1
|
Konarita K, Kanamori K, Suzuki M, Tokura D, Tanaka S, Honda Y, Nishiyama N, Nomoto T. Poly(vinyl alcohol) potentiating an inert d-amino acid-based drug for boron neutron capture therapy. J Control Release 2025; 377:385-396. [PMID: 39532208 DOI: 10.1016/j.jconrel.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Since the discovery of d-amino acids, they have been considered inactive and have not been used as potent drugs. Here, we report that simple mixing with poly(vinyl alcohol) (PVA) unleashed latent potentials of d-amino acids in boron neutron capture therapy (BNCT). PVA formed boronate esters with seemingly useless boronated d-amino acids and induced tumor-associated amino acid transporter-superselective internalization and prolonged intracellular retention, accomplishing complete cure of tumors. The superselective internalization was achieved by switching the internalization pathway from ineffective pass through the transporter to the transporter-mediated endocytosis. The acidic environment in the endo-/lysosome dissociated the boronate esters and elicited the stealthiness of the drugs, preventing their externalization and prolonging intracellular retention time. In a subcutaneous tumor model, this system accomplished surprisingly high tumor-selective accumulation that could not be achieved by conventional approaches and induced drastic BNCT effects. PVA may be a unique material to unlock potentials of seemingly inert molecules.
Collapse
Affiliation(s)
- Kakeru Konarita
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kaito Kanamori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Daiki Tokura
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shota Tanaka
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
2
|
Wang Y, Zhu R, Zhao L, Wang F, Zhang Y, Liu S, Ding J, Yang L. Characterization of Ocular Morphology in Col4a3-/- Mice as a Murine Model for Alport Syndrome. Transl Vis Sci Technol 2024; 13:16. [PMID: 39042048 PMCID: PMC11268448 DOI: 10.1167/tvst.13.7.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose The purpose of this study was to investigate the ocular morphological characteristics of Col4a3-/- mice as a model of Alport syndrome (AS) and the potential pathogenesis. Methods The expression of collagen IV at 8, 12, and 21 weeks of age was evaluated by immunohistochemistry in wild-type (WT) and Col4a3-/- mice. Hematoxylin and eosin (H&E) staining and thickness measurements were performed to assess the thickness of anterior lens capsule and retina. Ultrastructure analysis of corneal epithelial basement membrane, anterior lens capsule, internal limiting membrane (ILM), and retinal pigment epithelium (RPE) basement membrane was performed using transmission electron microscopy. Finally, Müller cell activation was evaluated by glial fibrillary acidic protein (GFAP) expression. Results Collagen IV was downregulated in the corneal epithelial basement membrane and ILM of Col4a3-/- mice. The hemidesmosomes of Col4a3-/- mice corneal epithelium became flat and less electron-dense than those of the WT group. Compared with those of the WT mice, the anterior lens capsules of Col4a3-/- mice were thinner. Abnormal structure was detected at the ILM Col4a3-/- mice, and the basal folds of the RPE basement membrane in Col4a3-/- mice were thicker and shorter. The retinas of Col4a3-/- mice were thinner than those of WT mice, especially within 1000 µm away from the optic nerve. GFAP expression enhanced in each age group of Col4a3-/- mice. Conclusions Our results suggested that Col4a3-/- mice exhibit ocular anomalies similar to patients with AS. Additionally, Müller cells may be involved in AS retinal anomalies. Translational Relevance This animal model could provide an opportunity to understand the underlying mechanisms of AS ocular disorders and to investigate potential new treatments.
Collapse
MESH Headings
- Animals
- Nephritis, Hereditary/pathology
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/metabolism
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Collagen Type IV/deficiency
- Disease Models, Animal
- Mice
- Basement Membrane/metabolism
- Basement Membrane/pathology
- Basement Membrane/ultrastructure
- Mice, Knockout
- Retinal Pigment Epithelium/pathology
- Retinal Pigment Epithelium/metabolism
- Retinal Pigment Epithelium/ultrastructure
- Microscopy, Electron, Transmission
- Mice, Inbred C57BL
- Lens Capsule, Crystalline/metabolism
- Lens Capsule, Crystalline/pathology
- Lens Capsule, Crystalline/ultrastructure
- Epithelium, Corneal/pathology
- Epithelium, Corneal/ultrastructure
- Epithelium, Corneal/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Glial Fibrillary Acidic Protein/genetics
- Retina/pathology
- Retina/metabolism
- Retina/ultrastructure
- Autoantigens/genetics
- Autoantigens/metabolism
- Ependymoglial Cells/pathology
- Ependymoglial Cells/metabolism
- Ependymoglial Cells/ultrastructure
- Immunohistochemistry
- Male
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Liang Zhao
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | | | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Xicheng District, Beijing, China
| |
Collapse
|
3
|
Camarena V, Williams MM, Morales AA, Zafeer MF, Kilic OV, Kamiar A, Abad C, Rasmussen MA, Briski LM, Peart L, Bademci G, Barbouth DS, Smithson S, Wang G, Shehadeh LA, Walz K, Tekin M. ADAMTSL2 mutations determine the phenotypic severity in geleophysic dysplasia. JCI Insight 2024; 9:e174417. [PMID: 38300707 PMCID: PMC10972594 DOI: 10.1172/jci.insight.174417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Geleophysic dysplasia-1 (GD1) is an autosomal recessive disorder caused by ADAMTS-like 2 (ADAMTSL2) variants. It is characterized by distinctive facial features, limited joint mobility, short stature, brachydactyly, and life-threatening cardiorespiratory complications. The clinical spectrum spans from perinatal lethality to milder adult phenotypes. We developed and characterized cellular and mouse models, to replicate the genetic profile of a patient who is compound heterozygous for 2 ADAMTSL2 variants, namely p.R61H and p.A165T. The impairment of ADAMTSL2 secretion was observed in both variants, but p.A165T exhibited a more severe impact. Mice carrying different allelic combinations revealed a spectrum of phenotypic severity, from lethality in knockout homozygotes to mild growth impairment observed in adult p.R61H homozygotes. Homozygous and hemizygous p.A165T mice survived but displayed severe respiratory and cardiac dysfunction. The respiratory dysfunction mainly affected the expiration phase, and some of these animals had microscopic post-obstructive pneumonia. Echocardiograms and MRI studies revealed a significant systolic dysfunction, accompanied by a reduction of the aortic root size. Histology verified the presence of hypertrophic cardiomyopathy with myocyte hypertrophy, chondroid metaplasia, and mild interstitial fibrosis. This study revealed a substantial correlation between the degree of impaired ADAMTSL2 secretion and the severity of the observed phenotype in GD1.
Collapse
Affiliation(s)
| | - Monique M. Williams
- Department of Medicine, Division of Cardiology
- Interdisciplinary Stem Cell Institute
| | | | | | - Okan V. Kilic
- Dr. John T. Macdonald Foundation Department of Human Genetics
| | | | - Clemer Abad
- Dr. John T. Macdonald Foundation Department of Human Genetics
| | | | - Laurence M. Briski
- Department of Pathology and Laboratory Medicine, University of Miami Leonard M. Miller School of Medicine Miami, Florida, USA
| | - LéShon Peart
- Dr. John T. Macdonald Foundation Department of Human Genetics
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics
| | | | - Sarah Smithson
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Gaofeng Wang
- Dr. John T. Macdonald Foundation Department of Human Genetics
- John P. Hussmann Institute for Human Genomics
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology
- Interdisciplinary Stem Cell Institute
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics
- John P. Hussmann Institute for Human Genomics
- IQUIBICEN - CONICET, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics
- John P. Hussmann Institute for Human Genomics
- Department of Otolaryngology and
- Department of Ophthalmology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Condor Capcha JM, Kamiar A, Robleto E, Saad AG, Cui T, Wong A, Villano J, Zhong W, Pekosz A, Medina E, Cai R, Sha W, Ranek MJ, Webster KA, Schally AV, Jackson RM, Shehadeh LA. Growth hormone-releasing hormone receptor antagonist MIA-602 attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2 in hACE2 mice. Proc Natl Acad Sci U S A 2023; 120:e2308342120. [PMID: 37983492 PMCID: PMC10691341 DOI: 10.1073/pnas.2308342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/22/2023] Open
Abstract
COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Jose M. Condor Capcha
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Ali Kamiar
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Emely Robleto
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Ali G. Saad
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| | - Tengjiao Cui
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Amanda Wong
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD21205
| | - William Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD21205
| | - Edgar Medina
- Qualityminds Gesellschaft mit beschränkter Haftung (GmbH), Munchen, Munich81549, Germany
| | - Renzhi Cai
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Wei Sha
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD21205
| | - Keith A. Webster
- Integene International Holdings, Miami, FL33179
- Baylor College of Medicine, Houston, TX77030
| | - Andrew V. Schally
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Robert M. Jackson
- Research Service, Miami Veterans Affairs Health System (VAHS), Miami, FL33125
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL33101
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL33136
| |
Collapse
|
5
|
Todd EA, Williams M, Kamiar A, Rasmussen MA, Shehadeh LA. Echocardiography protocol: A tool for infrequently used parameters in mice. Front Cardiovasc Med 2022; 9:1038385. [PMID: 36620641 PMCID: PMC9810757 DOI: 10.3389/fcvm.2022.1038385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Echocardiography is frequently used to evaluate cardiac function in rodent models of cardiovascular disease. Whereas methods to acquire the commonly used echocardiography parameters are well-described in published protocols or manuals, many important parameters are ill-defined and often open to subjective interpretation. Such lack of uniformity has engendered conflicting interpretations of the same parameters in published literature. In particular, parameters such as mitral regurgitation, mitral stenosis, pulmonary regurgitation, and aortic regurgitation that are required to define more esoteric etiologies in rarer mouse models often remain equivocal. The aim of this methods paper is to provide a practical guide to the acquisition and interpretation of infrequently used echocardiography parameters and set a framework for comprehensive analyses of right ventricle (RV), pulmonary artery (PA) pulmonary valve (PV), left atrium (LA), mitral valve (MV), and aortic valve (AoV) structure and function.
Collapse
Affiliation(s)
- Emily Ann Todd
- Department of Medical Education, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Monique Williams
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Ali Kamiar
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Monica Anne Rasmussen
- Department of Medical Education, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A. Shehadeh
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Williams M, Capcha JMC, Irion CI, Seo G, Lambert G, Kamiar A, Yousefi K, Kanashiro-Takeuchi R, Takeuchi L, Saad AG, Mendez A, Webster KA, Goldberger JJ, Hare JM, Shehadeh LA. Mouse Model of Heart Failure With Preserved Ejection Fraction Driven by Hyperlipidemia and Enhanced Cardiac Low-Density Lipoprotein Receptor Expression. J Am Heart Assoc 2022; 11:e027216. [PMID: 36056728 PMCID: PMC9496436 DOI: 10.1161/jaha.122.027216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The pathways of diastolic dysfunction and heart failure with preserved ejection fraction driven by lipotoxicity with metabolic syndrome are incompletely understood. Thus, there is an urgent need for animal models that accurately mimic the metabolic and cardiovascular phenotypes of this phenogroup for mechanistic studies. Methods and Results Hyperlipidemia was induced in WT‐129 mice by 4 weeks of biweekly poloxamer‐407 intraperitoneal injections with or without a single intravenous injection of adeno‐associatedvirus 9–cardiac troponin T–low‐density lipoprotein receptor (n=31), or single intravenous injection with adeno‐associatedvirus 9–cardiac troponin T–low‐density lipoprotein receptor alone (n=10). Treatment groups were compared with untreated or placebo controls (n=37). Echocardiography, blood pressure, whole‐body plethysmography, ECG telemetry, activity wheel monitoring, and biochemical and histological changes were assessed at 4 to 8 weeks. At 4 weeks, double treatment conferred diastolic dysfunction, preserved ejection fraction, and increased left ventricular wall thickness. Blood pressure and whole‐body plethysmography results were normal, but respiration decreased at 8 weeks (P<0.01). ECG and activity wheel monitoring, respectively, indicated heart block and decreased exercise activity (P<0.001). Double treatment promoted elevated myocardial lipids including total cholesterol, fibrosis, increased wet/dry lung (P<0.001) and heart weight/body weight (P<0.05). Xanthelasma, ascites, and cardiac ischemia were evident in double and single (p407) groups. Sudden death occurred between 6 and 12 weeks in double and single (p407) treatment groups. Conclusions We present a novel model of heart failure with preserved ejection fraction driven by dyslipidemia where mice acquire diastolic dysfunction, arrhythmia, cardiac hypertrophy, fibrosis, pulmonary congestion, exercise intolerance, and preserved ejection fraction in the absence of obesity, hypertension, kidney disease, or diabetes. The model can be applied to dissect pathways of metabolic syndrome that drive diastolic dysfunction in this lipotoxicity‐mediated heart failure with preserved ejection fraction phenogroup mimic.
Collapse
Affiliation(s)
- Monique Williams
- Department of Medicine Division of Cardiology University of Miami Leonard M. Miller School of Medicine Miami FL.,Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Jose Manuel Condor Capcha
- Department of Medicine Division of Cardiology University of Miami Leonard M. Miller School of Medicine Miami FL.,Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Camila Iansen Irion
- Department of Medicine Division of Cardiology University of Miami Leonard M. Miller School of Medicine Miami FL.,Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Grace Seo
- Department of Medical Education University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Guerline Lambert
- Department of Medicine Division of Cardiology University of Miami Leonard M. Miller School of Medicine Miami FL.,Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Ali Kamiar
- Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Keyan Yousefi
- Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | | | - Lauro Takeuchi
- Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Ali G Saad
- Departments of Pathology and Pediatrics University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Armando Mendez
- Division of Endocrinology, Diabetes and Metabolism Diabetes Research Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Keith A Webster
- Cullen Eye Institute Baylor College of Medicine Houston TX.,Integene International LLC Houston TX
| | - Jeffrey J Goldberger
- Department of Medicine Division of Cardiology University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| | - Lina A Shehadeh
- Department of Medicine Division of Cardiology University of Miami Leonard M. Miller School of Medicine Miami FL.,Interdisciplinary Stem Cell Institute University of Miami Leonard M. Miller School of Medicine Miami FL
| |
Collapse
|