1
|
Ashique S, Mishra N, Garg A, Kumar N, Khan Z, Mohanto S, Chellappan DK, Farid A, Taghizadeh-Hesary F. A Critical Review on the Role of Probiotics in Lung Cancer Biology and Prognosis. Arch Bronconeumol 2024; 60 Suppl 2:S46-S58. [PMID: 38755052 DOI: 10.1016/j.arbres.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, MP 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ma Q, Li X, Jiang H, Fu X, You L, You F, Ren Y. Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. Crit Rev Microbiol 2024; 50:631-652. [PMID: 37694585 DOI: 10.1080/1040841x.2023.2247493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The oral cavity contains a site-specific microbiota that interacts with host cells to regulate many physiological processes in the human body. Emerging evidence has suggested that changes in the oral microbiota can increase the risk of lung cancer (LC), and the oral microbiota is also altered in patients with LC. Human and animal studies have shown that oral microecological disorders and/or specific oral bacteria may play an active role in the occurrence and development of LC through direct and/or indirect mechanisms. These studies support the potential of oral microbiota in the clinical treatment of LC. Oral microbiota may therefore be used in the prevention and treatment of LC and to improve the side effects of anticancer therapy by regulating the balance of the oral microbiome. Specific oral microbiota in LC may also be used as screening or predictive biomarkers. This review summarizes the main findings in research on oral microbiome-related LC and discusses current challenges and future research directions.
Collapse
Affiliation(s)
- Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
3
|
Xie Y, Huang C, Zhou X, Wu H, Li A, Zhang X. CD147 TagSNP is associated with the vulnerability to lung cancer in the Chinese population: a case-control study. Discov Oncol 2024; 15:281. [PMID: 39007938 PMCID: PMC11250716 DOI: 10.1007/s12672-024-01155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Lung cancer, with its high morbidity and mortality, presents a major significant public health challenge. CD147, linked to cancer progression and metastasis, is a promising therapeutic target, including for lung cancer. The genetic variation may influence the expression of the gene and consequently the risk of lung cancer. This study aims to investigate single nucleotide polymorphisms (SNPs) in CD147 to understand their association with the risk of developing lung cancer in the Han Chinese population. METHODS A hospital-based case-control investigation was conducted, enrolling 700 lung cancer patients and 700 cancer-free controls. TagSNPs were selected using Haploview v4.2, and genotype data from the 1000 Genomes Project database were utilized. The selected SNPs (rs28992491, rs67945626, and rs79361899) within the CD147 gene were evaluated using the improved multiple ligation detection reaction method. Statistical analysis included chi-square tests, logistic regression models, and interaction analyses. RESULTS Baseline characteristics of the study population showed no significant differences in gender distribution between cases and controls, but there was a notable difference in smoking rates. No significant associations were found between the three TagSNPs and lung cancer susceptibility in the codominant model. However, stratification analyses revealed interesting findings. Among females, the rs79361899 AA/AG genotype was associated with an increased risk of lung cancer. In individuals aged ≥ 65 years old, the rs28992491 GG and rs79361899 AA genotypes were linked to a higher susceptibility. Furthermore, an interaction analysis demonstrated significant genotype × gender interactions in the rs79361899 recessive model, indicating an increased lung cancer risk in female carriers of the heterozygous or homozygous polymorphic genotype. CONCLUSIONS CD147 polymorphisms play an important role in lung cancer development, particularly in specific subgroup of age and gender. These findings highlight the significance of incorporating genetic variations and their interactions with demographic factors in comprehending the intricate etiology of lung cancer.
Collapse
Affiliation(s)
- Yuning Xie
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Chu Huang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianlei Zhou
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China.
- College of Life Science, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
4
|
Xu Y, Tan X, Yang Q, Fang Z, Chen W. Akkermansia muciniphila outer membrane protein regulates recruitment of CD8 + T cells in lung adenocarcinoma and through JAK-STAT signalling pathway. Microb Biotechnol 2024; 17:e14522. [PMID: 39016683 PMCID: PMC11253302 DOI: 10.1111/1751-7915.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
As a Gram-negative anaerobic bacterium, Akkermansia muciniphila (AKK) participates in the immune response in many cancers. Our study focused on the factors and molecular mechanisms of AKK affecting immune escape in lung adenocarcinoma (LUAD). We cultured AKK bacteria, prepared AKK outer membrane protein Amuc_1100 and constructed a subcutaneous graft tumour mouse model. A549, NCI-H1395 cells and mice were respectively treated with inactivated AKK, Amuc_1100, Ruxolitinib (JAK inhibitor) and RO8191 (JAK activator). CD8+ T cells that penetrated the membrane were counted in the Transwell assay. The toxicity of CD8+ T cells was evaluated by lactate dehydrogenase assay. Western blot was applied to determine JAK/STAT-related protein and PD-L1 expression, whilst CCL5, granzyme B and INF-γ expression were assessed through enzyme-linked immunosorbent assay (ELISA). The proportion of tumour-infiltrating CD8+ T cells and the levels of granzyme B and INF-γ were determined by flow cytometry. AKK markedly accelerated A549 and NCI-H1395 recruiting CD8+ T cells and enhanced CD8+ T cell toxicity. Amuc_1100 purified from AKK exerted the same promoting effects. Besides, Amuc_1100 dramatically suppressed PD-L1, p-STAT and p-JAK expression and enhanced CCL5, granzyme B and INF-γ expression. Treatment with Ruxolitinib accelerated A549 and NCI-H1395 cells recruiting CD8+ T cells, enhanced CD8+ T cell toxicity, CCL5, granzyme B and INF-γ expression, and inhibited PD-L1 expression. In contrast, the RO8191 treatment slowed down the changes induced by Amuc_1100. Animal experiments showed that Amuc_1100 was found to increase the number of tumour-infiltrating CD8+ T cells, increase the levels of granzyme B and INF-γ and significantly inhibit the expression of PD-L1, p-STAT and p-JAK, which exerted an antitumour effect in vivo. In conclusion, through inhibiting the JAK/STAT signalling pathway, AKK outer membrane protein facilitated the recruitment of CD8+ T cells in LUAD and suppressed the immune escape of cells.
Collapse
Affiliation(s)
- Yufen Xu
- Department of OncologyThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Xiaoli Tan
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Qi Yang
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Zhixian Fang
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Wenyu Chen
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| |
Collapse
|
5
|
Del Giudice T, Staropoli N, Tassone P, Tagliaferri P, Barbieri V. Gut Microbiota Are a Novel Source of Biomarkers for Immunotherapy in Non-Small-Cell Lung Cancer (NSCLC). Cancers (Basel) 2024; 16:1806. [PMID: 38791885 PMCID: PMC11120070 DOI: 10.3390/cancers16101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the recent availability of immune checkpoint inhibitors, not all patients affected by Non-Small-Cell Lung Cancer (NSCLC) benefit from immunotherapy. The reason for this variability relies on a variety of factors which may allow for the identification of novel biomarkers. Presently, a variety of biomarkers are under investigation, including the PD1/PDL1 axis, the tumor mutational burden, and the microbiota. The latter is made by all the bacteria and other microorganisms hosted in our body. The gut microbiota is the most represented and has been involved in different physiological and pathological events, including cancer. In this light, it appears that all conditions modifying the gut microbiota can influence cancer, its treatment, and its treatment-related toxicities. The aim of this review is to analyze all the conditions influencing the gut microbiota and, therefore, affecting the response to immunotherapy, iRAEs, and their management in NSCLC patients. The investigation of the landscape of these biological events can allow for novel insights into the optimal management of NSCLC immunotherapy.
Collapse
Affiliation(s)
- Teresa Del Giudice
- Department of Hematology-Oncology, Azienda Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (N.S.); (P.T.); (P.T.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (N.S.); (P.T.); (P.T.)
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (N.S.); (P.T.); (P.T.)
| | - Vito Barbieri
- Department of Hematology-Oncology, Azienda Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
6
|
Zhou S, Zhu W, Guo H, Nie Y, Sun J, Liu P, Zeng Y. Microbes for lung cancer detection: feasibility and limitations. Front Oncol 2024; 14:1361879. [PMID: 38779090 PMCID: PMC11109454 DOI: 10.3389/fonc.2024.1361879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
As the second most common cancer in the world, the development of lung cancer is closely related to factors such as heredity, environmental exposure, and lung microenvironment, etc. Early screening and diagnosis of lung cancer can be helpful for the treatment of patients. Currently, CT screening and histopathologic biopsy are widely used in the clinical detection of lung cancer, but they have many disadvantages such as false positives and invasive operations. Microbes are another genome of the human body, which has recently been shown to be closely related to chronic inflammatory, metabolic processes in the host. At the same time, they are important players in cancer development, progression, treatment, and prognosis. The use of microbes for cancer therapy has been extensively studied, however, the diagnostic role of microbes is still unclear. This review aims to summarize recent research on using microbes for lung cancer detection and present the current shortcomings of microbes in collection and detection. Finally, it also looks ahead to the clinical benefits that may accrue to patients in the future about screening and early detection.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hehua Guo
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Nie
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Yang W, Fan X, Li W, Chen Y. Causal influence of gut microbiota on small cell lung cancer: a Mendelian randomization study. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13764. [PMID: 38685730 PMCID: PMC11058399 DOI: 10.1111/crj.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have hinted at a significant link between lung cancer and the gut microbiome, yet their causal relationship remains to be elucidated. METHODS GWAS data for small cell lung cancer (SCLC) was extracted from the FinnGen consortium, comprising 179 cases and 218 613 controls. Genetic variation data for 211 gut microbiota were obtained as instrumental variables from MiBioGen. Mendelian randomization (MR) was employed to determine the causal relationship between the two, with inverse variance weighting (IVW) being the primary method for causal analysis. The MR results were validated through several sensitivity analyses. RESULTS The study identified a protective effect against SCLC for the genus Eubacterium ruminantium group (OR = 0.413, 95% CI: 0.223-0.767, p = 0.00513), genus Barnesiella (OR = 0.208, 95% CI: 0.0640-0.678, p = 0.00919), family Lachnospiraceae (OR = 0.319, 95% CI: 0.107-0.948, p = 0.03979), and genus Butyricimonas (OR = 0.376, 95% CI: 0.144-0.984, p = 0.04634). Conversely, genus Intestinibacter (OR = 3.214, 95% CI: 1.303-7.926, p = 0.01125), genus Eubacterium oxidoreducens group (OR = 3.391, 95% CI: 1.215-9.467, p = 0.01973), genus Bilophila (OR = 3.547, 95% CI: 1.106-11.371, p = 0.03315), and order Bacillales (OR = 1.860, 95% CI: 1.034-3.347, p = 0.03842) were found to potentially promote the onset of SCLC. CONCLUSION We identified potential causal relationships between certain gut microbiota and SCLC, offering new insights into microbiome-mediated mechanisms of SCLC pathogenesis, resistance, mutations, and more.
Collapse
Affiliation(s)
- Wenjing Yang
- General Hospital of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xinxia Fan
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Wangshu Li
- Dalian Women and Children's Medical Center (Group)DalianLiaoningChina
| | - Yan Chen
- Department of Respiratory and Critical Care MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
8
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
9
|
Liu W, Pi Z, Wang X, Shang C, Song C, Wang R, He Z, Zhang X, Wan Y, Mao W. Microbiome and lung cancer: carcinogenic mechanisms, early cancer diagnosis, and promising microbial therapies. Crit Rev Oncol Hematol 2024; 196:104322. [PMID: 38460928 DOI: 10.1016/j.critrevonc.2024.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Microbiomes in the lung, gut, and oral cavity are correlated with lung cancer initiation and progression. While correlations have been preliminarily established in earlier studies, delving into microbe-mediated carcinogenic mechanisms will extend our understanding from correlation to causation. Building upon the causative relationships between microbiome and lung cancer, a novel concept of microbial biomarkers has emerged, mainly encompassing cancer-specific bacteria and circulating microbiome DNA. They might function as noninvasive liquid biopsy techniques for lung cancer early detection. Furthermore, potential microbial therapies have displayed initial efficacy in lung cancer treatment, providing multiple avenues for therapeutic intervention. Herein, we will discuss the molecular mechanisms and signaling pathways through which microbes influence lung cancer initiation and development. Additionally, we will summarize recent findings on microbial biomarkers as a member of tumor liquid biopsy techniques and provide an overview of the latest advances in various microbe-assisted/mediated therapeutic approaches for lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xiaokun Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenwei Shang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Yuan Wan
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| |
Collapse
|
10
|
LIU B. [Hypothesis of Genetic Diversity Selection in the Occurrence and Development of
Lung Cancer: Molecular Evolution and Clinical Significance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 26:943-949. [PMID: 38163980 PMCID: PMC10767663 DOI: 10.3779/j.issn.1009-3419.2023.101.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Indexed: 01/03/2024]
Abstract
So far, the monoclonal hypothesis of tumor occurrence and development cannot be justified. The genetic diversity selection hypothesis for the occurrence and development of lung cancer links Mendelian genetics with Darwin's theory of evolution, suggesting that the genetic diversity of tumor cell populations with polyclonal origins-monoclonal selection-subclonal expansion is the result of selection pressure. Normal cells acquire mutations in oncogenic driver genes and have a selective advantage over other cells, becoming tumor initiating cells; In the interaction with the tumor microenvironment (TME), the vast majority of initiating cells are recognized and killed by the human immune system. If immune escape occurs, the incidence of malignant tumors will greatly increase, and subclonal expansion, intratumour heterogeneity, etc. will occur. This article proposed the hypothesis of genetic diversity selection and analyzed its clinical significance.
.
Collapse
|
11
|
任 益, 马 琼, 李 芳, 曾 潇, 谭 施, 付 西, 郑 川, 由 凤, 李 雪. [Analysis of Salivary Microbiota Characteristics in Patients With Pulmonary Nodules: A Prospective Nonrandomized Concurrent Controlled Trial]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1208-1218. [PMID: 38162086 PMCID: PMC10752765 DOI: 10.12182/20231160103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 01/03/2024]
Abstract
Objective To uncover and identify the differences in salivary microbiota profiles and their potential roles between patients with pulmonary nodules (PN) and healthy controls, and to propose new candidate biomarkers for the early warning of PN. Methods 16S rRNA amplicon sequencing was performed with the saliva samples of 173 PN patients, or the PN group, and 40 health controls, or the HC group, to compare the characteristics, including diversity, community composition, differential species, and functional changes of salivary microbiota in the two groups. Random forest algorithm was used to identify salivary microbial markers of PN and their predictive value for PN was assessed by area under the curve (AUC). Finally, the biological functions and potential mechanisms of differentially-expressed genes in saliva samples were preliminarily investigated on the basis of predictive functional profiling of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Results The α diversity and β diversity of salivary microbiota in the PN group were higher than those in the HC group (P<0.05). Furthermore, there were significant differences in the community composition and the abundance of oral microorganisms between the PN and the HC groups (P<0.05). Random forest algorithm was applied to identify differential microbial species. Porphyromonas, Haemophilus, and Fusobacterium constituted the optimal marker sets (AUC=0.79, 95% confidence interval: 0.71-0.86), which can be used to effectively identify patients with PN. Bioinformatics analysis of the differentially-expressed genes revealed that patients with PN showed significant enrichment in protein/molecular functions involved in immune deficiency and redox homeostasis. Conclusion Changes in salivary microbiota are closely associated with PN and may induce the development of PN or malignant transformation of PN, which indicates the potential of salivary microbiota to be used as a new non-invasive humoral marker for the early diagnosis of PN.
Collapse
Affiliation(s)
- 益锋 任
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 成都中医药大学肿瘤研究所 (成都 610075)Cancer Institute, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 琼 马
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 芳 李
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 潇 曾
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 施言 谭
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 西 付
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 川 郑
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 凤鸣 由
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 成都中医药大学肿瘤研究所 (成都 610075)Cancer Institute, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 雪珂 李
- 成都中医药大学附属医院 代谢性疾病中医药调控四川省重点实验室 (成都 610075)Sichuan Provincial Key Laboratory of TCM Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 成都中医药大学肿瘤研究所 (成都 610075)Cancer Institute, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
12
|
Li Q. Bacterial infection and microbiota in carcinogenesis and tumor development. Front Cell Infect Microbiol 2023; 13:1294082. [PMID: 38035341 PMCID: PMC10684967 DOI: 10.3389/fcimb.2023.1294082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Microbiota colonize exposed body tissues (e.g., gastrointestinal tract, skin, lungs, female genital tract, and urogenital tracts) and unexposed sites (e.g., breast). Persistent bacterial infection in the host lead to the development of multiple disease. They are implicated in the pathogenesis of various complex diseases, including diabetes, atherosclerosis, autoimmune diseases, Alzheimer's disease, and malignant diseases. Amounting studies have demonstrated the role of bacterial infection in carcinogenesis. The study of microbiota in tumorigenesis is primarily focused on lung cancer, colorectal cancer (CRC), breast cancer, gastric cancer, and gynecologic tumors, and so on. Infection of Helicobacter pylori in gastric cancer carcinogenesis is recognized as class I carcinogen by the World Health Organization (WHO) decades ago. The role of Fusobacterium nucleatum in the development of colorectal cancer is extensively investigated. Variable bacteria have been cultured from the tumor tissues. The identification of microbiota in multiple tumor tissues reveal that bacterial infection and microbiota are associated with tumor development. The microbiota affects multiple aspects of carcinogenesis and tumor development, including favoring epithelial cells proliferation, establishing inflammatory microenvironment, promoting metastasis, and causing resistance to therapy. On the other hand, microbiota can shape a tumor surveillance environment by enhancing cell activity, and sensitize the tumor cells to immune therapy. In the present review, the roles of microbiota in multiple malignancies are summarized, and unraveling the mechanisms of host-microbiota interactions can contribute to a better understanding of the interaction between microbiota and host cells, also the development of potential anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Fang G, Wang S, Chen Q, Luo H, Lian X, Shi D. Time-restricted feeding affects the fecal microbiome metabolome and its diurnal oscillations in lung cancer mice. Neoplasia 2023; 45:100943. [PMID: 37852131 PMCID: PMC10590998 DOI: 10.1016/j.neo.2023.100943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The homeostasis of the gut microbiota and circadian rhythm is critical to host health, and both are inextricably intertwined with lung cancer. Although time-restricted feeding (TRF) can maintain circadian synchronization and improve metabolic disorders, the effects of TRF on the fecal microbiome, metabolome and their diurnal oscillations in lung cancer have not been discussed. We performed 16S rRNA sequencing and untargeted metabonomic sequencing of the feces prepared from models of tumor-bearing BALB/c nude mice and urethane-induced lung cancer. We demonstrated for the first time that TRF significantly delayed the growth of lung tumors. Moreover, TRF altered the abundances of the fecal microbiome, metabolome and circadian clocks, as well as their rhythmicity, in lung cancer models of tumor-bearing BALB/c nude mice and/or urethane-induced lung cancer C57BL/6J mice. The results of fecal microbiota transplantation proved that the antitumor effects of TRF occur by regulating the fecal microbiota. Notably, Lactobacillus and Bacillus were increased upon TRF and were correlated with most differential metabolites. Pathway enrichment analysis of metabolites revealed that TRF mainly affected immune and inflammatory processes, which might further explain how TRF exerted its anticancer benefits. These findings underscore the possibility that the fecal microbiome/metabolome regulates lung cancer following a TRF paradigm.
Collapse
Affiliation(s)
- Gaofeng Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Shengquan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Qianyao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Han Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
14
|
Yi J, Xiang J, Tang J. Exploring the microbiome: Uncovering the link with lung cancer and implications for diagnosis and treatment. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:161-170. [PMID: 39171127 PMCID: PMC11332872 DOI: 10.1016/j.pccm.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Indexed: 08/23/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Tobacco smoking and air pollution are believed to be responsible for more than 90% of lung cancers. Respiratory pathogens are also known to be associated with the initiation and development of lung cancer. Despite the fact that the bacterial biomass in the lungs is lower than that in the intestinal tract, emerging evidence indicates that the lung is colonized by a diverse array of microbes. However, there is limited knowledge regarding the role of dysbiosis of the lung microbiota in the progression of lung cancer. In this review, we summarize the current information about the relationship between the microbiome and lung cancer. The objective is to provide an overview of the core composition of the microbiota in lung cancer as well as the role of specific dysbiosis of the lung microbiota in the progression of lung cancer and treatment of the disease.
Collapse
Affiliation(s)
- Junqi Yi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410028, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
15
|
Pindling S, Klugman M, Lan Q, Hosgood HD. Narrative review: respiratory tract microbiome and never smoking lung cancer. J Thorac Dis 2023; 15:4522-4529. [PMID: 37691669 PMCID: PMC10482636 DOI: 10.21037/jtd-22-885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/11/2022] [Indexed: 09/12/2023]
Abstract
Background and Objective The lung microbiome was previously thought to be a sterile environment where only gaseous exchange takes place, but recent studies have shown the presence of microbiota in the lung. This review investigates the current literature on the effects of an environmental driven dysbiosis on the healthy oral and respiratory microbiome and its relationship to lung cancer risk in never-smokers. Methods An online electronic search was performed on PubMed of all English-language literature using combinations of the following keywords: "lung cancer", "dysbiosis", "non-smokers", "oral microbiome", and "respiratory microbiome". All population-based studies reporting results on oral and/or respiratory microbiome in adults were considered for our narrative review. Key Content and Findings Metagenomic analyses have been performed on isolated samples from healthy participants and compared to samples from those with lung cancer. Research shows that a decrease in alpha diversity of microbes in the oral microbiome is associated with increased risk of lung cancer, along with differences in beta diversity in the sputum of lung cancer cases and healthy controls. Further, several studies have observed that significant changes in the abundance of genera such as increased abundance of Lactobacillales, Bacilli, and Firmicutes associated with an increased lung cancer risk among participants with exposure to certain household solid fuels. Conclusions These findings suggest potential carcinogenic processes such as increased inflammation associated with changes in flora. Additionally, studies showed that increase in certain taxa such as Bacteroides and Spirochetes might have a protective effect on lung cancer risk. The review also provides insight into how understanding the microbial changes can be beneficial for lung cancer treatment and disease-free survival. Larger studies in different populations need to be performed to strengthen the current associations between microbial diversity and lung cancer risk.
Collapse
Affiliation(s)
- Sydney Pindling
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Madelyn Klugman
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Hogea P, Tudorache E, Fira-Mladinescu O, Pescaru C, Manolescu D, Bratosin F, Rosca O, Kakarla M, Horhat FG, Oancea C. Bronchial Microbiota and the Stress Associated with Invasive Diagnostic Tests in Lung Cancer vs. Benign Pulmonary Diseases: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:2419. [PMID: 37510163 PMCID: PMC10378448 DOI: 10.3390/diagnostics13142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. This study aimed to compare the bronchial microbiota of patients with lung cancer and patients with benign pulmonary diseases undergoing bronchoscopy, and to assess the stress levels associated with invasive diagnostic lung tests. A cross-sectional study was conducted at the "Victor Babes" Hospital for Infectious Diseases and Pulmonology in Timisoara, Romania. A total of 33 patients with histologically diagnosed bronchopulmonary cancer and 33 control patients with benign lung pathologies underwent bronchoscopy. Bronchial microbiota was analyzed by multiplex PCR, culture media, and cytology. Anxiety and depression levels were assessed using the ECOG performance status scale, Karnofsky scale, GAD-7, PHQ-9, and HADS questionnaires. There were no significant differences in the presence of common microbial species between the two groups, except for Acinetobacter spp. Which was identified in 15.2% of patients with lung cancer and 0.0% in the control group, Candida spp. Was more prevalent in the benign group (24.2% vs. 6.1%), and the Parainfluenza virus was detected only in the malignant group (21.1% vs. 0.0%). Cytology results showed a higher prevalence of atypical and tumoral cells in the malignant group (39.4% and 30.0%, respectively), as well as higher lymphocyte levels in the benign group (69.7% vs. 24.2%). Patients with lung cancer had significantly lower performance status on the ECOG scale (2.34 vs. 1.92), lower Karnofsky scores (71.36 vs. 79.43), and higher GAD-7 and PHQ-9 scores at the initial evaluation compared to the benign group. At the 90-day follow-up, ECOG and Karnofsky scores remained significantly different from the initial evaluation, but only GAD-7 scores showed a significant difference between the two groups. There were differences in the bronchial microbiota between patients with lung cancer and benign pulmonary diseases, with a higher prevalence of Candida spp. in the benign group and exclusive detection of Acinetobacter spp. and Parainfluenza virus in the malignant group. Patients with lung cancer exhibited higher stress levels, more severe anxiety, and depression symptoms, which persisted during follow-up. Further research is needed to understand the role of bronchial microbiota in lung cancer and the impact of stress on patient outcomes.
Collapse
Affiliation(s)
- Patricia Hogea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ovidiu Fira-Mladinescu
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Camelia Pescaru
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Diana Manolescu
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Discipline of Radiology, Faculty of General Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Discipline of Infectious Diseases, Faculty of General Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ovidiu Rosca
- Discipline of Infectious Diseases, Faculty of General Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Manaswini Kakarla
- Kamineni Institute of Medical Sciences, School of Medicine, Hyderabad 500001, India
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
17
|
Zhuo Q, Zhang X, Zhang K, Chen C, Huang Z, Xu Y. The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment. Expert Rev Anti Infect Ther 2023; 21:1355-1364. [PMID: 37970631 DOI: 10.1080/14787210.2023.2283036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.
Collapse
Affiliation(s)
- Qiqi Zhuo
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyi Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kehong Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chan Chen
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Huang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Manzano C, Fuentes-Martín Á, Zuil M, Gil Barturen M, González J, Cilleruelo-Ramos Á. [Questions and Answers in Lung Cancer]. OPEN RESPIRATORY ARCHIVES 2023; 5:100264. [PMID: 37727151 PMCID: PMC10505677 DOI: 10.1016/j.opresp.2023.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Over the past 2 decades, scientific evidence has strongly supported the use of low-radiation dose chest computed tomography (CT) as a screening technique for lung cancer. This approach has resulted in a significant reduction in mortality rates by enabling the detection of early-stage lung cancer amenable to potentially curative treatments. Regarding diagnosis, there are also novel methods under study, such as liquid biopsy, identification of the pulmonary microbiome, and the use of artificial intelligence techniques, which will play a key role in the near future. At present, there is a growing trend towards less invasive surgical procedures, such as segmentectomy, as an alternative to lobectomy. This procedure is based on 2 recent clinical trials conducted on peripheral tumors measuring less than 2 cm. Although these approaches have demonstrated comparable survival rates, there remains controversy due to uncertainties surrounding recurrence rates and functional capacity preservation. With regard to adjuvant therapy, immunotherapy, either as a monotherapy or in conjunction with chemotherapy, has shown encouraging results in resectable stages of locally advanced lung cancer, demonstrating complete pathologic responses and improved overall survival.After surgery treatment, despite the lack of solid evidence for long-term follow-up of these patients, clinical practice recommends periodic CT scans during the early years.In conclusion, there have been significant advances in lung cancer that have improved diagnostic techniques using new technologies and screening programs. Furthermore, the treatment of lung cancer is increasingly personalized, resulting in an improvement in the survival of patients.
Collapse
Affiliation(s)
- Carlos Manzano
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lérida, España
| | - Álvaro Fuentes-Martín
- Servicio de Cirugía Torácica, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - Maria Zuil
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lérida, España
| | - Mariana Gil Barturen
- Servicio de Cirugía Torácica, Hospital Universitario Puerta de Hierro, Majadahonda (Madrid), España
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lérida, España
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, España
| | - Ángel Cilleruelo-Ramos
- Servicio de Cirugía Torácica, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
19
|
Takata Y, Yang JJ, Yu D, Smith-Warner SA, Blot WJ, White E, Robien K, Prizment A, Wu K, Sawada N, Lan Q, Park Y, Gao YT, Cai Q, Song M, Zhang X, Pan K, Agudo A, Panico S, Liao LM, Tsugane S, Chlebowski RT, Nøst TH, Schulze MB, Johannson M, Zheng W, Shu XO. Calcium Intake and Lung Cancer Risk: A Pooled Analysis of 12 Prospective Cohort Studies. J Nutr 2023; 153:2051-2060. [PMID: 36907443 PMCID: PMC10447606 DOI: 10.1016/j.tjnut.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Previous studies on calcium intake and lung cancer risk reported inconsistent associations, possibly due to the differences in intake amounts and contributing sources of calcium and smoking prevalence. OBJECTIVES We investigated the associations of lung cancer risk with intake of calcium from foods and/or supplements and major calcium-rich foods in 12 studies. METHODS Data from 12 prospective cohort studies conducted in the United States, Europe, and Asia were pooled and harmonized. We applied the DRI to categorize calcium intake based on the recommendations and quintile distribution to categorize calcium-rich food intake. We ran multivariable Cox regression by each cohort and pooled risk estimates to compute overall HR (95% CI). RESULTS Among 1,624,244 adult men and women, 21,513 incident lung cancer cases were ascertained during a mean follow-up of 9.9 y. Overall, the dietary calcium intake was not significantly associated with lung cancer risk; the HRs (95% CI) were 1.08 (0.98-1.18) for higher (>1.5 RDA) and 1.01 (0.95-1.07) for lower intake (<0.5 RDA) comparing with recommended intake (EAR to RDA). Milk and soy food intake were positively or inversely associated with lung cancer risk [HR (95% CI) = 1.07 (1.02-1.12) and 0.92 (0.84-1.00)], respectively. The positive association with milk intake was significant only in European and North American studies (P-interaction for region = 0.04). No significant association was observed for calcium supplements. CONCLUSIONS In this largest prospective investigation, overall, calcium intake was not associated with risk of lung cancer, but milk intake was associated with a higher risk. Our findings underscore the importance of considering food sources of calcium in studies of calcium intake.
Collapse
Affiliation(s)
- Yumie Takata
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States.
| | - Jae Jeong Yang
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Danxia Yu
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - William J Blot
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kimberly Robien
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Anna Prizment
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Yikyung Park
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Yu-Tang Gao
- Department of Epidemiology, Cancer Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kathy Pan
- Department of Hematology/Oncology, Southern California Kaiser Permanente, Downey, CA, United States
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Salvatore Panico
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Rowan T Chlebowski
- Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mattias Johannson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyons, France
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Sun Y, Liu Y, Li J, Tan Y, An T, Zhuo M, Pan Z, Ma M, Jia B, Zhang H, Wang Z, Yang R, Bi Y. Characterization of Lung and Oral Microbiomes in Lung Cancer Patients Using Culturomics and 16S rRNA Gene Sequencing. Microbiol Spectr 2023; 11:e0031423. [PMID: 37092999 PMCID: PMC10269771 DOI: 10.1128/spectrum.00314-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Recently, microbiota dysbiosis in lung cancer has attracted immense attention. Studies on lung microbes are mostly based on sequencing, which has left the potentially functional bacteria with extremely low abundance uncovered. In this study, we characterized and compared the lung and oral cavity microbiotas using culturomics and 16S rRNA gene sequencing. Of the 198 bacteria identified at the species level from bronchoalveolar lavage fluid (BALF) samples, Firmicutes was predominant (39.90%). Twenty bacterial species isolated from BALF samples were present in at least half of the patients and were also highly abundant in oral samples. Of all isolated strains, Streptococcus and Veillonella were highly dominant. The abundance of Prevotella and Veillonella decreased from the oral cavity to the lung, whereas that of Pseudomonas increased. Linear discriminant analysis effect size demonstrated that Prevotella was more abundant in the healthy samples than in the cancerous ones, which is in accordance with the isolation of Prevotella oralis only from the healthy group using culturomics. Moreover, Gemella sanguinis and Streptococcus intermedius were isolated only from the non-small-cell lung cancer (NSCLC) group, and 16S rRNA gene sequencing showed that they were higher in the NSCLC than in the small-cell lung cancer group. Furthermore, while Bacillus and Castellaniella were enriched in lung adenocarcinoma, Brucella was enriched in lung squamous cell carcinoma. Overall, alterations were observed in the microbial community of patients with lung cancer, whose diversity might be site and pathology dependent. Using culturomics and 16S rRNA gene amplicon sequencing, this study has provided insights into pulmonary and oral microbiota alterations in patients with lung cancer. IMPORTANCE The relationship between lung microbiota and cancer has been explored based on DNA sequencing; however, culture-dependent approaches are indispensable for further studies on the lung microbiota. In this study, we applied a comprehensive approach combining culturomics and 16S rRNA gene amplicon sequencing to detect members of the microbiotas in saliva and BALF samples from patients with unilateral lobar masses. We found alterations in the microbial community of patients with lung cancer, whose diversity might be site and pathology dependent. These features may be potential bacterial biomarkers and new targets for lung cancer diagnosis and treatment. In addition, a lung and oral microbial biobank from lung cancer patients was established, which represents a useful resource for studies of host-microbe interactions.
Collapse
Affiliation(s)
- Yifan Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuejiao Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianjie Li
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongtong An
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Minglei Zhuo
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Menglei Ma
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Bo Jia
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Hongwei Zhang
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Ziping Wang
- Department of Thoracic Oncology, Peking University Cancer Hospital, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
21
|
Wang X, Hou L, Cui M, Liu J, Wang M, Xie J. The traditional Chinese medicine and non-small cell lung cancer: from a gut microbiome perspective. Front Cell Infect Microbiol 2023; 13:1151557. [PMID: 37180438 PMCID: PMC10167031 DOI: 10.3389/fcimb.2023.1151557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most serious diseases affecting human health today, and current research is focusing on gut flora. There is a correlation between intestinal flora imbalance and lung cancer, but the specific mechanism is not clear. Based on the "lung and large intestine being interior-exteriorly related" and the "lung-intestinal axis" theory. Here, based on the theoretical comparisons of Chinese and western medicine, we summarized the regulation of intestinal flora in NSCLC by active ingredients of traditional Chinese medicine and Chinese herbal compounds and their intervention effects, which is conducive to providing new strategies and ideas for clinical prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- Xuelin Wang
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi an, China
| | - Meng Cui
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Junnan Liu
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Mengzhou Wang
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Jianwu Xie
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| |
Collapse
|
22
|
Silva-Pilipich N, Covo-Vergara Á, Smerdou C. Local Delivery of Immunomodulatory Antibodies for Gastrointestinal Tumors. Cancers (Basel) 2023; 15:cancers15082352. [PMID: 37190279 DOI: 10.3390/cancers15082352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer therapy has experienced a breakthrough with the use of immune checkpoint inhibitors (ICIs) based on monoclonal antibodies (mAbs), which are able to unleash immune responses against tumors refractory to other therapies. Despite the great advancement that ICIs represent, most patients with gastrointestinal tumors have not benefited from this therapy. In addition, ICIs often induce adverse effects that are related to their systemic use. Local administration of ICIs in tumors could concentrate their effect in the malignant tissue and provide a higher safety profile. A new and attractive approach for local delivery of ICIs is the use of gene therapy vectors to express these blocking antibodies in tumor cells. Several vectors have been evaluated in preclinical models of gastrointestinal tumors to express ICIs against PD-1, PD-L1, and CTLA-4, among other immune checkpoints, with promising results. Vectors used in these settings include oncolytic viruses, self-replicating RNA vectors, and non-replicative viral and non-viral vectors. The use of viral vectors, especially when they have replication capacity, provides an additional adjuvant effect that has been shown to enhance antitumor responses. This review covers the most recent studies involving the use of gene therapy vectors to deliver ICIs to gastrointestinal tumors.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
| | - Ángela Covo-Vergara
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Cancer Center Clínica Universidad de Navarra (CCUN), 31008 Pamplona, Spain
| |
Collapse
|
23
|
Karvela A, Veloudiou OZ, Karachaliou A, Kloukina T, Gomatou G, Kotteas E. Lung microbiome: an emerging player in lung cancer pathogenesis and progression. Clin Transl Oncol 2023:10.1007/s12094-023-03139-z. [PMID: 36995519 DOI: 10.1007/s12094-023-03139-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/31/2023]
Abstract
The microbiome of the lungs, although until recently neglected, is now emerging as a potential contributor to chronic lung diseases, including cancer. Preclinical evidence suggests that the microbial burden of the lungs shapes the host immunity mechanisms and affects local antitumor immune responses. Studies of cohorts of patients with lung cancer reveal that different microbiome profiles are detected in patients with lung cancer compared to controls. In addition, an association between differential lung microbiome composition and distinct responses to immunotherapy has been suggested, yet, with limited data. Scarce evidence exists on the role of the lung microbiome in the development of metastases in the lungs. Interestingly, the lung microbiome is not isolated and interacts with the gut microbiome through a dynamic axis. Future research on the involvement of the lung microbiome in lung cancer pathogenesis and potential therapeutic implications is greatly anticipated.
Collapse
Affiliation(s)
- Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Theoni Kloukina
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece.
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| |
Collapse
|
24
|
Budu O, Banciu C, Pinzaru I, Sarău C, Lighezan D, Șoica C, Dehelean C, Drăghici G, Dolghi A, Prodea A, Mioc M. A Combination of Two Probiotics, Lactobacillus sporogenes and Clostridium butyricum, Inhibits Colon Cancer Development: An In Vitro Study. Microorganisms 2022; 10:microorganisms10091692. [PMID: 36144294 PMCID: PMC9506018 DOI: 10.3390/microorganisms10091692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer remains a leading cause of death worldwide and, even though several advances have been made in terms of specific treatment, the late-stage detection and the associated side effects of the conventional drugs sustain the search for better treatment alternatives. Probiotics are live microorganisms that have been proven to possess numerous health benefits for human hosts, including anticancer effects. In the present study, the in vitro effect of the association of two probiotic strains (PBT), Lactobacillus sporogenes and Clostridium butyricum, were tested against colon (HT-29 and HCT 116), lung (A549), and liver (HepG2) cancer cell lines, alone or in combination with 5-fluorouracil (5FU). Moreover, the underlying mechanism of PBT and PBT-5FU against the HT-29 cell line was evaluated using the Hoechst 33342 staining, revealing characteristic apoptotic modifications, such as chromatin condensation, nuclear fragmentation, and membrane blebbing. Furthermore, the increase in the expression of pro-apoptotic Bax, Bid, Bad, and Bak proteins and the inhibition of the anti-apoptotic Bcl-2 and Bcl-XL proteins were recorded. Collectively, these findings suggest that the two strains of probiotic bacteria, alone or in association with 5FU, induce apoptosis in colon cancer cells and may serve as a potential anticancer treatment.
Collapse
Affiliation(s)
- Oana Budu
- Department of Internal Medicine IV, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Iulia Pinzaru
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Correspondence: (I.P.); (C.S.); Tel.: +40-256-494-604
| | - Cristian Sarău
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Correspondence: (I.P.); (C.S.); Tel.: +40-256-494-604
| | - Daniel Lighezan
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Codruța Șoica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - George Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alina Dolghi
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|