1
|
Li L, Fu M, Chen F, Ji H, Zhou G, Chen L, Geng H, Guo J, Pei L, Sun J. The mediating effect of circulating inflammatory proteins on the relationship between gut microbiota and FD: a bidirectional Mendelian randomization study. Sci Rep 2024; 14:23785. [PMID: 39390038 PMCID: PMC11466956 DOI: 10.1038/s41598-024-74717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Functional dyspepsia (FD) is known to be influenced by gut microbiota (GM) and circulating inflammatory proteins (CIPs), however, the causal relationship between GM, CIPs and FD haven't been investigated. This study employed two-sample Mendelian Randomization (TSMR) to investigate their associations using data from Genome-Wide Association Studies (GWAS). In this study, Inverse-variance weighted (IVW) method was employed as the primary analysis, with supplementary approaches including weighted median, weighted mode, simple mode, and MR-Egger. Heterogeneity and pleiotropy were assessed using the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO global test. Totally, 196 GM traits and 91 CIPs were analyzed, and the results uncovered the causal impact of 12 GM taxa and 5 proteins on functional dyspepsia (FD). 9 GM genera were linked to a reduced risk of FD, while 3 GM genera were associated with an increased risk of FD.Additionally, reverse analysis revealed no FD-GM causation. Furthermore, IL-12, IL-10, CXCL10, CXCL9 and VEGFA were significantly correlated with FD, with CXCL9 and VEGFA acting as mediators in the association between GM traits and FD. Taken together, our findings established a link between specific GM and CIPs in the pathogenesis of FD, offering novel insights for its diagnosis and treatment.
Collapse
Affiliation(s)
- Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Huijie Ji
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guowei Zhou
- Department of General Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hao Geng
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jing Guo
- College of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
3
|
Wei SY, Chen PY, Tsai MC, Hsu TL, Hsieh CC, Fan HW, Chen TH, Xie RH, Chen GY, Chen YC. Enhancing the Repair of Substantial Volumetric Muscle Loss by Creating Different Levels of Blood Vessel Networks Using Pre-Vascularized Nerve Hydrogel Implants. Adv Healthc Mater 2024; 13:e2303320. [PMID: 38354361 DOI: 10.1002/adhm.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Volumetric muscle loss (VML), a severe muscle tissue loss from trauma or surgery, results in scarring, limited regeneration, and significant fibrosis, leading to lasting reductions in muscle mass and function. A promising approach for VML recovery involves restoring vascular and neural networks at the injury site, a process not extensively studied yet. Collagen hydrogels have been investigated as scaffolds for blood vessel formation due to their biocompatibility, but reconstructing blood vessels and guiding innervation at the injury site is still difficult. In this study, collagen hydrogels with varied densities of vessel-forming cells are implanted subcutaneously in mice, generating pre-vascularized hydrogels with diverse vessel densities (0-145 numbers/mm2) within a week. These hydrogels, after being transplanted into muscle injury sites, are assessed for muscle repair capabilities. Results showed that hydrogels with high microvessel densities, filling the wound area, effectively reconnected with host vasculature and neural networks, promoting neovascularization and muscle integration, and addressing about 63% of the VML.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ting-Lun Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Hsiu-Wei Fan
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15289, USA
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
4
|
Ding R, Zhu S, Zhao X, Yue R. Vascular endothelial growth factor levels in diabetic peripheral neuropathy: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1169405. [PMID: 37251664 PMCID: PMC10213658 DOI: 10.3389/fendo.2023.1169405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Vascular endothelial growth factors (VEGFs, including VEGF-A, VEGF-B, VEGF-C, VEGF-D and PLGF) have important roles in the development and function of the peripheral nervous system. Studies have confirmed that VEGFs, especially VEGF-A (so called VEGF) may be associated with the diabetic peripheral neuropathy (DPN) process. However, different studies have shown inconsistent levels of VEGFs in DPN patients. Therefore, we conducted this meta-analysis to evaluate the relationship between cycling levels of VEGFs and DPN. Methods This study searched 7 databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, WanFang Database, and Chinese Biomedical Literature (CBM), to find the target researches. The random effects model was used to calculate the overall effect. Results 14 studies with 1983 participants were included, among which 13 studies were about VEGF and 1 was VEGF-B, so only the effects of VEGF were pooled. The result showed that there were obviously increased VEGF levels in DPN patients compared with diabetic patients without DPN (SMD:2.12[1.34, 2.90], p<0.00001) and healthy people (SMD:3.50[2.24, 4.75], p<0.00001). In addition, increased circulating VEGF levels were not associated with an increased risk of DPN (OR:1.02[0.99, 1.05], p<0.00001). Conclusion Compared with healthy people and diabetic patients without DPN, VEGF content in the peripheral blood of DPN patients is increased, but current evidence does not support the correlation between VEGF levels and the risk of DPN. This suggests that VEGF may play a role in the pathogenesis and repairment of DPN.
Collapse
Affiliation(s)
- Rui Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shicong Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Zhao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Akay YM. The Role of Neurons in Human Health and Disease. Int J Mol Sci 2023; 24:ijms24087107. [PMID: 37108269 PMCID: PMC10139055 DOI: 10.3390/ijms24087107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Neurons are the functional units of the nervous system [...].
Collapse
Affiliation(s)
- Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA
| |
Collapse
|
6
|
Inflammatory CSF profiles and longitudinal development of cognitive decline in sporadic and GBA-associated PD. NPJ Parkinsons Dis 2023; 9:38. [PMID: 36906614 PMCID: PMC10008539 DOI: 10.1038/s41531-023-00476-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 03/13/2023] Open
Abstract
Inflammation modifies the incidence and progression of Parkinson's disease (PD). By using 30 inflammatory markers in CSF in 498 people with PD and 67 people with dementia with Lewy bodies (DLB) we show that: (1) levels of ICAM-1, Interleukin-8, MCP-1, MIP-1 beta, SCF and VEGF were associated with clinical scores and neurodegenerative CSF biomarkers (Aβ1-42, t-Tau, p181-Tau, NFL and α-synuclein). (2) PD patients with GBA mutations show similar levels of inflammatory markers compared to PD patients without GBA mutations, even when stratified by mutation severity. (3) PD patients who longitudinally developed cognitive impairment during the study had higher levels of TNF-alpha at baseline compared to patients without the development of cognitive impairment. (4) Higher levels of VEGF and MIP-1 beta were associated with a longer duration until the development of cognitive impairment. We conclude that the majority of inflammatory markers is limited in robustly predicting longitudinal trajectories of developing cognitive impairment.
Collapse
|
7
|
Zhang H, Wu C. 3D printing of biomaterials for vascularized and innervated tissue regeneration. Int J Bioprint 2023; 9:706. [PMID: 37273994 PMCID: PMC10236343 DOI: 10.18063/ijb.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 03/17/2023] Open
Abstract
Neurovascular networks play significant roles in the metabolism and regeneration of many tissues and organs in the human body. Blood vessels can transport sufficient oxygen, nutrients, and biological factors, while nerve fibers transmit excitation signals to targeted cells. However, traditional scaffolds cannot satisfy the requirement of stimulating angiogenesis and innervation in a timely manner due to the complexity of host neurovascular networks. Three-dimensional (3D) printing, as a versatile and favorable technique, provides an effective approach to fabricating biological scaffolds with biomimetic architectures and multimaterial compositions, which are capable of regulating multiple cell behaviors. This review paper presents a summary of the current progress in 3D-printed biomaterials for vascularized and innervated tissue regeneration by presenting skin, bone, and skeletal muscle tissues as an example. In addition, we highlight the crucial roles of blood vessels and nerve fibers in the process of tissue regeneration and discuss the future perspectives for engineering novel biomaterials. It is expected that 3D-printed biomaterials with angiogenesis and innervation properties can not only recapitulate the physiological microenvironment of damaged tissues but also rapidly integrate with host neurovascular networks, resulting in accelerated functional tissue regeneration.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Claudino Dos Santos JC, Lima MPP, Brito GADC, Viana GSDB. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev 2023; 84:101812. [PMID: 36455790 DOI: 10.1016/j.arr.2022.101812] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The microbiota-gut-brain axis or simple gut-brain axis (GBA) is a complex and interactive bidirectional communication network linking the gut to the brain. Alterations in the composition of the gut microbiome have been linked to GBA dysfunction, central nervous system (CNS) inflammation, and dopaminergic degeneration, as those occurring in Parkinson's disease (PD). Besides inflammation, the activation of brain microglia is known to play a central role in the damage of dopaminergic neurons. Inflammation is attributed to the toxic effect of aggregated α-synuclein, in the brain of PD patients. It has been suggested that the α-synuclein misfolding might begin in the gut and spread "prion-like", via the vagus nerve into the lower brainstem and ultimately to the midbrain, known as the Braak hypothesis. In this review, we discuss how the microbiota-gut-brain axis and environmental influences interact with the immune system to promote a pro-inflammatory state that is involved in the initiation and progression of misfolded α-synuclein proteins and the beginning of the early non-motor symptoms of PD. Furthermore, we describe a speculative bidirectional model that explains how the enteric glia is involved in the initiation and spreading of inflammation, epithelial barrier disruption, and α-synuclein misfolding, finally reaching the central nervous system and contributing to neuroinflammatory processes involved with the initial non-motor symptoms of PD.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Medical School of the Christus University Center - UNICHRISTUS, Fortaleza, CE, Brazil; Graduate Program in Morphofunctional Sciences, Federal University of Ceará - UFC, Fortaleza, CE, Brazil.
| | | | - Gerly Anne de Castro Brito
- Physiology and Pharmacology Department of the Federal University of Ceará - UFC, Fortaleza, CE, Brazil; Morphology Department of the Federal University of Ceará - UFC, Fortaleza, CE, Brazil
| | | |
Collapse
|