheng
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Dingbang Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Bin Li
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Jia Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Fayun Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Hongzhou Chen
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Tao Cui
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Minghao Li
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Shuosheng Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
- Shanxi Key Laboratory of Tradition Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
10
|
Wu X, Liu YK, Iliuk AB, Tao WA. Mass spectrometry-based phosphoproteomics in clinical applications. Trends Analyt Chem 2023; 163:117066. [PMID: 37215489 PMCID: PMC10195102 DOI: 10.1016/j.trac.2023.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is an essential post-translational modification that regulates many aspects of cellular physiology, and dysregulation of pivotal phosphorylation events is often responsible for disease onset and progression. Clinical analysis on disease-relevant phosphoproteins, while quite challenging, provides unique information for precision medicine and targeted therapy. Among various approaches, mass spectrometry (MS)-centered characterization features discovery-driven, high-throughput and in-depth identification of phosphorylation events. This review highlights advances in sample preparation and instrument in MS-based phosphoproteomics and recent clinical applications. We emphasize the preeminent data-independent acquisition method in MS as one of the most promising future directions and biofluid-derived extracellular vesicles as an intriguing source of the phosphoproteome for liquid biopsy.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Anton B. Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Tymora Analytical Operations, West Lafayette, IN, USA
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Tymora Analytical Operations, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
12
|
Chen X, Yang Z, Du L, Guan Y, Li Y, Liu C. Study on the active ingredients and mechanism of action of Jiaotai Pill in the treatment of type 2 diabetes based on network pharmacology: A review. Medicine (Baltimore) 2023; 102:e33317. [PMID: 37000070 PMCID: PMC10063286 DOI: 10.1097/md.0000000000033317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 04/01/2023] Open
Abstract
To explore the potential active ingredients and related mechanisms of Jiaotai Pill in the treatment of Type 2 diabetes mellitus (T2DM) based on network pharmacology and molecular docking. The main active components of Jiaotai Pills were obtained by TCMSP and BATMAN-TCM database combined with literature mining, and the targets of the active components of Jiaotai Pills were predicted by reverse pharmacophore matching (PharmMapper) method. Verifying and normalizing the obtained action targets by using a Uniprot database. Obtaining T2DM related targets through GeneCards, the online mendelian inheritance in man, DrugBank, PharmGKB and therapeutic target databases, constructing a Venn diagram by using a Venny 2.1 online drawing platform to obtain the intersection action targets of Jiaotai pills and T2DM, and the protein-protein interaction network was constructed by String platform. Bioconductor platform and R language were used to analyze the function of gene ontology and the pathway enrichment of Kyoto Encyclopedia of Genes and Genomes. A total of 21 active components and 262 potential targets of Jiaotai Pill were screened by database analysis and literature mining, including 89 targets related to T2DM. Through gene ontology functional enrichment analysis, 1690 biological process entries, 106 molecular function entries and 78 cellular component entries were obtained. Seven pathways related to T2DM were identified by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Jiaotai Pill can achieve the purpose of treating T2DM through multiple active ingredients, multiple disease targets, multiple biological pathways and multiple pathways, which provides a theoretical basis for the clinical treatment of T2DM by Jiaotai Pill.
Collapse
Affiliation(s)
- Xiaona Chen
- Hei Long Jiang University of CM, Harbin, China
| | - Zhao Yang
- Hei Long Jiang University of CM, Harbin, China
| | - Lin Du
- Hei Long Jiang University of CM, Harbin, China
| | - Yuxin Guan
- Hei Long Jiang University of CM, Harbin, China
| | - Yunfang Li
- Hei Long Jiang University of CM, Harbin, China
| | | |
Collapse
|
13
|
Nunez Lopez YO, Iliuk A, Casu A, Parikh A, Smith JS, Corbin K, Lupu D, Pratley RE. Extracellular vesicle proteomics and phosphoproteomics identify pathways for increased risk in patients hospitalized with COVID-19 and type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110565. [PMID: 36736734 PMCID: PMC9890887 DOI: 10.1016/j.diabres.2023.110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Recent studies suggest that extracellular vesicles (EVs) play a role in the pathogenesis of SARS-CoV-2 infection and the severity of COVID-19. However, their role in the interaction between COVID-19 and type 2 diabetes (T2D) has not been addressed. Here, we characterized the circulating EV proteomic and phosphoproteomic landscape in patients with and without T2D hospitalized with COVID-19 or non-COVID-19 acute respiratory illness (RSP). We detected differentially expressed protein and phosphoprotein signatures that effectively characterized the study groups. The trio of immunomodulatory and coagulation proteins C1QA, C1QB, and C1QC appeared to be a central cluster in both the COVID-19 and T2D functional networks. PKCβ appeared to be retained in cells by being diverted from EV pathways and contribute to the COVID-19 and T2D interaction via a PKC/BTK/TEC axis. EV-shuttled CASP3 and ROCK1 appeared to be coregulated and likely contribute to disease interactions in patients with COVID-19 and T2D. Predicted activation of AMPK, MAPK, and SYK appeared to also play important roles driving disease interaction. These results suggest that activated cellular kinases (i.e., PKC, AMPK, MAPK, and SYK) and multiple EV-shuttled kinases (i.e., PKCβ, BTK, TEC, MAP2K2, and ROCK1) may play key roles in severe COVID-19, particularly in patients with comorbid diabetes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States; Tymora Analytical Operations, West Lafayette, IN 47906, United States.
| | - Anna Casu
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Amay Parikh
- Division of Critical Care, AdventHealth Medical Group, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Joshua S Smith
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Karen Corbin
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Daniel Lupu
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Richard E Pratley
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States.
| |
Collapse
|
14
|
Castaño C, Novials A, Párrizas M. An Overview of Inter-Tissue and Inter-Kingdom Communication Mediated by Extracellular Vesicles in the Regulation of Mammalian Metabolism. Int J Mol Sci 2023; 24:2071. [PMID: 36768391 PMCID: PMC9916451 DOI: 10.3390/ijms24032071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Obesity and type 2 diabetes are associated with defects of insulin action in different tissues or alterations in β-cell secretory capacity that may be triggered by environmental challenges, inadequate lifestyle choices, or an underlying genetic predisposition. In addition, recent data shows that obesity may also be caused by perturbations of the gut microbiota, which then affect metabolic function and energy homeostasis in the host. Maintenance of metabolic homeostasis in complex organisms such as mammals requires organismal-level communication, including between the different organs and the gut microbiota. Extracellular vesicles (EVs) have been identified in all domains of life and have emerged as crucial players in inter-organ and inter-kingdom crosstalk. Interestingly, EVs found in edible vegetables or in milk have been shown to influence gut microbiota or tissue function in mammals. Moreover, there is a multidirectional crosstalk mediated by EVs derived from gut microbiota and body organs that has implications for host health. Untangling this complex signaling network may help implement novel therapies for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Carlos Castaño
- Pathogenesis and Prevention of Diabetes Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Group, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Anna Novials
- Pathogenesis and Prevention of Diabetes Group, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pathogenesis and Prevention of Diabetes Group, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Marcelina Párrizas
- Pathogenesis and Prevention of Diabetes Group, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
15
|
You B, Yang Y, Zhou Z, Yan Y, Zhang L, Jin J, Qian H. Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics 2022; 14:pharmaceutics14091848. [PMID: 36145595 PMCID: PMC9503573 DOI: 10.3390/pharmaceutics14091848] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been used to treat diseases. Growing evidence indicates that EVs play a cardioprotective role in heart disease by activating beneficial signaling pathways. Multiple functional components of EVs and intracellular molecular mechanisms are involved in the process. To overcome the shortcomings of native EVs such as their heterogeneity and limited tropism, a series of engineering approaches has been developed to improve the therapeutic efficiency of EVs. In this review, we present an overview of the research and future directions for EVs-based cardiac therapies with an emphasis on EVs-mediated delivery of therapeutic agents. The advantages and limitations of various modification strategies are discussed, and possible opportunities for improvement are proposed. An in-depth understanding of the endogenous properties of EVs and EVs engineering strategies could lead to a promising cell-free therapy for cardiac repair.
Collapse
Affiliation(s)
- Benshuai You
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225317, China
| | - Zixuan Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Correspondence: (J.J.); (H.Q.)
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.J.); (H.Q.)
| |
Collapse
|