1
|
Wang B, Tan H, Sun X, Lin Z, Chen X, Han H, Wang M, Wang Z, Chen X, Deng Y, Song S. Inhibition of Candida albicans virulence by moscatin from Dendrobium nobile lindl. Microb Pathog 2024; 197:107089. [PMID: 39477034 DOI: 10.1016/j.micpath.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Candida albicans infection poses a significant global health threat. It is imperative to exploit new antifungal agents against C. albicans infections without leading to drug resistance, so that these potential agents can complement or combine with current medications to effectively treat diseases caused by C. albicans. We screened moscatin, and assessed the inhibitory effectiveness against C. albicans SC5314 on hyphae production and biofilm formation. It was revealed that moscatin exhibited significant effects on morphological transition and biofilm formation in C. albicans SC5314. It also lowered the pathogenicity of C. albicans SC5314 in a concentration-dependent way in both A549 cells and mice fungal infection models, but had no cytotoxicity to A549 cells. In addition, moscatin attenuated the virulence of clinical fluconazole-resistant C. albicans and exhibited synergistic activity with fluconazole. It could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. These findings indicate that these moscatin has great potential to be developed as a new therapeutic drug against C. albicans infection.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiuyun Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Hongguang Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; Hunan Children's Hospital, Changsha 410007, China
| | - Xiangxiu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Ramírez-Ledesma MG, Bermudes-Valencia B, Balderas-Parada RM, Salazar-Ramírez SG, Reyes-Cortés R, Magos-Vázquez FJ, Torres-Hernández JJ, Avila EE. Extracellular Traps in Patients Diagnosed With Bacterial Vaginosis, Trichomoniasis, Candidiasis, Noninfectious Vaginitis and Cytolytic Vaginosis. Int J Microbiol 2024; 2024:7619416. [PMID: 39479185 PMCID: PMC11524696 DOI: 10.1155/2024/7619416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/11/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Vaginal infections are a public health problem associated with serious health complications due to the exacerbated inflammation they generate. Vaginal inflammation may also occur in some noninfectious processes, such as noninfectious vaginitis and cytolytic vaginosis. Immune system cells respond to infections through various mechanisms, such as the formation of extracellular traps (ETs), which are DNA networks associated with effector proteins. Many pathogens induce ETs formation in vitro, as occurs in some natural infections. A recent report indicates that human vaginal infections in vivo generate ETs. Therefore, in this study, we aimed to identify ETs in samples from 40 donors who were diagnosed with infectious (i.e., bacterial vaginosis, candidiasis and trichomoniasis) and noninfectious (i.e., noninfectious vaginitis and cytolytic vaginosis) vaginal inflammation. We were able to observe ETs by identifying the LL-37 peptide, which is associated with DNA networks. In seven vaginal swabs from the control group (formed by 19 donors without vaginal infection symptoms), we detected at least one pathogen per sample and observed ETs; thus, these donors were considered asymptomatic. The remaining 12 donors were confirmed to be healthy, as their exudates did not present any tested pathogens, sign of inflammation or ETs. ETs in vaginal inflammatory processes can worsen inflammation but may also help control infection.
Collapse
Affiliation(s)
- María G. Ramírez-Ledesma
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato, PC 36050, Mexico
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Queretaro, PC 76230, Mexico
| | - Berenice Bermudes-Valencia
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Rosa M. Balderas-Parada
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Susana G. Salazar-Ramírez
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Ruth Reyes-Cortés
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato, PC 36050, Mexico
| | - Francisco J. Magos-Vázquez
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - José J. Torres-Hernández
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Eva E. Avila
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato, PC 36050, Mexico
| |
Collapse
|
3
|
Alwan OM, Jaafar IS. Development of synergistic antifungal in situ gel of miconazole nitrate loaded microemulsion as a novel approach to treat vaginal candidiasis. Sci Rep 2024; 14:23168. [PMID: 39369062 PMCID: PMC11455884 DOI: 10.1038/s41598-024-74021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Limited solubility is the main cause of the low local availability of anti-candidiasis drug, miconazole nitrate (MN). The study's objective was to develop and characterize microemulsion (ME) based temperature-triggered in situ gel of MN for intravaginal administration to enhance local availability and antifungal activity. The solubility of MN was initially studied in different oils, surfactants, and co-surfactants. Then, pseudo-ternary phase diagrams were constructed to select the best ratio of various components. The ME formulations were characterized by thermodynamic study, droplet size, polydispersity index (PDI), viscosity, and in-vitro antifungal mean inhibition zone (MIZ). Selected MEs were incorporated into different in situ gel bases using a combination of two thermosensitive polymers (poloxamer (PLX) 407 and 188), with 0.6% of hydroxypropyl methylcellulose (HPMC K4M) and gellan gum (GG) as mucoadhesive polymer. ME-based gels (MG) were investigated for gelation temperature, gelation time, viscosity, spreadability, mucoadhesive strength, in vitro release profile, and MIZ test. Furthermore, the optimum MG was assessed for in vivo animal irritation test and FESEM investigation. Tea tree oil, lavender oil, tween 80, and propylene glycol (PG) were chosen for ME preparation for the optimal formulation; formulation ME7 and ME10 were chosen. After incorporation of the selected formulation into a mixture of P407 and P188 (18:2% w/w) with 0.6% mucoadhesive polymer, the resultant MG formulation (MG1) revealed optimum gelation temperature (33 ± 0.01℃) and appropriate viscosity with enhanced sustained release (98%) and retention through sheep vaginal mucosa, MG1 exhibited a better MIZ compared to the 2% MN gel formulation and the marketed MN product, and no rabbit vagina irritation. In conclusion, the miconazole nitrate-loaded MG-based formula sustained the duration of action and better antifungal activity than the marketed miconazole nitrate formulation.
Collapse
Affiliation(s)
- Omar M Alwan
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Iman S Jaafar
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
4
|
Ofori P, Zemliana N, Zaffran I, Etzion T, Sionov RV, Steinberg D, Mechoulam R, Kogan NM, Levi-Schaffer F. Antifungal properties of abnormal cannabinoid derivatives: Disruption of biofilm formation and gene expression in Candida species. Pharmacol Res 2024; 209:107441. [PMID: 39368567 DOI: 10.1016/j.phrs.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Abnormal cannabinoids (including comp 3) are a class of synthetic lipid compounds with non-psychoactive properties and regioisomer configurations, but distinct from traditional cannabinoids since they do not interact with the established CB1 and CB2 receptors. Previous research showed the cardioprotective and anti-inflammatory potentials of comp 3 and more recently its antimicrobial effect on methicillin-resistant Staphylococcus aureus (MRSA). Given the escalating challenges posed by Candida infections and the rise of antifungal drug resistance, the exploration of novel therapeutic avenues is crucial. This study aimed to assess the anti-Candida properties of newly synthesized AbnCBD derivatives. AbnCBD derivatives were synthesized by acid catalysis-induced coupling and further derivatized. We evaluated the potential of the AbnCBD derivatives to inhibit the growth stages of various Candida species. By in vitro colorimetric assays and in vivo mice experiments, we have shown that AbnCBD derivatives induce differential inhibition of Candida growth. The AbnCBD derivatives, especially comp 3, comp 10, and comp 9 significantly reduced the growth of C. albicans, including FLC-resistant strains, and of C. tropicalis and C. parapsilosis but not of C auris compared to their controls (FLC and 0.5 % DMSO). Comp 3 also disrupted C. albicans biofilm formation and eradicated mature biofilms. Notably, other derivatives of AbnCBD disrupted the biofilm formation and maturation of C. albicans but did not affect yeast growth. In a murine model of VVC, comp 3 demonstrated significant fungal clearance and reduced C. albicans burden compared to vehicle and FLC controls. These findings highlight the potential of AbnCBDs as promising antifungal agents against Candida infections.
Collapse
Affiliation(s)
- Prince Ofori
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalia Zemliana
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Etzion
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M Kogan
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel; Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Curvelo JADR, Barreto ALS, Bayona-Pacheco BL, de Moraes DC, Portela MB, Ferreira-Pereira A, Adade CM, Souto-Padrón T, Soares RMDA. Salivary proteins modulate Candida albicans virulence and may prevent oropharingeal candidiasis. Braz J Microbiol 2024:10.1007/s42770-024-01517-5. [PMID: 39320637 DOI: 10.1007/s42770-024-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Oral candidiasis can be presented in different ways due to the virulence factors of its etiology such as Candida albicans that have developed an effective set of these factors that are able to improve its pathogenesis. The role of salivary immunological components in the development of candidiasis can provide insights for the development of new methodologies aiming to control this disease. The aim of this study was to evaluate the antifungal activity of two salivary components, histatin 5 and lactoferrin on C. albicans viability and virulence using a fluconazole resistant C. albicans clinical strain. Results showed that histatin 5 and lactoferrin decreased cell viability, and the cell surface hydrophobicity was increased by 18% in presence of 151 µg/mL of histatin 5 but was not altered by lactoferrin. It was observed the reduction of 69.3% in the expression of mannoproteins on C. albicans surface in the presence of 151 µg/mL of histatin, but proteolytic activity of serine proteinases was not inhibited by any of the proteins. Histatin 5 altered cell ultrastructure predominantly in the cytoplasmic compartment. However, this peptide does not interfere with mitochondrial function neither in membrane permeability of the yeasts. The association index between C. albicans and epithelial cells was increased by 51% in presence of 151 µg/mL of histatin. Results suggest that histatin 5 and lactoferrin affects viability and virulence of C. albicans at physiological levels, and the maintenance of these levels may be essential in the prevention of oropharyngeal candidiasis. Exogenous administration of these proteins may become a therapeutic alternative for resistant strains of C. albicans, circumventing toxicity issues, considering their constitutive features.
Collapse
Affiliation(s)
| | - Anna Lea Silva Barreto
- Grande Área Ciências Biológicas e da Saúde, Centro Universitário IBMR, Rio de Janeiro, Brazil.
| | - Brayan Leonardo Bayona-Pacheco
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, via Puerto Colombia, Área Metropolitana de Barranquilla, 081007, Colombia
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maristela Barbosa Portela
- Faculdade de Odontologia, Centro de Ciências Médicas, Universidade Federal Fluminense, Niterói, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Marques Adade
- NanoOnco3D, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | - Thaïs Souto-Padrón
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosangela Maria de Araújo Soares
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Moreira LEA, de Farias Cabral VP, Rodrigues DS, Barbosa AD, Silveira MJCB, Coutinho TDNP, Barbosa SA, Sá LGDAV, de Andrade Neto JB, da Rocha SNC, Reis CS, Cavalcanti BC, Rios MEF, de Moraes MO, Júnior HVN, da Silva CR. Antifungal activity of tannic acid against Candida spp. and its mechanism of action. Braz J Microbiol 2024:10.1007/s42770-024-01477-w. [PMID: 39179891 DOI: 10.1007/s42770-024-01477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024] Open
Abstract
The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.
Collapse
Affiliation(s)
- Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Janielly Castelo Branco Silveira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Tatiana do Nascimento Paiva Coutinho
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Sarah Alves Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, Brazil
| | | | | | | | | | | | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil.
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
7
|
Corbu VM, Georgescu AM, Marinas IC, Pericleanu R, Mogos DV, Dumbravă AȘ, Marinescu L, Pecete I, Vassu-Dimov T, Czobor Barbu I, Csutak O, Ficai D, Gheorghe-Barbu I. Phenotypic and Genotypic Characterization of Resistance and Virulence Markers in Candida spp. Isolated from Community-Acquired Infections in Bucharest, and the Impact of AgNPs on the Highly Resistant Isolates. J Fungi (Basel) 2024; 10:563. [PMID: 39194889 DOI: 10.3390/jof10080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND This study aimed to determine, at the phenotypic and molecular levels, resistance and virulence markers in Candida spp. isolated from community-acquired infections in Bucharest outpatients during 2021, and to demonstrate the efficiency of alternative solutions against them based on silver nanoparticles (AgNPs). METHODS A total of 62 Candida spp. strains were isolated from dermatomycoses and identified using chromogenic culture media and MALDI-TOF MS, and then investigated for their antimicrobial resistance and virulence markers (VMs), as well as for metabolic enzymes using enzymatic tests for the expression of soluble virulence factors, their biofilm formation and adherence capacity on HeLa cells, and PCR assays for the detection of virulence markers and the antimicrobial activity of alternative solutions based on AgNPs. RESULTS Of the total of 62 strains, 45.16% were Candida parapsilosis; 29.03% Candida albicans; 9.67% Candida guilliermondii; 3.22% Candida lusitaniae, Candia pararugosa, and Candida tropicalis; and 1.66% Candida kefyr, Candida famata, Candida haemulonii, and Candida metapsilosis. Aesculin hydrolysis, caseinase, and amylase production were detected in the analyzed strains. The strains exhibited different indices of adherence to HeLa cells and were positive in decreasing frequency order for the LIP1, HWP1, and ALS1,3 genes (C. tropicalis/C. albicans). An inhibitory effect on microbial growth, adherence capacity, and on the production of virulence factors was obtained using AgNPs. CONCLUSIONS The obtained results in C. albicans and Candida non-albicans circulating in Bucharest outpatients were characterized by moderate-to-high potential to produce VMs, necessitating epidemiological surveillance measures to minimize the chances of severe invasive infections.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ana-Maria Georgescu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | | | - Radu Pericleanu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Denisa Vasilica Mogos
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania
| | - Tatiana Vassu-Dimov
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| |
Collapse
|
8
|
Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN. Extracellular BSA-degrading SAPs in the rare pathogen Meyerozyma guilliermondii strain SO as potential virulence factors in candidiasis. Microb Pathog 2024; 193:106773. [PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Kang X, Zhao T, Song Y, Zhang J, Yuan T, Han Q. Evaluation of the activity of antimicrobial peptides against bacterial vaginosis. Open Life Sci 2024; 19:20220927. [PMID: 39091626 PMCID: PMC11292031 DOI: 10.1515/biol-2022-0927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
New drugs for the treatment of bacterial vaginosis (BV) are yet to be developed due to concerns that they may contribute to the increase in antibiotic resistance in BV. Antimicrobial peptides (AMPs) are one of the most promising options for next-generation antibiotics. In this study, we investigated the bacteriostatic activity of the AMPs Pexiganan, plectasin, melittin, and cathelicidin-DM against Gram-negative and Gram-positive bacteria both in vitro and in a mouse model of BV infection. The results showed that Pexiganan, melittin, and cathelicidin-DM had significant antibacterial activity against both Gram-negative and Gram-positive bacteria. AMPs have great potential for clinical application in the treatment of vaginitis, and this study provides an experimental basis for their use in the active immunoprophylaxis of BV.
Collapse
Affiliation(s)
- Xuning Kang
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ting Zhao
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuzhu Song
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinyang Zhang
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Tao Yuan
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qinqin Han
- College of Life Science and Technology & Affiliated Hospital, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
10
|
do Socorro Costa M, da Silva ARP, Santos Araújo J, Dos Santos ATL, Fonseca VJA, Gonçalves Alencar G, Moura TF, Gonçalves SA, Filho JMB, Morais-Braga MFB, Andrade-Pinheiro JC, Coutinho HDM. In vitro Evaluation of Fungal Susceptibility and Inhibition of Virulence by Diosgenin. Chem Biodivers 2024; 21:e202400444. [PMID: 38670923 DOI: 10.1002/cbdv.202400444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.
Collapse
Affiliation(s)
- Maria do Socorro Costa
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Ana Raquel Pereira da Silva
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Juliana Santos Araújo
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | | | | - Gabriel Gonçalves Alencar
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Talysson Felismino Moura
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Sheila Alves Gonçalves
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - José Maria Barbosa Filho
- Laboratory Technology Pharmaceutical, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Jacqueline Cosmo Andrade-Pinheiro
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | |
Collapse
|
11
|
Glushakova A, Kachalkin A. Wild and partially synanthropic bird yeast diversity, in vitro virulence, and antifungal susceptibility of Candida parapsilosis and Candida tropicalis strains isolated from feces. Int Microbiol 2024; 27:883-897. [PMID: 37874524 DOI: 10.1007/s10123-023-00437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Yeast complexes in the fecal samples of wild (Dendrocopos major, Picus viridis) and partially synanthropic (Bombycilla garrulus, Garrulus glandarius, Pica pica, and Pyrrhula pyrrhula) birds were studied in a forest ecosystem during winter. A total of 18 yeast species were identified: 16 ascomycetes and two basidiomycetes belonging to five subphyla of fungi: Saccharomycotina (15), Pezizomycotina (1), Agaricomycotina (1), and Pucciniomycotina (1). Most yeast species were found in the fecal samples of P. pyrrhula (Candida parapsilosis, C. zeylanoides, Debaryomyces hansenii, Hanseniaspora uvarum, Metschnikowia pulcherrima, Meyerozyma carpophila, M. guilliermondii, Rhodotorula mucilaginosa); the lowest number of yeast species was observed in the feces of B. garrulus (C. parapsilosis, C. zeylanoides, Met. pulcherrima, and Rh. mucilaginosa). The opportunistic species of the genus Candida were found only in feces of partially synanthropic birds: C. parapsilosis was observed in the feces of B. garrulus, G. glandarius, P. pica, and P. pyrrhula; its relative abundance was 69.3%, 49.1%, 10.5%, and 1.1%, respectively; C. tropicalis was observed in the feces of P. pica and G. glandarius; its relative abundance was 54.6% and 7.1%, respectively. Strains of C. parapsilosis and C. tropicalis isolated from the feces of partially synanthropic birds were evaluated for their susceptibility to conventional antifungal agents (fluconazole, voriconazole, amphotericin B) and hydrolytic activity. A total of 160 strains were studied. Resistance to fluconazole was detected in 86.8% of C. parapsilosis strains and in 87% of C. tropicalis strains; resistance to voriconazole was detected in 71.7% of C. parapsilosis and in 66.7% of C. tropicalis strains, and the lowest percentage of resistant strains was detected to amphotericin B, 2.8% and 3.7% in C. parapsilosis and C. tropicalis strains, respectively. Multiresistance was detected in one strain of C. parapsilosis isolated from P. pica feces and in one strain of C. tropicalis isolated from G. glandarius feces. Phospholipase and hemolysin activities in the strains of C. parapsilosis were low (mean Pz values of 0.93 and 0.91, respectively); protease activity was moderate (mean Pz value of 0.53). The ability to produce hydrolytic enzymes was higher in the isolated strains of C. tropicalis. The mean Pz values of phospholipase and hemolysin activities were moderate (mean Pz values of 0.63 and 0.60, respectively), whereas protease activity was high (mean Pz value of 0.32). Thus, wild and partially synanthropic birds play an important role in disseminating of various yeast species. These yeasts can enter the topsoil via feces and contribute to the formation of allochthonous and uneven soil yeast diversity in natural ecosystems. In addition, partially synanthropic birds can be vectors of virulent strains of opportunistic Candida species from urban environments to natural biotopes.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
12
|
Dalabehera M, Rathore C, Rathee A, Lal UR. From plants to particles: herbal solutions and nanotechnology combating resistant vulvovaginal candidiasis. Ther Deliv 2024; 15:371-392. [PMID: 38651887 PMCID: PMC11221605 DOI: 10.4155/tde-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Despite having current advanced therapy, vulvovaginal candidiasis (VVC) remains a common yet debated healthcare-associated topic worldwide due to multi-drug resistance Candida species. In our review, we outlined and highlighted upcoming values with scope of existing and emerging information regarding the possibility of using various natural molecules combined with modern technology that shows promising anti-candida activity in VVC. Furthermore, in this review, we compiled herbal drug molecules and their nanocarriers approach for enhancing the efficacy and stability of herbal molecules. We have also summarized the patent literature available on herbal drug molecules and their nanoformulation techniques that could alternatively become a new innovative era to combat resistance VVC.
Collapse
Affiliation(s)
- Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Ankit Rathee
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Uma Ranjan Lal
- Department of Natural Products, National Institute of Pharmaceutical Education & Research, Punjab 160062 Mohali, India
| |
Collapse
|
13
|
Jaworska-Krych D, Gosecka M, Gosecki M, Urbaniak M, Dzitko K, Ciesielska A, Wielgus E, Kadlubowski S, Kozanecki M. Enhanced Solubility and Bioavailability of Clotrimazole in Aqueous Solutions with Hydrophobized Hyperbranched Polyglycidol for Improved Antifungal Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18434-18448. [PMID: 38579182 DOI: 10.1021/acsami.3c19388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.
Collapse
Affiliation(s)
- Daria Jaworska-Krych
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Urbaniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Anita Ciesielska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Slawomir Kadlubowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Marcin Kozanecki
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
14
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Sharma K, Parmanu PK, Sharma M. Mechanisms of antifungal resistance and developments in alternative strategies to combat Candida albicans infection. Arch Microbiol 2024; 206:95. [PMID: 38349529 DOI: 10.1007/s00203-023-03824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Candida albicans is a commensal fungus that infects the humans and becomes an opportunistic pathogen particularly in immuno-compromised patients. Among the Candida genus, yeast C. albicans is the most frequently incriminated species and is responsible for nearly 50-90% of human candidiasis, with vulvovaginal candidiasis alone, affecting about 75% of the women worldwide. One of the significant virulence traits in C. albicans is its tendency to alternate between the yeast and hyphae morphotypes, accounting for the development of multi-drug resistance in them. Thus, a thorough comprehension of the decision points and genes controlling this transition is necessary, to understand the pathogenicity of this, naturally occurring, pernicious fungus. Additionally, the formation of C. albicans biofilm is yet another pathogenesis trait and a paramount cause of invasive candidiasis. Since 1980 and in 90 s, wide spread use of immune-suppressing therapies and over prescription of fluconazole, a drug used to treat chronic fungal infections, triggered the emergence of novel anti-fungal drug development. Thus, this review thoroughly elucidates the diseases associated with C. albicans infection as well as the anti-fungal resistance mechanism associated with them and identifies the emerging therapeutic agents, along with a rigorous discussion regarding the future strategies that can possibly be adopted for the cure of this deleterious pathogen.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Prashant Kumar Parmanu
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), Delhi, India.
| |
Collapse
|
16
|
Gryzinska M, Kot B, Dudzinska E, Biernasiuk A, Jakubczak A, Malm A, Andraszek K. Changes in the Level of DNA Methylation in Candida albicans under the Influence of Physical and Chemical Factors. Int J Mol Sci 2023; 24:15873. [PMID: 37958861 PMCID: PMC10647513 DOI: 10.3390/ijms242115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of physical factors such as radiation (electromagnetic, microwave, infrared, laser, UVC, and X-ray) and high temperature, as well as chemical factors (controlled atmosphere) on the level of global DNA cytosine methylation in C. albicans ATCC 10231 cells were investigated. Prolonged exposure to each type of radiation significantly increased the DNA methylation level. In addition, the global methylation level in C. albicans cells increased with the incubation temperature. An increase in the percentage of methylated DNA was also noted in C. albicans cells cultured in an atmosphere with reduced O2. In contrast, in an atmosphere containing more than 3% CO2 and in anaerobic conditions, the DNA methylation level decreased relative to the control. This study showed that prolonged exposure to various types of radiation and high temperature as well as reduced O2 in the atmosphere caused a significant increase in the global DNA methylation level. This is most likely a response protecting DNA against damage, which at the same time can lead to epigenetic disorders, and in consequence can adversely affect the functioning of the organism.
Collapse
Affiliation(s)
- Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Barbara Kot
- Institute of Biological Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Ewa Dudzinska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Katarzyna Andraszek
- Institute of Animal Science and Fisheries, University of Siedlce, 08–110 Siedlce, Poland;
| |
Collapse
|
17
|
Oyardi O, Demir ES, Alkan B, Komec S, Genc GE, Aygun G, Teke L, Turan D, Erturan Z, Savage PB, Guzel CB. Phenotypic Investigation of Virulence Factors, Susceptibility to Ceragenins, and the Impact of Biofilm Formation on Drug Efficacy in Candida auris Isolates from Türkiye. J Fungi (Basel) 2023; 9:1026. [PMID: 37888282 PMCID: PMC10607835 DOI: 10.3390/jof9101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Candida auris has emerged as a significant fungal threat due to its rapid worldwide spread since its first appearance, along with its potential for antimicrobial resistance and virulence properties. This study was designed to examine virulence characteristics, the efficacy of ceragenins, and biofilm-derived drug resistance in seven C. auris strains isolated from Turkish intensive care patients. It was observed that none of the tested strains exhibited proteinase or hemolysis activity; however, they demonstrated weak phospholipase and esterase activity. In addition, all strains were identified as having moderate to strong biofilm formation characteristics. Upon determining the minimum inhibitory concentrations (MIC) of ceragenins, it was discovered that CSA-138 exhibited the highest effectiveness with a MIC range of 1-0.5 µg/mL, followed by CSA-131 with a MIC of 1 µg/mL. Also, antimicrobial agents destroyed mature biofilms at high concentrations (40-1280 µg/mL). The investigation revealed that the strains isolated from Türkiye displayed weak exoenzyme activities. Notably, the ceragenins exhibited effectiveness against these strains, suggesting their potential as a viable treatment option.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Elif Sena Demir
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| | - Busra Alkan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| | - Selda Komec
- Laboratory of Medical Microbiology, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Türkiye;
| | - Gonca Erkose Genc
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye; (G.E.G.); (Z.E.)
| | - Gokhan Aygun
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Türkiye;
| | - Leyla Teke
- Clinic of Microbiology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul 34255, Türkiye;
| | - Deniz Turan
- Medical Microbiology Laboratory, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul 34668, Türkiye;
| | - Zayre Erturan
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye; (G.E.G.); (Z.E.)
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Cagla Bozkurt Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye; (E.S.D.); (B.A.); (C.B.G.)
| |
Collapse
|
18
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
19
|
Gerges MA, Fahmy YA, Hosny T, Gandor NH, Mohammed SY, Mohamed TMA, Abdelmoteleb NEM, Esmaeel NE. Biofilm Formation and Aspartyl Proteinase Activity and Their Association with Azole Resistance Among Candida albicans Causing Vulvovaginal Candidiasis, Egypt. Infect Drug Resist 2023; 16:5283-5293. [PMID: 37601561 PMCID: PMC10439283 DOI: 10.2147/idr.s420580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Background Candida albicans (C. albicans) is a major cause of vulvovaginal candidiasis (VVC), a condition that is commonly treated with azole agents. Biofilm formation and aspartyl proteinase production are important virulence factors that could be linked to azole resistance in C. albicans impeding therapy. Aim To find out the association of both factors with azole resistance among C. albicans isolated from VVC cases in Egyptian nonpregnant women of childbearing age. Patients and Methods In a cross-sectional study, C. albicans was isolated from nonpregnant females diagnosed clinically as having VVC during a 1-year study period. Susceptibility to azole agents was tested using the disc diffusion method. Biofilm formation and aspartyl proteinase production were assessed phenotypically. Additionally, two biofilm-related genes (ALS1 and HWP1) and three proteinase genes (SAP2, SAP4, and SAP6) were screened for using polymerase chain reaction (PCR). Results Among 204 C. albicans isolates, azole resistance ratios were as follows: voriconazole (30.4%), itraconazole (17.6%), fluconazole (11.3%) and econazole (6.4%). Biofilm-producing capacity was detected in 63.2% of isolates, and 63.2% were proteinase producers. The frequencies of ALS1 and HWP1 were 69.6% and 74.5%, respectively, while SAP2, SAP4, and SAP6 were 69.2%, 88.7%, and 64.7%, respectively. Biofilm formation was significantly associated with azole resistance (P < 0.001 for each tested azole agent) as was proteinase production (P < 0.001 for fluconazole, voriconazole, and econazole resistance and P = 0.047 for itraconazole). Conclusion Among nonpregnant Egyptian women of childbearing age, azole resistance in C. albicans causing VVC is significantly associated with biofilm formation and proteinase production. The development of new therapeutic agents that can target these factors is warranted.
Collapse
Affiliation(s)
- Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmin Ahmed Fahmy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thoraya Hosny
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nessma H Gandor
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif Y Mohammed
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Noura E Esmaeel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Andrade ARCD, Rezende MDS, Portela FVM, Pereira LMG, Nascimento da Silva B, Lima-Neto RGD, Rocha MFG, Sidrim JJC, Castelo-Branco DSCM, Cordeiro RDA. β-Estradiol and progesterone enhance biofilm development and persister cell formation in monospecies and microcosms biofilms derived from vulvovaginal candidiasis. BIOFOULING 2023; 39:719-729. [PMID: 37698054 DOI: 10.1080/08927014.2023.2256674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The present study aimed to: (1) evaluate the influence of the steroid hormones (SH) on biofilm development; (2) investigate the formation of persister cells (PC) in biofilms; and (3) investigate the influence of SH on PC formation. Biofilms were derived from vulvovaginal candidiasis (VVC) samples and evaluated by three models: microcosm biofilms grown in Vaginal Fluid Simulator Medium (MiB-VFSM); monospecies biofilms grown in VFSM (MoB-VFSM) and RPMI media (MoB-RPMI). SH altered cell counting and biomass of biofilms grown in VSFM; MoB-RPMI were negatively affected by SH. SH stimulated the formation of PC in MiB-VFSM but not MoB-VFSM; MoB-RPMI showed a lower number of PC in the presence of SH. The results showed that SH altered the dynamics of biofilm formation and development, depending on the study model. The data suggest the influence of hormones on the physiology of Candida biofilms and reinforce the importance of PC in the pathogenesis of VVC.
Collapse
|
21
|
Talapko J, Meštrović T, Dmitrović B, Juzbašić M, Matijević T, Bekić S, Erić S, Flam J, Belić D, Petek Erić A, Milostić Srb A, Škrlec I. A Putative Role of Candida albicans in Promoting Cancer Development: A Current State of Evidence and Proposed Mechanisms. Microorganisms 2023; 11:1476. [PMID: 37374978 DOI: 10.3390/microorganisms11061476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Candida albicans is a commensal fungal species that commonly colonizes the human body, but it is also a pervasive opportunistic pathogen in patients with malignant diseases. A growing body of evidence suggests that this fungus is not only coincidental in oncology patients, but may also play an active role in the development of cancer. More specifically, several studies have investigated the potential association between C. albicans and various types of cancer, including oral, esophageal, and colorectal cancer, with a possible role of this species in skin cancer as well. The proposed mechanisms include the production of carcinogenic metabolites, modulation of the immune response, changes in cell morphology, microbiome alterations, biofilm production, the activation of oncogenic signaling pathways, and the induction of chronic inflammation. These mechanisms may act together or independently to promote cancer development. Although more research is needed to fully grasp the potential role of C. albicans in carcinogenesis, the available evidence suggests that this species may be an active contributor and underscores the importance of considering the impact of the human microbiome on cancer pathogenesis. In this narrative review, we aimed to summarize the current state of evidence and offer some insights into proposed mechanisms.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Branko Dmitrović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Pathology and Forensic Medicine, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tatjana Matijević
- Department of Dermatology and Venereology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Anamarija Petek Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Psychiatry, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Andrea Milostić Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
22
|
Al-Enazi NM, Alsamhary K, Ameen F. Evaluation of citrus pectin capped copper sulfide nanoparticles against Candidiasis causing Candida biofilms. ENVIRONMENTAL RESEARCH 2023; 225:115599. [PMID: 36898420 DOI: 10.1016/j.envres.2023.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The incidence of candidiasis has significantly increased globally in recent decades, and it is a significant source of morbidity and mortality, particularly in critically ill patients. Candida sp. ability to generate biofilms is one of its primary pathogenic traits. Drug-resistant strains have led to clinical failures of traditional antifungals, necessitating the development of a more modern therapy that can inhibit biofilm formation and enhance Candida sp. sensitivity to the immune system. The present study reports the anticandidal potential of pectin-capped copper sulfide nanoparticles (pCuS NPs) against Candida albicans. The pCuS NPs inhibit C. albicans growth at a minimum inhibitory concentration (MIC) of 31.25 μM and exhibit antifungal action by compromising membrane integrity and overproducing reactive oxygen species. The pCuS NPs, at their biofilm inhibitory concentration (BIC) of 15.63 μM, effectively inhibited C. albicans cells adhering to the glass slides, confirmed by light microscopy and scanning electron microscopy. Phase contrast microscopy pictures revealed that NPs controlled the morphological transitions between the yeast and hyphal forms by limiting conditions that led to filamentation and reducing hyphal extension. In addition, C. albicans showed reduced exopolysaccharide (EPS) production and exhibited less cell surface hydrophobicity (CSH) after pCuS NPs treatment. The findings suggest that pCuS NPs may be able to inhibit the emergence of virulence traits that lead to the formation of biofilms, such as EPS, CSH, and hyphal morphogenesis. The results raise the possibility of developing NPs-based therapies for C. albicans infections associated with biofilms.
Collapse
Affiliation(s)
- Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
23
|
Negi P, Singh A, Pundir S, Parashar A, Upadhyay N, Agarwal S, Chauhan R, Tambuwala MM. Essential oil and nanocarrier-based formulations approaches for vaginal candidiasis. Ther Deliv 2023; 14:207-225. [PMID: 37191049 DOI: 10.4155/tde-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
An exclusive site for local drug delivery is the vagina, especially for vaginal infections. The fungus Candida albicans causes vaginal infection known as vulvovaginal candidiasis, a highly prevalent and recurrent gynaecological disease among women. Vaginal candidiasis affects over 75% of women at a certain point in their life and has a recurrence rate of 40-50%. Medicinal plants provide some very effective phytoconstituents which when delivered as nanosystems have enhanced therapeutic action and efficacy by alteration in their characteristics. Antifungal drugs are used to treat these conditions, alternative medicine is required for prophylaxis and improved prognosis. The current review focuses on the research carried out on various nanocarrier-based approaches and essential oil-based formulations for vaginal candidiasis.
Collapse
Affiliation(s)
- Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Akriti Singh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Navneet Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Shweta Agarwal
- L.R Institute of Pharmacy, Oachghat, Solan, 173212, India
| | - Raveen Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
24
|
Yassin MT, Elgorban AM, Al-Askar AA, Sholkamy EN, Ameen F, Maniah K. Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections. MICROMACHINES 2023; 14:209. [PMID: 36677271 PMCID: PMC9865458 DOI: 10.3390/mi14010209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
The high occurrence of mycological resistance to conventional antifungal agents results in significant illness and death rates among immunodeficient patients. In addition, the underprivileged therapeutic results of conventional antifungal agents, besides the potential toxicity resulting from long term therapy necessitate the fabrication of efficient antimicrobial combinations. Hence, the objective of the present investigation is to synthesize, characterize and investigate the anticandidal action of green zinc oxide nanoparticles (ZnO-NPs) formulated using Camellia sinensis leaf extract against three candidal pathogens. The eco-friendly synthesized ZnO-NPs were characterized utilizing different physicochemical methods and their anticandidal potency was tested utilizing a disk diffusion assay. In this setting, the size of the biofabricated ZnO-NPs was detected using transmission electron microscope (TEM) micrographs, recording an average particle size of 19.380 ± 2.14 nm. In addition, zeta potential analysis revealed that the ZnO-NPs surface charge was -4.72 mV. The biogenic ZnO-NPs reveal the highest anticandidal activity against the C. tropicalis strain, demonstrating relative suppressive zones measured at 35.16 ± 0.13 and 37.87 ± 0.24 mm in diameter for ZnO-NPs concentrations of 50 and 100 μg/disk, respectively. Excitingly, Candida glabrata showed a high susceptibility to the biofabricated ZnO nanomaterials at both ZnO-NPs' concentrations (50 and 100 μg/disk) compared to the control. Moreover, the biosynthesized ZnO-NPs revealed potential synergistic effectiveness with nystatin and terbinafine antifungal agents against the concerned strains. The maximum synergistic efficiency was noticed against the C. glabrata strain, demonstrating relative synergistic percentages of 23.02 and 45.9%, respectively. The biogenic ZnO-NPs revealed no hemolytic activity against human erythrocytes revealing their biosafety and hemocompatibility. Finally, the high anticandidal effectiveness of biogenic ZnO-NPs against the concerned candidal pathogens, as well as potential synergistic patterns with conventional antifungal agents such as nystatin and terbinafine, emphasize the prospective application of these combinations for the fabrication of biocompatible and highly efficient antifungal agents.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
25
|
Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J Fungi (Basel) 2023; 9:jof9010080. [PMID: 36675901 PMCID: PMC9862255 DOI: 10.3390/jof9010080] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Candida parapsilosis is the second most common Candida species isolated in Asia, Southern Europe, and Latin America and is often involved in invasive infections that seriously impact human health. This pathogen is part of the psilosis complex, which also includes Candida orthopsilosis and Candida metapsilosis. C. parapsilosis infections are particularly prevalent among neonates with low birth weights, individuals who are immunocompromised, and patients who require prolonged use of a central venous catheter or other indwelling devices, whose surfaces C. parapsilosis exhibits an enhanced capacity to adhere to and form biofilms. Despite this well-acknowledged prevalence, the biology of C. parapsilosis has not been as extensively explored as that of Candida albicans. In this paper, we describe the molecular mechanistic pathways of virulence in C. parapsilosis and show how they differ from those of C. albicans. We also describe the mode of action of antifungal drugs used for the treatment of Candida infections, namely, polyenes, echinocandins, and azoles, as well as the resistance mechanisms developed by C. parapsilosis to overcome them. Finally, we stress the importance of the ongoing search for species-specific features that may aid the development of effective control strategies and thus reduce the burden on patients and healthcare costs.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Correspondence: ; Tel./Fax: +351-225513662
| | - Isabel M. Miranda
- Cardiovascular Research & Development Centre—UnIC@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Acácio G. Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
26
|
Takano T, Kudo H, Eguchi S, Matsumoto A, Oka K, Yamasaki Y, Takahashi M, Koshikawa T, Takemura H, Yamagishi Y, Mikamo H, Kunishima H. Inhibitory effects of vaginal Lactobacilli on C andida albicans growth, hyphal formation, biofilm development, and epithelial cell adhesion. Front Cell Infect Microbiol 2023; 13:1113401. [PMID: 37201113 PMCID: PMC10188118 DOI: 10.3389/fcimb.2023.1113401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Antifungal agents are not always efficient in resolving vulvovaginal candidiasis (VVC), a common genital infection caused by the overgrowth of Candida spp., including Candida albicans, or in preventing recurrent infections. Although lactobacilli (which are dominant microorganisms constituting healthy human vaginal microbiota) are important barriers against VVC, the Lactobacillus metabolite concentration needed to suppress VVC is unknown. Methods We quantitatively evaluated Lactobacillus metabolite concentrations to determine their effect on Candida spp., including 27 vaginal strains of Lactobacillus crispatus, L. jensenii, L. gasseri, Lacticaseibacillus rhamnosus, and Limosilactobacillus vaginalis, with inhibitory abilities against biofilms of C. albicans clinical isolates. Results Lactobacillus culture supernatants suppressed viable fungi by approximately 24%-92% relative to preformed C. albicans biofilms; however, their suppression differed among strains and not species. A moderate negative correlation was found between Lactobacillus lactate production and biofilm formation, but no correlation was observed between hydrogen peroxide production and biofilm formation. Both lactate and hydrogen peroxide were required to suppress C. albicans planktonic cell growth. Lactobacillus strains that significantly inhibited biofilm formation in culture supernatant also inhibited C. albicans adhesion to epithelial cells in an actual live bacterial adhesion competition test. Discussion Healthy human microflora and their metabolites may play important roles in the development of new antifungal agent against C. albicans-induced VVC.
Collapse
Affiliation(s)
- Tomonori Takano
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Hayami Kudo
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Shuhei Eguchi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Asami Matsumoto
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Kentaro Oka
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Yukitaka Yamasaki
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Motomichi Takahashi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Clinical Infectious Diseases, Kochi Medical School, Nankoku-shi, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
- *Correspondence: Hiroyuki Kunishima,
| |
Collapse
|
27
|
Sharma M, Chakrabarti A. Candidiasis and Other Emerging Yeasts. CURRENT FUNGAL INFECTION REPORTS 2023; 17:15-24. [PMID: 36741271 PMCID: PMC9886541 DOI: 10.1007/s12281-023-00455-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/01/2023]
Abstract
Purpose of Review The review presents a comprehensive and updated information on the contemporary status of invasive candidiasis (IC), other emerging yeast infections, and the challenges they present in terms of at-risk population, specific virulence attributes, and antifungal susceptibility profile. Recent Findings With the advancement in medical field, there has been parallel expansion of vulnerable populations over the past two decades. This had led to the emergence of a variety of rare yeasts in healthcare settings, both Candida and non-Candida yeast causing sporadic cases and outbreaks. The advancements in diagnostic modalities have enabled accurate identification of rare Candida species and non-Candida yeast (NCY) of clinical importance. Their distribution and susceptibility profile vary across different geographical regions, thus necessitating surveillance of local epidemiology of these infections to improve patient outcomes. Summary The challenges in management of IC have been complicated with emergence of newer species and resistance traits. C. tropicalis has already overtaken C. albicans in many Asian ICUs, while C. auris is rising rapidly worldwide. Recent genomic research has reclassified several yeasts into newer genera, and an updated version of MALDI-TOF MS or ITS sequencing is necessary for accurate identification. Having a knowledge of the differences in predisposing factors, epidemiology and susceptibility profile of already established pathogenic yeasts, as well as new emerging yeasts, are imperative for better patient management.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Bilaspur, India
| | | |
Collapse
|
28
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
29
|
Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules 2022; 27:molecules27238558. [PMID: 36500650 PMCID: PMC9738730 DOI: 10.3390/molecules27238558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.
Collapse
|
30
|
Activity of Novel Ultrashort Cyclic Lipopeptides against Biofilm of Candida albicans Isolated from VVC in the Ex Vivo Animal Vaginal Model and BioFlux Biofilm Model-A Pilot Study. Int J Mol Sci 2022; 23:ijms232214453. [PMID: 36430935 PMCID: PMC9694474 DOI: 10.3390/ijms232214453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness-which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro-the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy-a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.
Collapse
|