1
|
Ahmed S, Hossain MA, Bristy SA, Ali MS, Rahman MH. Adopting Integrated Bioinformatics and Systems Biology Approaches to Pinpoint the COVID-19 Patients' Risk Factors That Uplift the Onset of Posttraumatic Stress Disorder. Bioinform Biol Insights 2024; 18:11779322241274958. [PMID: 39281421 PMCID: PMC11402063 DOI: 10.1177/11779322241274958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/23/2024] [Indexed: 09/18/2024] Open
Abstract
Owing to the recent emergence of COVID-19, there is a lack of published research and clinical recommendations for posttraumatic stress disorder (PTSD) risk factors in patients who contracted or received treatment for the virus. This research aims to identify potential molecular targets to inform therapeutic strategies for this patient population. RNA sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and PTSD (from the National Center for Biotechnology Information [NCBI]) were processed using the GREIN database. Protein-protein interaction (PPI) networks, pathway enrichment analyses, miRNA interactions, gene regulatory network (GRN) studies, and identification of linked drugs, chemicals, and diseases were conducted using STRING, DAVID, Enrichr, Metascape, ShinyGO, and NetworkAnalyst v3.0. Our analysis identified 15 potentially unique hub proteins within significantly enriched pathways, including PSMB9, MX1, HLA-DOB, HLA-DRA, IFIT3, OASL, RSAD2, and so on, filtered from a pool of 201 common differentially expressed genes (DEGs). Gene ontology (GO) terms and metabolic pathway analyses revealed the significance of the extracellular region, extracellular space, extracellular exosome, adaptive immune system, and interleukin (IL)-18 signaling pathways. In addition, we discovered several miRNAs (hsa-mir-124-3p, hsa-mir-146a-5p, hsa-mir-148b-3p, and hsa-mir-21-3p), transcription factors (TF) (WRNIP1, FOXC1, GATA2, CREB1, and RELA), a potentially repurposable drug carfilzomib and chemicals (tetrachlorodibenzodioxin, estradiol, arsenic trioxide, and valproic acid) that could regulate the expression levels of hub proteins at both the transcription and posttranscription stages. Our investigations have identified several potential therapeutic targets that elucidate the probability that victims of COVID-19 experience PTSD. However, they require further exploration through clinical and pharmacological studies to explain their efficacy in preventing PTSD in COVID-19 patients.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Sadia Afrin Bristy
- Bioinformatics and Biomedical Research Network of Bangladesh, Dhaka, Bangladesh
| | - Md Shahjahan Ali
- Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
2
|
Best LG, Erdei E, Haack K, Kent JW, Malloy KM, Newman DE, O’Leary M, O’Leary RA, Sun Q, Navas-Acien A, Franceschini N, Cole SA. Genetic variant rs1205 is associated with COVID-19 outcomes: The Strong Heart Study and Strong Heart Family Study. PLoS One 2024; 19:e0302464. [PMID: 38662664 PMCID: PMC11045144 DOI: 10.1371/journal.pone.0302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although COVID-19 infection has been associated with a number of clinical and environmental risk factors, host genetic variation has also been associated with the incidence and morbidity of infection. The CRP gene codes for a critical component of the innate immune system and CRP variants have been reported associated with infectious disease and vaccination outcomes. We investigated possible associations between COVID-19 outcome and a limited number of candidate gene variants including rs1205. METHODOLOGY/PRINCIPAL FINDINGS The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, cardiovascular risk and event data in geographically dispersed American Indian communities since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 candidate variants including genes in the interferon response pathway, APOE, TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' untranslated region variant in the CRP gene, showed nominally significant association in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p = 0.049) after adjustment for age, sex, center, body mass index, and a history of cardiovascular disease. Within the younger subset, association with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic model and in the SOLAR analysis also adjusting for other genetic relatedness. CONCLUSION A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or hospitalization, even after adjustment for relevant clinical factors and potential participant relatedness. Additional study of other populations and genetic variants of this gene are warranted.
Collapse
Affiliation(s)
- Lyle G. Best
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
- Pathology Department, University of North Dakota, Grand Forks, ND, United States of America
| | - Esther Erdei
- Pharmaceutical Sciences, University of New Mexico—Albuquerque, Albuquerque, New Mexico, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Jack W. Kent
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Kimberly M. Malloy
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Marcia O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Rae A. O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shelley A. Cole
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| |
Collapse
|
3
|
Słomian D, Szyda J, Dobosz P, Stojak J, Michalska-Foryszewska A, Sypniewski M, Liu J, Kotlarz K, Suchocki T, Mroczek M, Stępień M, Sztromwasser P, Król ZJ. Better safe than sorry-Whole-genome sequencing indicates that missense variants are significant in susceptibility to COVID-19. PLoS One 2023; 18:e0279356. [PMID: 36662838 PMCID: PMC9858061 DOI: 10.1371/journal.pone.0279356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 01/22/2023] Open
Abstract
Undoubtedly, genetic factors play an important role in susceptibility and resistance to COVID-19. In this study, we conducted the GWAS analysis. Out of 15,489,173 SNPs, we identified 18,191 significant SNPs for severe and 11,799 SNPs for resistant phenotype, showing that a great number of loci were significant in different COVID-19 representations. The majority of variants were synonymous (60.56% for severe, 58.46% for resistant phenotype) or located in introns (55.77% for severe, 59.83% for resistant phenotype). We identified the most significant SNPs for a severe outcome (in AJAP1 intron) and for COVID resistance (in FIG4 intron). We found no missense variants with a potential causal function on resistance to COVID-19; however, two missense variants were determined as significant a severe phenotype (in PM20D1 and LRP4 exons). None of the aforementioned SNPs and missense variants found in this study have been previously associated with COVID-19.
Collapse
Affiliation(s)
- Dawid Słomian
- National Research Institute of Animal Production, Balice, Poland
| | - Joanna Szyda
- National Research Institute of Animal Production, Balice, Poland
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Haematology, Transplantation and Internal Medicine, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Joanna Stojak
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland
| | | | - Mateusz Sypniewski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
- Department of Genetics and Animal Breedings, Poznan University of Life Sciences, Poznan, Poland
| | - Jakub Liu
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Kotlarz
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Suchocki
- National Research Institute of Animal Production, Balice, Poland
- Department of Genetics, Biostatistics Group, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Mroczek
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, Lublin, Poland
| | | | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Rabaan AA, Mutair AA, Aljeldah M, Shammari BRA, Sulaiman T, Alshukairi AN, Alfaresi M, Al-Jishi JM, Al Bati NA, Al-Mozaini MA, Bshabshe AA, Almatouq JA, Abuzaid AA, Alfaraj AH, Al-Adsani W, Alabdullah M, Alwarthan S, Alsalman F, Alwashmi ASS, Alhumaid S. Genetic Variants and Protective Immunity against SARS-CoV-2. Genes (Basel) 2022; 13:2355. [PMID: 36553622 PMCID: PMC9778397 DOI: 10.3390/genes13122355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain 499, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia
| | - Neda A. Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed Al-Mana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|