1
|
Liu B, Lv M, Duan Y, Lin J, Dai L, Yu J, Liao J, Li Y, Wu Z, Li J, Sun Y, Liao H, Zhang J, Duan Y. Genetically engineered CD276-anchoring biomimetic nanovesicles target senescent escaped tumor cells to overcome chemoresistant and immunosuppressive breast cancer. Biomaterials 2025; 313:122796. [PMID: 39226654 DOI: 10.1016/j.biomaterials.2024.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Minchao Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Li Dai
- Department of Otolaryngology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiping Li
- Department of Otolaryngology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hongze Liao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiali Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Xiao J, Wang J, Li J, Xiao J, Liu C, Tan L, Tu Y, Yang R, Pei Y, Wang M, Wong J, Zhou BP, Li J, Feng J. L3MBTL3 and STAT3 collaboratively upregulate SNAIL expression to promote metastasis in female breast cancer. Nat Commun 2025; 16:231. [PMID: 39747894 PMCID: PMC11696420 DOI: 10.1038/s41467-024-55617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The STAT3 pathway promotes epithelial-mesenchymal transition, migration, invasion and metastasis in cancer. STAT3 upregulates the transcription of the key epithelial-mesenchymal transition transcription factor SNAIL in a DNA binding-independent manner. However, the mechanism by which STAT3 is recruited to the SNAIL promoter to upregulate its expression is still elusive. In our study, the lysine methylation binding protein L3MBTL3 is positively associated with metastasis and poor prognosis in female patients with breast cancer. L3MBTL3 also promotes epithelial-mesenchymal transition and metastasis in breast cancer. Mechanistic analysis reveals that L3MBTL3 interacts with STAT3 and recruits STAT3 to the SNAIL promoter to increase SNAIL transcription levels. The interaction between L3MBTL3 and STAT3 is required for SNAIL transcription upregulation and metastasis in breast cancer, while the methylated lysine binding activity of L3MBTL3 is not required for these functions. In conclusion, L3MBTL3 and STAT3 synergistically upregulate SNAIL expression to promote breast cancer metastasis.
Collapse
Affiliation(s)
- Jianpeng Xiao
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jie Wang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Xiao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - CuiCui Liu
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Libi Tan
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanhong Tu
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Ruifang Yang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Yujie Pei
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Minghua Wang
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jing Li
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2024:S0945-053X(24)00150-1. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL)
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL).
| | - Jose M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL).
| |
Collapse
|
4
|
Hou X, Guan Y, Lu Y, Wang Y, Xu S, Zhu H, Zhao J, Xiao L, He S, Shi Y. Chitosan-based thermosensitive injectable hydrogel with hemostatic and antibacterial activity for preventing breast cancer postoperative recurrence and metastasis via chemo-photothermal therapy. Int J Biol Macromol 2024; 290:138930. [PMID: 39701248 DOI: 10.1016/j.ijbiomac.2024.138930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Primary resection surgery is a conventional approach in breast cancer treatment, which plays a pivotal role in the prevention of recurrence and metastasis. In this study, an injectable hydrogel comprising chitosan (CS), β-glycerophosphate (β-GP), and dopamine (DA) with near-infrared (NIR) photothermal attributes was developed. The composite hydrogels integrate doxorubicin (DOX), termed DCGD, and can be used for chemotherapy, synergistic photothermal therapy, anti-bacterial and hemostasis. Local administration of injectable DCGD hydrogels into breast cancer resection cavities could prevent the postoperative breast cancer recurrence and metastasis via chemo-photothermal therapy. Additionally, the remarkable hemostatic and anti-bacterial properties of DCGD facilitated postoperative wound healing. Notably, the DCGD hydrogel had a dual pH- and photothermal-responsive DOX release profile, ensuring sustained drug release to residual tumor tissues triggered by NIR laser irradiation and the acidic tumor microenvironment. Histological analyses including H&E, TUNEL, and Ki67 immunohistochemistry confirmed the potent anti-recurrent and anti-metastatic efficacy of DCGD hydrogels. Therefore, the DCDG hydrogels developed in our study had the favorable hemostatic, anti-bacterial, photothermal and drug-loading effects, which provided a new strategy for postoperative breast cancer recurrence and metastasis treatment.
Collapse
Affiliation(s)
- Xueyan Hou
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China; Pingyuan Laboratory, 453007 Xinxiang, PR China.
| | - Yalin Guan
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Yanan Lu
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Yuxin Wang
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Suyue Xu
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Huiqing Zhu
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Jingya Zhao
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Liu Xiao
- Department of Oncology, Wuhan No.1 Hospital, 430022 Wuhan, PR China.
| | - Sisi He
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, 563000, Guizhou, PR China.
| | - Yongli Shi
- College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China.
| |
Collapse
|
5
|
Zha Z, Ge F, Li N, Zhang S, Wang C, Gong F, Miao J, Chen W. Effects of Na V1.5 and Rac1 on the Epithelial-Mesenchymal Transition in Breast Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01625-x. [PMID: 39673684 DOI: 10.1007/s12013-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Breast cancer is a disease that seriously endangers the health of women. However, it is difficult to treat due to the emergence of metastasis and drug resistance. Exploring the metastasis mechanism of breast cancer is helpful to aim for the appropriate target. The epithelial-mesenchymal transition (EMT) is an important mechanism of breast cancer metastasis. Sodium channel 1.5(NaV1.5) and the GTPase Rac1 are factors related to the degree of malignancy of breast tumors. The expression of NaV1.5 and the activation of Rac1 are both involved in EMT. In addition, NaV1.5 can change the plasma membrane potential (Vm) by promoting the inflow of Na+ to depolarize the cell membrane, induce the activation of Rac1 and produce a cascade of reactions that lead to EMT in breast cancer cells; this sequence of events further induces the movement, migration and invasion of tumor cells and affects the prognosis of breast cancer patients. In this paper, the roles of NaV1.5 and Rac1 in EMT-mediated breast cancer progression were reviewed.
Collapse
Affiliation(s)
- Zhuocen Zha
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, 550000, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Na Li
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Shijun Zhang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenlin Chen
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
6
|
Shen F, Wang S, Yu S, Jiang Y. Small intestinal metastasis from primary breast cancer: a case report and review of literature. Front Immunol 2024; 15:1475018. [PMID: 39697330 PMCID: PMC11653178 DOI: 10.3389/fimmu.2024.1475018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024] Open
Abstract
Small intestinal metastasis from primary breast cancer remains a rare clinical occurrence. Despite extensive research into its clinicopathological features and treatment options, the specific pathogenesis and optimal management strategies remain incompletely understood. This case report presents a patient with breast cancer that metastasized to the small intestine. The primary breast tumor was diagnosed as classic invasive lobular carcinoma. Subsequent surgical intervention successfully addressed the intestinal obstruction and confirmed the metastatic origin of the small intestinal tumor. Interestingly, the metastatic lesions exhibited features suggestive of pleomorphic lobular carcinoma. A PET-CT scan was performed to evaluate the distant metastasis status of this patient. Notably, hormonal receptor status shifted from positive to negative, while HER2 expression changed from negative to low between the primary tumor and metastatic lesions. The presence of an undiagnosed pleomorphic component in the primary tumor might explain the disease's progressive nature. In this case, systemic treatment with trastuzumab deruxtecan yielded favorable therapeutic outcomes. Overall, our findings suggest that re-evaluation of receptor status in breast cancer metastases is crucial for tailoring treatment strategies. Furthermore, a combination of palliative resection of small intestinal metastases and targeted therapy for HER2-low breast cancer may potentially improve survival.
Collapse
Affiliation(s)
- Fengqing Shen
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Songxiang Wang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Shanlu Yu
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
7
|
Sitjar PHS, Tan SY, Wong M, Li J, Jalil RBA, Aw H, Lim EH, Goh J. Combined aerobic and strength exercise training on biological ageing in Singaporean breast cancer patients: protocol for the Breast Cancer Exercise Intervention (BREXINT) Pilot Study. GeroScience 2024; 46:6029-6038. [PMID: 38546907 PMCID: PMC11493934 DOI: 10.1007/s11357-024-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/18/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) is the most prominent cancer amongst women, but fortunately, early diagnosis and advances in multimodality treatments have improved patient survivability. Cancer survivors, however, experience increased biological ageing which may accelerate other co-morbidities. Exercise intervention is a promising clinical adjuvant approach to improve BC patients' physiological function, recovery from treatment, and quality of life. However, the effects of combined aerobic and strength exercise training on biological ageing in BC patients have not been studied. The Breast Cancer Exercise Intervention (BREXINT) Pilot Study will evaluate the effects of a 24-week combined aerobic and strength exercise intervention against usual care in 50 BC patients' post-treatment randomised to either group. The primary outcomes include changes in cardiorespiratory fitness, muscle strength, cancer-related symptoms, and rate of biological ageing following exercise intervention period. The secondary outcomes include habitual physical activity measured with tri-axial accelerometery and supporting questionnaires, including physical activity, food diary, and quality of life questionnaires. This study will identify the effects of combined aerobic exercise strength training on biological ageing in BC patients from Singapore. Results from this study could further support the implementation of regular exercise programmes as routine care for cancer patients.
Collapse
Affiliation(s)
- Patrick Henry Sebastian Sitjar
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Exercise Physiology & Biomarkers Laboratory, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Si Ying Tan
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital (SGH), Singapore, Singapore
- Department of Breast Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - Mabel Wong
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
- KK Breast Centre, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Jingmei Li
- Laboratory of Women's Health & Genetics, Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - Rufaihah Binte Abdul Jalil
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Huizhen Aw
- Singapore Cancer Society (SCS), Singapore, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore.
- Division of Community Outreach and Philanthropy, National Cancer Centre Singapore (NCCS), Singapore, Singapore.
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- Exercise Physiology & Biomarkers Laboratory, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
| |
Collapse
|
8
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
9
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
10
|
Babu LT, Roy N, Dasgupta T, Ghosh S, Tamizhselvi R, Paira P. Engineering biotin anchored-MWCNTs as a superb carrier for facile delivery of the potent Ru(II)-N^N scaffold in breast cancer cells. Chem Commun (Camb) 2024; 60:13376-13379. [PMID: 39324771 DOI: 10.1039/d4cc04276j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Ru(II)-complexes have been recognised as promising in treating cancer. However, targeted delivery is an important facet to augment the efficiency of drugs. Consequently, this article portrays the construction of biotinylated-MWCNTs as an SMVT-guided nano-platform for the precise delivery of our previously-developed potent Ru(II)-scaffold, making it more effective against MCF-7 cells.
Collapse
Affiliation(s)
- Lavanya Thilak Babu
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India.
| | - Tiasha Dasgupta
- Department of Bioscience, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India
| | - Sreejani Ghosh
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India.
| | - Ramasamy Tamizhselvi
- Department of Bioscience, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India.
| |
Collapse
|
11
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
12
|
Sanjaya A, Ratnawati H, Adhika OA, Rahmatilah FR. The heterogeneity of breast cancer metastasis: a bioinformatics analysis utilizing single-cell RNA sequencing data. Breast Cancer Res Treat 2024; 208:379-390. [PMID: 38992286 DOI: 10.1007/s10549-024-07428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Breast cancer is a common malignancy in women, and its metastasis is a leading cause of cancer-related deaths. Single-cell RNA sequencing (scRNA-seq) can distinguish the molecular characteristics of metastasis and identify predictor genes for patient prognosis. This article explores gene expression in primary breast cancer tumor tissue against metastatic cells in the lymph node and liver using scRNA-seq. METHODS Breast cancer scRNA-seq data from the Gene Expression Omnibus were used. The data were processed using R and the Seurat package. The cells were clustered and identified using Metascape. InferCNV is used to analyze the variation in copy number. Differential expression analysis was conducted for the cancer cells using Seurat and was enriched using Metascape. RESULTS We identified 18 distinct cell clusters, 6 of which were epithelial. CNV analysis identified significant alterations with duplication of chromosomes 1, 8, and 19. Differential gene analysis resulted in 17 upregulated and 171 downregulated genes for the primary tumor in the primary tumor vs. liver metastasis comparison and 43 upregulated and 4 downregulated genes in the primary tumor in the primary tumor vs lymph node metastasis comparison. Several enriched terms include Ribosome biogenesis, NTP synthesis, Epithelial dedifferentiation, Autophagy, and genes associated with epithelial-to-mesenchymal transitions. CONCLUSION No single gene or pathway can clearly explain the mechanisms behind tumor metastasis. Several mechanisms contribute to lymph node and liver metastasis, such as the loss of differentiation, epithelial-to-mesenchymal transition, and autophagy. These findings necessitate further study of metastatic tissue for effective drug development.
Collapse
Affiliation(s)
- Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung, 40164, West Java, Indonesia.
- Biomedical Research Laboratory, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia.
| | - Hana Ratnawati
- Biomedical Research Laboratory, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
- Department of Histology, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Oeij Anindita Adhika
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung, 40164, West Java, Indonesia
| | - Faiz Rizqy Rahmatilah
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| |
Collapse
|
13
|
Huang X, Xu A, Xu X, Luo Z, Li C, Wang X, Fu D. Development and Validation of a Prognostic Nomogram for Breast Cancer Patients With Multi-Organ Metastases: An Analysis of the Surveillance, Epidemiology, and End Results Program Database. Am Surg 2024; 90:2788-2796. [PMID: 38712351 DOI: 10.1177/00031348241250044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND Multi-organ metastases represent a substantial life-threatening risk for breast cancer (BC) patients. Nonetheless, the current dearth of assessment tools for patients with multi-organ metastatic BC adversely impacts their evaluation. METHODS We conducted a retrospective analysis of BC patients with multi-organ metastases using data from the SEER database from 2010 to 2019. The patients were randomly allocated into a training cohort and a validation cohort in a 7:3 ratio. Univariate COX regression analysis, the LASSO, and multivariate Cox regression analyses were performed to identify independent prognostic factors in the training set. Based on these factors, a nomogram was constructed to estimate overall survival (OS) probability for BC patients with multi-organ metastases. The performance of the nomogram was evaluated using C-indexes, ROC curves, calibration curves, decision curve analysis (DCA) curves, and the risk classification system for validation. RESULTS A total of 3626 BC patients with multi-organ metastases were included in the study, with 2538 patients in the training cohort and 1088 patients in the validation cohort. Age, grade, metastasis location, surgery, chemotherapy, and subtype were identified as significant independent prognostic factors for OS in BC patients with multi-organ metastases. A nomogram for predicting 1-year, 3-year, and 5-year OS was constructed. The evaluation metrics, including C-indexes, ROC curves, calibration curves, and DCA curves, demonstrated the excellent predictive performance of the nomogram. Additionally, the risk grouping system effectively stratified BC patients with multi-organ metastases into distinct prognostic categories. CONCLUSION The developed nomogram showed high accuracy in predicting the survival probability of BC patients with multi-organ metastases, providing valuable information for patient counseling and treatment decision making.
Collapse
Affiliation(s)
- Xiao Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - An Xu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiangnan Xu
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Zhou Luo
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chunlian Li
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xueying Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Deyuan Fu
- Department of Breast Surgery, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Svajda L, Ranđelović I, Surguta SE, Baranyi M, Cserepes M, Tóvári J. Targeting hypoxia in combination with paclitaxel to enhance therapeutic efficacy in breast and ovarian cancer. Biomed Pharmacother 2024; 180:117601. [PMID: 39476764 DOI: 10.1016/j.biopha.2024.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
The poor vascularization of solid tumors results in oxygen-deprived areas within the tumor mass. This phenomenon is defined as tumor hypoxia and is considered to be a major contributor to tumor progression in breast and ovarian cancers due to hypoxia-cascade-promoted increased metastasizing capacity. Hence, targeting hypoxia is a strategic cancer treatment approach, however, the hypoxia-modulating drugs face several limitations in monotherapies. Here, we investigated the impact of the potent hypoxia-inducible factor inhibitory compound acriflavine on tumor cell proliferation, migration, and metabolism under hypoxic conditions. We identified that acriflavine inhibited the proliferation of breast and ovarian tumor cells. To model the potential benefits of additional hypoxia response inhibition next to standard chemotherapy, we combined acriflavine with a frequently used chemotherapeutic agent, paclitaxel. In most breast and ovarian cancer cell lines used, we identified additive effects between the two drugs. The most significant findings were detected in triple-negative breast cancer cell lines, where we observed synergism. The drug combination effectively impeded tumor growth and metastasis formation in an in vivo orthotopic triple-negative breast cancer model as well. Additionally, we demonstrated that an epithelial-mesenchymal transition inhibitory drug, rolipram, combined with acriflavine and paclitaxel, notably reduced the motility of hypoxic triple-negative breast cancer cells. In conclusion, we identified novel drug combinations that can potentially combat triple-negative breast cancer by inhibiting hypoxia signaling and hindering cell migration and metastasis formation.
Collapse
Affiliation(s)
- Laura Svajda
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary.
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Mihály Cserepes
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Zhang Y, Han L, Yang R, Zhang C, Duan S, Li P, Hou J. Acupuncture for Aromatase Inhibitor-Induced Arthralgia in Breast Cancer: An Umbrella Review. Breast Care (Basel) 2024; 19:252-269. [PMID: 39439861 PMCID: PMC11493388 DOI: 10.1159/000540749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/03/2024] [Indexed: 10/25/2024] Open
Abstract
Background Acupuncture therapy shows promise in managing aromatase inhibitor-induced arthralgia (AIA) among breast cancer patients. An umbrella review synthesizes findings from systematic reviews and meta-analyses (SRs/MAs) to assess its effectiveness. Summary This umbrella review aimed to evaluate the effectiveness of acupuncture therapy in treating AIA among breast cancer patients by analyzing existing evidence from SRs/MAs. Key Messages Six SRs/MAs were analyzed, revealing shortcomings in reporting quality, methodological quality, and evidence quality assessment. Comprehensive searches across eight electronic databases were conducted. PRISMA, AMSTAR 2, and GRADE were utilized to assess reporting, methodological quality, and evidence quality, respectively. Despite methodological shortcomings, a recent meta-subgroup analysis suggests the efficacy of acupuncture therapy for AIA patients, recommending a 10-session treatment course. Conclusion Acupuncture is identified as a secure and effective remedy for AIA sufferers, yet further high-quality research is needed to strengthen the evidence base and endorse acupuncture as a viable treatment option.
Collapse
Affiliation(s)
- Yixuan Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Rui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunchang Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sasa Duan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Hou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Clark AB, Conzen SD. Glucocorticoid receptor-mediated oncogenic activity is dependent on breast cancer subtype. J Steroid Biochem Mol Biol 2024; 243:106518. [PMID: 38734115 DOI: 10.1016/j.jsbmb.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Breast cancer incidence has been steadily rising and is the leading cause of cancer death in women due to its high metastatic potential. Individual breast cancer subtypes are classified by both cell type of origin and receptor expression, namely estrogen, progesterone and human epidermal growth factor receptors (ER, PR and HER2). Recently, the importance and context-dependent role of glucocorticoid receptor (GR) expression in the natural history and prognosis of breast cancer subtypes have been uncovered. In ER-positive breast cancer, GR expression is associated with a better prognosis as a result of ER-GR crosstalk. GR appears to modulate ER-mediated gene expression resulting in decreased tumor cell proliferation and a more indolent cancer phenotype. In ER-negative breast cancer, including GR-positive triple-negative breast cancer (TNBC), GR expression enhances migration, chemotherapy resistance and cell survival. In invasive lobular carcinoma, GR function is relatively understudied, and more work is required to determine whether lobular subtypes behave similarly to their invasive ductal carcinoma counterparts. Importantly, understanding GR signaling in individual breast cancer subtypes has potential clinical implications because of the recent development of highly selective GR non-steroidal ligands, which represent a therapeutic approach for modulating GR activity systemically.
Collapse
Affiliation(s)
- Abigail B Clark
- Depatment of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzanne D Conzen
- Depatment of Internal Medicine, Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Chen K, Dong Y, He G, He X, Pan M, Huang X, Yu X, Xia J. UBTF mediates activation of L3MBTL2 to suppress NISCH expression through histone H2AK119 monoubiquitination modification in breast cancer. Clin Exp Metastasis 2024; 41:791-805. [PMID: 38935187 DOI: 10.1007/s10585-024-10299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2) has been related to transcriptional inhibition and chromatin compaction. Nevertheless, the biological functions and mechanisms of L3MBTL2 are undefined in breast cancer (BRCA). Here, we revealed that L3MBTL2 is responsible for the decline of Nischarin (NISCH), a well-known tumor suppressor, in BRCA, and explored the detailed mechanism. Knockdown of L3MBTL2 reduced monoubiquitination of histone H2A at lysine-119 (H2AK119ub), leading to reduced binding to the NISCH promoter and increased expression of NISCH. Meanwhile, the knockdown of L3MBTL2 decreased proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of BRCA cells, and increased apoptosis, which were abated by NISCH knockdown. Nucleolar transcription factor 1 (UBTF) induced the transcription of L3MBTL2 in BRCA, and the suppressing effects of UBTF silencing on EMT in BRCA cells were also reversed by NISCH knockdown. Knockdown of UBTF slowed tumor progression and attenuated lung tumor infiltration, whereas simultaneous knockdown of NISCH accelerated EMT and increased tumor lung metastasis. Taken together, our results show that L3MBTL2, transcriptionally activated by UBTF, exerts oncogenic functions in BRCA, by catalyzing H2AK119Ub and reducing expression of NISCH.
Collapse
Affiliation(s)
- Kun Chen
- Department of Technology and Social Services, Dazhou Vocational College of Chinese Medicine, Tongchuan District, Vocational Education Park, Dazhou, Sichuan, 635000, P.R. China
| | - Yun Dong
- Department of Traditional Chinese Medicine, Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan, 635000, P.R. China
| | - Gaojian He
- Dean's office, Dazhou Vocational College of Chinese Medicine, Dazhou, Sichuan, 635000, P.R. China
| | - Xuefeng He
- Department of Technology and Social Services, Dazhou Vocational College of Chinese Medicine, Tongchuan District, Vocational Education Park, Dazhou, Sichuan, 635000, P.R. China
| | - Meitong Pan
- Department of Technology and Social Services, Dazhou Vocational College of Chinese Medicine, Tongchuan District, Vocational Education Park, Dazhou, Sichuan, 635000, P.R. China
| | - Xuemei Huang
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, P.R. China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, P.R. China.
| | - Jiyi Xia
- Department of Technology and Social Services, Dazhou Vocational College of Chinese Medicine, Tongchuan District, Vocational Education Park, Dazhou, Sichuan, 635000, P.R. China.
- Dazhou Chinese medicine research and development center, Dazhou, Sichuan, 635000, P.R. China.
| |
Collapse
|
18
|
Streb J, Łazarczyk A, Hałubiec P, Streb-Smoleń A, Ciuruś J, Ulatowska-Białas M, Trzeszcz M, Konopka K, Hodorowicz-Zaniewska D, Szpor J. Vitamin D receptor is associated with prognostic characteristics of breast cancer after neoadjuvant chemotherapy-an observational study. Front Oncol 2024; 14:1458124. [PMID: 39411136 PMCID: PMC11476186 DOI: 10.3389/fonc.2024.1458124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background Breast cancer (BC) is the most commonly diagnosed malignant tumor in women. The disease and its subsequent treatment pose a serious burden on the quality of life of patients. Neoadjuvant chemotherapy (NAC) has become one of the crucial strategies for the management of BC. Since the identification of the vitamin D receptor (VDR) in mammary tissues, extensive mechanistic research has been conducted on its function. The expression of VDR in BC cells and the tumor microenvironment could be a new prognostic factor for BC after NAC. Patients and Methods This observational, single-center study compared data from clinical and histopathological records of 111 female subjects with the expression of VDR in different cellular and tissue components of breast specimens obtained from surgery after NAC. VDR expression was evaluated using an immunoreactive score assigned after immunohistochemistry. Intergroup comparisons and logistic regression were used to identify associations between VDR expression and clinicopathological features of BC. Results We found that the expression of VDR is associated with various clinical features (i.e., age, menopausal status, and NAC cycle number) and characteristics of prognostic significance, such as residual cancer burden class. Logistic regression analysis revealed that the expression of VDR in the nuclei and cytoplasm of surrounding normal mammary cells predicted vascular invasion and lymph node involvement. Conclusions The expression of VDR in tumor cells and their microenvironment is related to the clinicopathological characteristics of BC after NAC.
Collapse
Affiliation(s)
- Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, Cracow, Poland
- University Center of Breast Disease, University Hospital, Cracow, Poland
| | - Agnieszka Łazarczyk
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow, Poland
- Department of Pathomorphology, University Hospital, Cracow, Poland
| | - Przemysław Hałubiec
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Streb-Smoleń
- Department of Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | - Julita Ciuruś
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow, Poland
- Department of Pathomorphology, University Hospital, Cracow, Poland
| | - Martyna Trzeszcz
- Corfamed Woman’s Health Center, Wroclaw, Poland
- Department of Pathology and Clinical Cytology, University Hospital in Wroclaw, Wroclaw, Poland
| | - Kamil Konopka
- Department of Oncology, Jagiellonian University Medical College, Cracow, Poland
| | - Diana Hodorowicz-Zaniewska
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, Cracow, Poland
- Breat Unit, Department of General Surgery, University Hospital, Cracow, Poland
| | - Joanna Szpor
- University Center of Breast Disease, University Hospital, Cracow, Poland
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow, Poland
- Department of Pathomorphology, University Hospital, Cracow, Poland
| |
Collapse
|
19
|
Sharma A, Sharma N, Chahal A. Impact of Virtual Reality on Pain, ROM, Muscle Strength and Quality of Life among Breast Cancer Patients: An Integrative Review of Literature. Pain Manag Nurs 2024; 25:538-548. [PMID: 38719655 DOI: 10.1016/j.pmn.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer among women globally, with significant impacts on physical, emotional, and functional well-being. Traditional rehabilitation methods may not fully address the multifaceted challenges faced by breast cancer survivors (BCSs), prompting exploration into innovative approaches such as Virtual Reality (VR) technology. OBJECTIVE The present review aims to assess the effectiveness of VR in alleviating pain, improving Range of Motion (ROM), enhancing muscle strength, and augmenting the overall quality of life in patients undergoing breast cancer rehabilitation. METHODS A comprehensive review of existing literature was conducted, focusing on studies investigating the use of VR in breast cancer rehabilitation. PubMed, Scopus, PEDro and Google scholar were searched for articles addressing VR interventions targeting pain management, ROM improvement, muscle strength enhancement, and quality of life enhancement in breast cancer patients. RESULTS Findings yielded total 12 articles matching the selection criteria. VR technology has shown promising results in addressing the multifaceted needs of breast cancer patients. VR also serves as a distraction tool, positively impacting psychological well-being and mitigating negative psychological symptoms associated with the disease. CONCLUSION VR represents a non-pharmacological approach to pain management and rehabilitation in breast cancer patients. Its ability to engage emotional, cognitive, and attention processes contributes to its effectiveness in enhancing overall quality of life. Further research is warranted to elucidate the long-term benefits and optimal utilization of VR technology in breast cancer rehabilitation programs.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Physiotherapy, Arogyam Institute of Paramedical and Allied Sciences (Affiliated to H.N.B. Uttarakhand Medical Education University) Roorkee, Uttarakhand, India.
| | - Nidhi Sharma
- Department of Health Science, Uttaranchal College of Health Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Aksh Chahal
- Department of Physiotherapy, School of Allied Health Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Tang X, Feng Y, Zhao W, Liu R, Chen N. Prediction of non-sentinel lymph node metastases in T1-2 sentinel lymph node-positive breast cancer patients undergoing mastectomy following neoadjuvant therapy. World J Surg Oncol 2024; 22:258. [PMID: 39342230 PMCID: PMC11439197 DOI: 10.1186/s12957-024-03537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Axillary lymph node dissection (ALND) is the standard axillary management for breast cancer patients with positive sentinel lymph node biopsy (SLNB) after neoadjuvant therapy. Nevertheless, when that happens, the frequency of additional positive nodes is not properly evaluated. We aim to develop a prediction model to assess the frequency of additional nodal disease after a positive sentinel lymph node following neoadjuvant therapy. METHODS We retrospectively analyzed the ultrasound and clinicopathological characteristics of breast cancer patients with 1-3 positive sentinel lymph nodes (SLN) undergoing mastectomy after neoadjuvant therapy (NAT) at our institution, and performed univariate and multivariate logistic analyses to confirm the factors affecting non-SLN metastasis. These factors were included to establish a nomogram, and the area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were utilized to assess the validity of this model. RESULTS A total of 126 breast cancer patients were ultimately included in our study, 38 (53.5%) patients were diagnosed with non-SLN metastases of all 71 patients in training set. The results of multifactorial logistic analysis suggested that lymph node metastasis ratio (LNR), short axis of lymph node and progesterone receptor (PR) were strongly associated with non-SLN metastasis. We established a nomogram using the above three variables as predictors, which yielded an area under the curve of 0.795, and validated with a favorable AUC of 0.876. CONCLUSION The nomogram we constructed can accurately predict the likelihood of non-SLN metastasis in our patients with 1-3 positive SLN after NAT, which may help guide decision making regarding axillary management.
Collapse
Affiliation(s)
- Xiaoxi Tang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Feng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Nan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Shen F, Liu Q, Wang Y, Chen C, Ma H. Comparison of [ 18F] FDG PET/CT and [ 18F]FDG PET/MRI in the Detection of Distant Metastases in Breast Cancer: A Meta-Analysis. Clin Breast Cancer 2024:S1526-8209(24)00272-6. [PMID: 39438190 DOI: 10.1016/j.clbc.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This meta-analysis aims to assess and compare the diagnostic effectiveness of [18F] FDG PET/CT and [18F] FDG PET/MRI for distant metastases in breast cancer patients. METHODS A comprehensive search of the PubMed and Embase databases was performed to identify relevant articles until September 22, 2023. Studies were eligible to be included if they assessed the diagnostic performance of [18F] FDG PET/CT and/or [18F] FDG PET/MRI in detecting distant metastases of breast cancer patients. The DerSimonian and Laird method was used to assess sensitivity and specificity, and then transformed through the Freeman-Tukey double arcsine transformation. RESULTS 29 articles consisting of 3779 patients were finally included in this study. The overall sensitivity of [18F] FDG PET/CT in diagnosing distant metastases of breast cancer was 0.96 (95% CI: 0.93-0.98), and the overall specificity was 0.95 (95% CI: 0.92-0.97). The overall sensitivity of [18F] FDG PET/MRI was 1.00 (95% CI: 0.97-1.00), and the specificity was 0.97 (95% CI: 0.94-1.00). The results suggested that [18F] FDG PET/CT and [18F] FDG PET/MRI appears to have similar sensitivity (P = .16) and specificity (P = .30) in diagnosing distant metastases of breast cancer. CONCLUSIONS The results of our meta-analysis indicated that [18F] FDG PET/CT and [18F] FDG PET/MRI in diagnosing distant metastases of breast cancer appear to have similar sensitivity and specificity. Patients who have access to only one of these modalities will not have the accuracy of their staging compromised. In clinical practice, both of these imaging techniques have their respective strengths and limitations, and physicians should take these into account when making the most suitable choice for patients.
Collapse
Affiliation(s)
- Fangqian Shen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yishuang Wang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Can Chen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
22
|
Muhammad M, Alali M, Saifo M. Clinicopathological features, treatment patterns, and survival outcomes among Syrian patients with advanced breast cancer. Front Oncol 2024; 14:1417053. [PMID: 39328204 PMCID: PMC11424526 DOI: 10.3389/fonc.2024.1417053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Background Advanced breast cancer (ABC) is a heterogeneous disease with varied prognoses, that is affected by many clinicopathological features. This study aimed to investigate the clinicopathological characteristics, first-line treatment (FLx), and prognostic impact of these features on survival among Syrian patients with ABC. Materials and methods This retrospective cohort study included patients with ABC. The association of clinicopathological factors with survival was assessed using Kaplan-Meier curves and the log-rank test, as well as the Cox proportional hazards regression model to calculate the hazard ratio (HaR). Results A total of 423 patients with ABC were included in the study, with a median age (range) of 47 years (23-82). 83% of metastases were metachronous. Most patients (91.8%) received chemotherapy as the FLx. The median progression-free survival (PFS) and overall survival (OS) of all the patients were 7 and 16 months, respectively. The median PFS was associated with four factors, which were time of metastasis (adjusted HaR=1.861, 95% CI 1.420-2.438, P<0.0001), performance status (PS) (adjusted HaR=1.456, 95% CI 1.049-2.021, P=0.025), ovarian metastasis (adjusted HaR=7.907, 95% CI 1.049-59.576, P=0.045), and FLx (adjusted HaR=2.536, 95% CI 1.581-4.068, P<0.0001). Similarly, the OS was associated with three factors, including hormone receptors (HRs) status (adjusted HaR=1.124, 95% CI 1.009-1.252, P=0.034), time of metastasis (adjusted HaR=2.099, 95% CI 1.588-2.775, P<0.0001), and PS (adjusted HaR=1.787, 95% CI 1.429-2.233, P<0.0001). In the HR-positive/human epidermal growth receptor 2 (HER2)-negative group, endocrine therapy was significantly associated with longer PFS compared with chemotherapy (15 vs 7 months, adjusted HaR=2.699, 95% CI 1.417-5.143, P=0.003). Furthermore, there was no difference in OS between the two treatment modalities (P=0.855). Conclusions ABC survival varies depending on the location of metastases. Good PS and synchronous stage 4 disease were independent prognostic factors for longer PFS and OS. In the HR-positive/HER2-negative group, PFS for endocrine therapy was significantly longer than chemotherapy, with no differences in OS. This study confirms that endocrine therapy is preferred as an FLx for ABC in the HR-positive/HER2-negative group.
Collapse
Affiliation(s)
- Muhammad Muhammad
- Faculty of Medicine, Damascus University, Damascus, Syria
- Department of Oncology, Albairouni University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Mousa Alali
- Faculty of Medicine, Damascus University, Damascus, Syria
- Department of Oncology, Albairouni University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Maher Saifo
- Faculty of Medicine, Damascus University, Damascus, Syria
- Department of Oncology, Albairouni University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria
| |
Collapse
|
23
|
Faraz A, Kowalczyk S, Hendrixson M. Uterine Metastasis From Lobular Breast Carcinoma: A Case Report. Cureus 2024; 16:e68943. [PMID: 39381447 PMCID: PMC11460646 DOI: 10.7759/cureus.68943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
There have been a few reports of extra pelvic tumors migrating into the female genital tract. Patients with postmenopausal vaginal bleeding are typically suspected of having primary uterine cancer. We present a case of lobular breast cancer that manifested about two years later as an atypical vaginal bleeding and was found to have endometrial and myometrial metastases. Pathological evaluation of endometrial and endocervical tissue samples revealed that breast cancer was the underlying cause.
Collapse
Affiliation(s)
- Aniqa Faraz
- Internal Medicine, Cumberland Medical Center, Crossville, USA
| | - Sydni Kowalczyk
- Oncology, Lincoln Memorial University DeBusk College of Osteopathic Medicine, Harrogate, USA
| | | |
Collapse
|
24
|
Mohammed SS, Al Mahmoodi H, Yalda MI. Expression of Axl Receptor Tyrosine Kinase and Its Association With Ki-67 Proliferation Marker, BCL-2 Anti-apoptotic Protein, Hormone Receptor Status, and HER2/Neu Status in Breast Cancer Among Women From Duhok, Iraq. Cureus 2024; 16:e70204. [PMID: 39463509 PMCID: PMC11510083 DOI: 10.7759/cureus.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Breast cancer (BC) is the most prevalent cancer among women worldwide, contributing to high mortality rates, especially in Iraqi women. Detecting the disease before metastasis may increase survival chances for many patients, but that is not the case for most of them. Thus the search for new prognostic biomarkers or testing the relevance of existing ones could contribute to therapeutic decisions complementing the traditional methods, including TNM (tumor, node, and metastasis) staging, tumor grade, and other clinicopathological features in addition to the use of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu). The Axl receptor is frequently associated with invasion, migration, poor prognosis, and angiogenesis. Furthermore, its association with chemotherapy and targeted therapy resistance makes it an ideal biomarker for therapeutic targeting. Methodology This study involved 50 malignant cases with 25 benign fibroadenoma and non-neoplastic cases represented by inflammatory conditions, collected with their corresponding data from the central lab in Duhok Governorate, Iraq. Expression of Kiel 67 (Ki-67) proliferation marker and B-cell lymphoma 2 (BCL-2) anti-apoptotic protein was measured using immunohistochemistry (IHC) to estimate tumor growth and apoptosis. Gene expression of the Axl receptor was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results Cases with high Ki-67 accounted for 68% and low Ki-67 cases were 32% across the graded groups and were significantly associated with tumor grade, PR, and HER2. BCL-2-negative cases accounted for 62% and BCL-2-positive cases were 38%. It was revealed that BCL-2 had a strong correlation with age, especially in those under 50 years. As for the Axl gene expression, the average fold change in expression in the high-grade (H.) group was 1.74 times higher than in the control group, while in the low/intermediate (L.) group, it was 3.74 times higher. Additionally, when comparing these results with other variables, no significant associations were observed. Conclusion Axl receptor was not associated with all of the clinicopathological variables, the expression values were high in malignant tumors in comparison with the benign tumors, and it was found that Axl receptor expression was associated with low/intermediate grade, which is considered a favorable prognostic factor. Although Axl receptor expression was previously linked with proliferation and invasiveness in BC, its association with the Ki-67 proliferation marker and BCL-2 anti-apoptotic protein was not observed.
Collapse
Affiliation(s)
- Sada S Mohammed
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, IRQ
| | - Hanaa Al Mahmoodi
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, IRQ
| | - Mayada I Yalda
- Department of Pathology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
25
|
Ray P, Sarker DK, Uddin SJ. Bioinformatics and computational studies of chabamide F and chabamide G for breast cancer and their probable mechanisms of action. Sci Rep 2024; 14:19893. [PMID: 39191884 DOI: 10.1038/s41598-024-70854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Globally, the prevalence of breast cancer (BC) is increasing at an alarming level, despite early detection and technological improvements. Alkaloids are diverse chemical groups, and many within this class have been reported as potential anticancer compounds. Chabamide F (F) and chabamide G (G) are two dimeric amide alkaloids found in a traditional medicinal plant, Piper chaba, and possess significant cytotoxic effects. However, their scientific rationalization in BC remains unknown. Here, we aimed to investigate their potential and molecular mechanisms for BC through in silico approaches. From network pharmacology, we identified 64 BC-related genes as targets. GO and KEGG studies showed that they were involved in various biological processes and mostly expressed in BC-related pathways such as RAS, PI3K-AKT, estrogen, MAPK, and FoxO pathways. However, PPI analysis revealed SRC and AKT1 as hub genes, which play key roles in BC tumorigenesis and metastasis. Molecular docking revealed the strong binding affinity of F (- 10.7 kcal/mol) and G (- 9.4 and - 11.7 kcal/mol) for SRC and AKT1, respectively, as well as the acquisition of vital residues to inhibit them. Their long-term stability was evaluated using 200 ns molecular dynamics simulation. The RMSD, RMSF, Rg, and SASA analyses showed that the G-SRC and G-AKT1 complexes were excellently stable compared to the control, dasatinib, and capivasertib, respectively. Additionally, the PCA and DCCM analyses revealed a significant reduction in the residual correlation and motions. By contrast, the stability of the F-SRC complex was greater than that of the control, whereas it was moderately stable in complex with AKT1. The MMPBSA analysis demonstrated higher binding energies for both compounds than the controls. In particular, the binding energy of G for SRC and AKT1 was - 120.671 ± 16.997 and - 130.437 ± 19.111 kJ/mol, respectively, which was approximately twice as high as the control molecules. Van der Waal and polar solvation energies significantly contributed to this energy. Furthermore, both of them exhibited significant interactions with the binding site residues of both proteins. In summary, this study indicates that these two molecules could be a potential ATP-competitive inhibitor of SRC and an allosteric inhibitor of AKT1.
Collapse
Affiliation(s)
- Pallobi Ray
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science & Technology, Dhaka, 1230, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
26
|
Wu Y, Quan Y, Zhou D, Li Y, Wen X, Liu J, Long W. Overexpression of cytoplasmic poly(A)-binding protein 1 as a biomarker for the prognosis and selection of postoperative regimen in breast cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03663-6. [PMID: 39172332 DOI: 10.1007/s12094-024-03663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE The dysregulation of the cytoplasmic poly(A)-binding protein 1 (PABPC1) is involved in a variety of tumors but little is known about its role in human breast cancer. Therefore, the effect of PABPC1 in the prognosis and regimen selection in breast cancer patients was evaluated. METHODS A total of 791 cases of invasive breast cancer were included in this study, although only 416 were involved in subsequent analyses after the propensity score matching (PSM) test. PABPC1 expression was detected by immunohistochemistry. The relationship between PABPC1 expression and clinicopathological factors, postoperative regimens, and outcomes was determined. RESULTS In the total 791 cases, 583 cases were positive for PABPC1, but only 212 (26.8%) showed high PABPC1 expression (PABPC1-HE). The overall survival (OS) and disease-free survival (DFS) of PABPC1-HE patients after PSM were significantly worse than those in patients with PABPC1 low expression (PABPC1-LE), regardless of age, molecular type, tumor size, nodal status, or pStage. Postoperative chemotherapy (CT) increased the OS of PABPC1-HE patients but not that of PABPC1-LE patients. Among patients receiving endocrine therapy, those in the PABPC-LE group had an extended OS, while CT or chemoradiotherapy (CT/CRT) only significantly extended the OS time of PABPC-HE patients. CT/CRT did not significantly extend the survival of PABPC1-LE HER2-positive patients but extended the OS of PABPC1-HE HER2-positive patients. However, the OS of patients treated with CT/CRT + trastuzumab therapy was significantly longer than that of other patients under other therapies in the PABPC1-HE group, suggesting that PABPC1-HE might be sensitive to trastuzumab-based therapy. The multivariate analysis revealed that PABPC1-HE was an independent prognostic factor for both poor OS and DFS in breast cancer except luminal A type. CONCLUSIONS Our results revealed that PABPC1 might be considered as a biomarker to help in subtyping, as well as in the prognosis and regimen selection of breast cancer patients.
Collapse
Affiliation(s)
- Yunqiu Wu
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yi Quan
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yixian Li
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xue Wen
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Taiping Street No. 25, Luzhou, China
| | - Jun Liu
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Taiping Street No. 25, Luzhou, China
| | - Wenbo Long
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Taiping Street No. 25, Luzhou, China.
- Luzhou Key Laboratory of Precision Pathology Diagnosis for Serious Diseases, Luzhou, China.
| |
Collapse
|
27
|
Jin Q, Qi D, Zhang M, Qu H, Dong Y, Sun M, Quan C. CLDN6 inhibits breast cancer growth and metastasis through SREBP1-mediated RAS palmitoylation. Cell Mol Biol Lett 2024; 29:112. [PMID: 39169280 PMCID: PMC11337767 DOI: 10.1186/s11658-024-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Breast cancer (BC) ranks as the third most fatal malignant tumor worldwide, with a strong reliance on fatty acid metabolism. CLDN6, a candidate BC suppressor gene, was previously identified as a regulator of fatty acid biosynthesis; however, the underlying mechanism remains elusive. In this research, we aim to clarify the specific mechanism through which CLDN6 modulates fatty acid anabolism and its impact on BC growth and metastasis. METHODS Cell function assays, tumor xenograft mouse models, and lung metastasis mouse models were conducted to evaluate BC growth and metastasis. Human palmitic acid assay, triglyceride assay, Nile red staining, and oil red O staining were employed to investigate fatty acid anabolism. Reverse transcription polymerase chain reaction (RT-PCR), western blot, immunohistochemistry (IHC) assay, nuclear fractionation, immunofluorescence (IF), immunoprecipitation and acyl-biotin exchange (IP-ABE), chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP) were applied to elucidate the underlying molecular mechanism. Moreover, tissue microarrays of BC were analyzed to explore the clinical implications. RESULTS We identified that CLDN6 inhibited BC growth and metastasis by impeding RAS palmitoylation both in vitro and in vivo. We proposed a unique theory suggesting that CLDN6 suppressed RAS palmitoylation through SREBP1-modulated de novo palmitic acid synthesis. Mechanistically, CLDN6 interacted with MAGI2 to prevent KLF5 from entering the nucleus, thereby restraining SREBF1 transcription. The downregulation of SREBP1 reduced de novo palmitic acid synthesis, hindering RAS palmitoylation and subsequent endosomal sorting complex required for transport (ESCRT)-mediated plasma membrane localization required for RAS oncogenic activation. Besides, targeting inhibition of RAS palmitoylation synergized with CLDN6 to repress BC progression. CONCLUSIONS Our findings provide compelling evidence that CLDN6 suppresses the palmitic acid-induced RAS palmitoylation through the MAGI2/KLF5/SREBP1 axis, thereby impeding BC malignant progression. These results propose a new insight that monitoring CLDN6 expression alongside targeting inhibition of palmitic acid-mediated palmitoylation could be a viable strategy for treating oncogenic RAS-driven BC.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Mingzi Zhang
- The Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, 90033, CA, US
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
28
|
Coca R, Moisin A, Coca R, Diter A, Racheriu M, Tanasescu D, Popa C, Cerghedean-Florea ME, Boicean A, Tanasescu C. Exploring Therapeutic Challenges in Patients with HER2-Positive Breast Cancer-A Single-Center Experience. Life (Basel) 2024; 14:1025. [PMID: 39202767 PMCID: PMC11355619 DOI: 10.3390/life14081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer is one of the most common forms of neoplasia worldwide. The purpose of our observational study was to evaluate the status of HER2 overexpression among new cases of breast neoplasia with an impact on the natural history of breast cancer disease and therapeutic personalization according to staging. This study included 45 breast cancer patients which have an overexpression of HER2 through the mutation of the EGFR-ERBB2 receptor. Immunohistochemical staining was performed on sections of formalin-fixed paraffin-embedded breast tissue. The patients were evaluated demographically and therapeutically in all stages. The post-surgical histopathological examination revealed complete pathological responses in 19 patients and pathological responses with residual disease either at the tumor level or lymphatic or both variants in a percentage of 44% (15 cases). The disease-free interval (DFI) under anti-HER2 therapy was recorded in 41 patients, representing 91% of the study group. Anti-HER2 therapy in any therapeutic stage has shown increased efficiency in blocking these tyrosine kinase receptors, evidenced by the high percentage of complete pathological responses, as well as the considerable percentage (47%) of complete remissions and stationary disease, in relation to the HER2-positive patient group.
Collapse
Affiliation(s)
- Ramona Coca
- Clinical Medical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (R.C.); (R.C.); (A.D.); (A.B.)
- Department of Oncology, Sibiu County Emergency Clinical Hospital, B-dul Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania
| | - Andrei Moisin
- Surgical Clinical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (M.R.); (M.-E.C.-F.); (C.T.)
- Department of Surgery, Sibiu County Emergency Clinical Hospital, B-dul Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania
| | - Rafaela Coca
- Clinical Medical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (R.C.); (R.C.); (A.D.); (A.B.)
- Department of Oncology, Sibiu County Emergency Clinical Hospital, B-dul Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania
| | - Atasie Diter
- Clinical Medical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (R.C.); (R.C.); (A.D.); (A.B.)
| | - Mihaela Racheriu
- Surgical Clinical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (M.R.); (M.-E.C.-F.); (C.T.)
- Department of Radiology and Medical Imaging, Sibiu County Emergency Clinical Hospital, B-dul Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Denisa Tanasescu
- Department of Nursing and Dentistry, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania;
| | - Carmen Popa
- Department of Radiology and Medical Imaging, Sibiu County Emergency Clinical Hospital, B-dul Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Maria-Emilia Cerghedean-Florea
- Surgical Clinical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (M.R.); (M.-E.C.-F.); (C.T.)
| | - Adrian Boicean
- Clinical Medical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (R.C.); (R.C.); (A.D.); (A.B.)
| | - Ciprian Tanasescu
- Surgical Clinical Department, Faculty of General Medicine, “Lucian Blaga” University of Sibiu, Str. Lucian Blaga nr. 2A, 550169 Sibiu, Romania; (M.R.); (M.-E.C.-F.); (C.T.)
- Department of Surgery, Sibiu County Emergency Clinical Hospital, B-dul Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania
| |
Collapse
|
29
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
30
|
Boz Er AB, Er I. Targeting ITGβ3 to Overcome Trastuzumab Resistance through Epithelial-Mesenchymal Transition Regulation in HER2-Positive Breast Cancer. Int J Mol Sci 2024; 25:8640. [PMID: 39201327 PMCID: PMC11354641 DOI: 10.3390/ijms25168640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
HER2-positive breast cancer, representing 15-20% of all breast cancer cases, often develops resistance to the HER2-targeted therapy trastuzumab. Unfortunately, effective treatments for advanced HER2-positive breast cancer remain scarce. This study aims to investigate the roles of ITGβ3, and Hedgehog signaling in trastuzumab resistance and explore the potential of combining trastuzumab with cilengitide as a therapeutic strategy. Quantitative gene expression analysis was performed to assess the transcription of EMT (epithelial-mesenchymal transition) markers Slug, Snail, Twist2, and Zeb1 in trastuzumab-resistant HER2-positive breast cancer cells. The effects of ITGβ3 and Hedgehog signaling were investigated. Additionally, the combination therapy of trastuzumab and cilengitide was evaluated. Acquired trastuzumab resistance induced the transcription of Slug, Snail, Twist2, and Zeb1, indicating increased EMT. This increased EMT was mediated by ITGB3 and Hedgehog signaling. ITGβ3 regulated both the Hedgehog pathway and EMT, with the latter being independent of the Hedgehog pathway. The combination of trastuzumab and cilengitide showed a synergistic effect, reducing both EMT and Hedgehog pathway activity. Targeting ITGβ3 with cilengitide, combined with trastuzumab, effectively suppresses the Hedgehog pathway and EMT, offering a potential strategy to overcome trastuzumab resistance and improve outcomes for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Asiye Busra Boz Er
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53200, Turkey;
| | - Idris Er
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
31
|
Rodríguez-Cruz D, Boquet-Pujadas A, López-Muñoz E, Rincón-Heredia R, Paredes-Díaz R, Flores-Fortis M, Olivo-Marin JC, Guillén N, Aguilar-Rojas A. Three-dimensional cell culture conditions promoted the Mesenchymal-Amoeboid Transition in the Triple-Negative Breast Cancer cell line MDA-MB-231. Front Cell Dev Biol 2024; 12:1435708. [PMID: 39156975 PMCID: PMC11327030 DOI: 10.3389/fcell.2024.1435708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Breast cancer (BC) is the leading cause of death among women, primarily due to its potential for metastasis. As BC progresses, the extracellular matrix (ECM) produces more type-I collagen, resulting in increased stiffness. This alteration influences cellular behaviors such as migration, invasion, and metastasis. Specifically, cancer cells undergo changes in gene expression that initially promote an epithelial-to-mesenchymal transition (EMT) and subsequently, a transition from a mesenchymal to an amoeboid (MAT) migration mode. In this way, cancer cells can migrate more easily through the stiffer microenvironment. Despite their importance, understanding MATs remains challenging due to the difficulty of replicating in vitro the conditions for cell migration that are observed in vivo. Methods To address this challenge, we developed a three-dimensional (3D) growth system that replicates the different matrix properties observed during the progression of a breast tumor. We used this model to study the migration and invasion of the Triple-Negative BC (TNBC) cell line MDA-MB-231, which is particularly subject to metastasis. Results Our results indicate that denser collagen matrices present a reduction in porosity, collagen fiber size, and collagen fiber orientation, which are associated with the transition of cells to a rounder morphology with bleb-like protrusions. We quantified how this transition is associated with a more persistent migration, an enhanced invasion capacity, and a reduced secretion of matrix metalloproteinases. Discussion Our findings suggest that the proposed 3D growth conditions (especially those with high collagen concentrations) mimic key features of MATs, providing a new platform to study the physiology of migratory transitions and their role in BC progression.
Collapse
Affiliation(s)
- Daniela Rodríguez-Cruz
- Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit in Gynecology and Obstetrics No. 4 “Luis Castelazo Ayala”, Mexican Social Security Institute, Mexico City, Mexico
| | - Aleix Boquet-Pujadas
- École Polytechnique Fédérale de Lausanne, Biomedical Imaging Group, Lausanne, Switzerland
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
- National Center for Scientific Research, CNRS UMR3691, Paris, France
| | - Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit in Gynecology and Obstetrics No. 4 “Luis Castelazo Ayala”, Mexican Social Security Institute, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rodolfo Paredes-Díaz
- Microscopy Core Unit, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mauricio Flores-Fortis
- Cuajimalpa Unit, Engineering and Natural Science Doctoral Program, Metropolitan Autonomous University, Mexico City, Mexico
- Cuajimalpa Unit, Department of Natural Science, Metropolitan Autonomous University, Mexico City, Mexico
| | - Jean-Christophe Olivo-Marin
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
- National Center for Scientific Research, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
- National Center for Scientific Research, CNRS ERL9195, Paris, France
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, High Specialty Medical Unit in Gynecology and Obstetrics No. 4 “Luis Castelazo Ayala”, Mexican Social Security Institute, Mexico City, Mexico
- Bioimage Analysis Unit, Pasteur Institute, Paris, France
| |
Collapse
|
32
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Haji Molla Hoseini M. The anti-cancer properties of miR-340 plasmid-chitosan complexes (miR-340 CC) on murine model of breast cancer. J Drug Target 2024; 32:838-847. [PMID: 38805391 DOI: 10.1080/1061186x.2024.2361675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
MiRNA-340 (miR-340) has been found to have tumour-suppressing effects in breast cancer (BC). However, for clinical use, miRNAs need to be delivered safely and effectively to protect them from degradation. In our previous study, we used chitosan complexes as a safe carrier with anti-cancer properties to deliver miR-340 plasmid into 4T1 cells. This study explored further information concerning the anti-cancer impacts of both chitosan and miR-340 plasmid in a murine model of BC. Mice bearing 4T1 cells were intra-tumorally administered miR-340 plasmid-chitosan complexes (miR-340 CC). Afterwards, the potential of miR-340 CC in promoting anti-tumour immune responses was evaluated. MiR-340 CC significantly reduced tumour size, inhibited metastasis, and prolonged the survival of mice. MiR-340 CC up-regulates P-27 gene expression related to cancer cell apoptosis, and down-regulates gene expressions involved in angiogenesis and metastasis (breast regression protein-39 (BRP-39)) and CD163 as an anti-inflammatory macrophages (MQs) marker. Furthermore, CD47 expression as a MQs immune check-point was remarkably decreased after miR-340 CC treatment. The level of IL-12 in splenocytes of miR-340 CC treated mice increased, while the level of IL-10 decreased, indicating anti-cancer immune responses. Our findings display that miR-340 CC can be considered as a promising therapy in BC.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Li H, Li X, Du W. Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncol Rep 2024; 52:107. [PMID: 38940326 PMCID: PMC11234250 DOI: 10.3892/or.2024.8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Xia Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| |
Collapse
|
34
|
Geremew H, Golla EB, Simegn MB, Abate A, Ali MA, Kumbi H, Wondie SG, Mengstie MA, Tilahun WM. Late-stage diagnosis: The driving force behind high breast cancer mortality in Ethiopia: A systematic review and meta-analysis. PLoS One 2024; 19:e0307283. [PMID: 39028722 PMCID: PMC11259299 DOI: 10.1371/journal.pone.0307283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION Breast cancer continues to be the most common malignancy and the leading cause of cancer-related deaths in Ethiopia. The poor prognosis and high mortality rate of breast cancer patients in the country are largely caused by late-stage diagnosis. Hence, understanding the epidemiology of late-stage diagnosis is essential to address this important problem. However, previous reports in Ethiopia indicated inconsistent findings. Therefore, this literature review was conducted to generate dependable evidence by summarizing the prevalence and determinants of late-stage diagnosis among breast cancer patients in Ethiopia. METHODS Pertinent articles were retrieved by systematically searching on major electronic databases and gray literature. Data were extracted into an Excel spreadsheet and analyzed using the STATA 17 statistical software. The pooled estimates were summarized using the random effect meta-analysis model. Heterogeneity and small study effect were evaluated using the I2 statistics and Egger's regression test in conjunction with the funnel plot, respectively. Meta-regression, sub-group analysis, and sensitivity analysis were also employed. Protocol registration number: CRD42024496237. RESULTS The pooled prevalence of late-stage diagnosis after combining reports of 24 studies with 8,677 participants was 65.85 (95% CI: 58.38, 73.32). Residence (adjusted OR: 1.92; 95% CI: 1.45, 2.53), patient delay at their first presentation (adjusted OR: 2.65; 95% CI: 1.56, 4.49), traditional medicine use (adjusted OR: 2.54; 95% CI: 1.89, 3.41), and breast self-examination practice (adjusted OR: 0.28; 95% CI: 0.09, 0.88) were significant determinants of late-stage diagnosis. CONCLUSION Two-thirds of breast cancer patients in Ethiopia were diagnosed at an advanced stage. Residence, delay in the first presentation, traditional medicine use, and breast self-examination practice were significantly associated with late-stage diagnosis. Public education about breast cancer and its early detection techniques is crucial to reduce mortality and improve the survival of patients. Besides, improving access to cancer screening services is useful to tackle the disease at its curable stages.
Collapse
Affiliation(s)
- Habtamu Geremew
- College of Health Science, Oda Bultum University, Chiro, Ethiopia
| | | | - Mulat Belay Simegn
- Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Alegntaw Abate
- Department of Medical Laboratory Science, College of Health Science, Oda Bultum University, Chiro, Ethiopia
| | - Mohammed Ahmed Ali
- Department of Midwifery, College of Health Science, Oda Bultum University, Chiro, Ethiopia
| | - Hawi Kumbi
- Department of Laboratory, Adama Hospital Medical College, Adama, Ethiopia
| | - Smegnew Gichew Wondie
- Department of Human Nutrition, College of Medicine and Health Science, Mizan Tepi University, Mizan Aman, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Werkneh Melkie Tilahun
- Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
35
|
Castillo-Sanchez R, Garcia-Hernandez A, Torres-Alamilla P, Cortes-Reynosa P, Candanedo-Gonzales F, Salazar EP. Benzo[a]pyrene promotes an epithelial-to-mesenchymal transition process in MCF10A cells and mammary tumor growth and brain metastasis in female mice. Mol Carcinog 2024; 63:1319-1333. [PMID: 38629425 DOI: 10.1002/mc.23726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 06/12/2024]
Abstract
Breast cancer is the most frequent neoplasia in developed countries and the leading cause of death in women worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process through which epithelial cells decrease or lose their epithelial characteristics and gain mesenchymal properties. EMT mediates tumor progression, because tumor cells acquire the capacity to execute the multiple steps of invasion and metastasis. Benzo[a]pyrene (B[a]P) is an environmental organic pollutant generated during the burning of fossil fuels, wood, and other organic materials. B[a]P exposition increases the incidence of breast cancer, and induces migration and/or invasion in MDA-MB-231 and MCF-7 breast cancer cells. However, the role of B[a]P in the induction of an EMT process and metastasis of mammary carcinoma cells has not been studied in detail. In this study, we demonstrate that B[a]P induces an EMT process in MCF10A mammary non-tumorigenic epithelial cells. In addition, B[a]P promotes the formation of larger tumors in Balb/cJ mice inoculated with 4T1 cells than in untreated mice and treated with dimethyl sulfoxide (DMSO). B[a]P also increases the number of mice with metastasis to brain and the total number of brain metastatic nodules in Balb/cJ mice inoculated with 4T1 cells compared with untreated mice and treated with DMSO. In conclusion, B[a]P induces an EMT process in MCF10A cells and the growth of mammary tumors and metastasis to brain in Balb/cJ mice inoculated with 4T1 cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Alejandra Garcia-Hernandez
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Pablo Torres-Alamilla
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Fernando Candanedo-Gonzales
- Departamento de Patologia, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Ciudad de Mexico, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
36
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
37
|
Hwang Y, Kim Y, Min J, Jung J. Identification of novel membrane markers in circulating tumor cells of mesenchymal state in breast cancer. Biochem Biophys Rep 2024; 38:101652. [PMID: 38375422 PMCID: PMC10875194 DOI: 10.1016/j.bbrep.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Cancer metastasis is a major cause of cancer-related deaths worldwide. The ability to detect and monitor circulating tumor cells (CTCs) offers a promising approach to early detection and management of metastasis. Although studies on epithelial markers for CTC detection are actively underway, the discovery of mesenchymal markers has not been studied sufficiently. In this study, we developed a new pipeline to identify membrane markers in CTCs of mesenchymal state in breast cancer based on expression profiles of the 310 CTC samples. From the total CTC samples, only CTC samples in the mesenchymal state were collected by employing hierarchical clustering. In samples belonging to the mesenchymal state, we calculated the correlation coefficients between 1995 membrane genes and ZEB2, which was determined as the key mesenchymal signature, allowing the 84 positively correlated genes. Furthermore, to ensure clinical significance, Kaplan-Meier analysis were performed on the 124 breast cancer patients, resulting in the 14 genes predicting prognosis. By exploring genes commonly identified in the both analyses, F11R and PTGIR were characterized as membrane markers in CTCs of mesenchymal state in breast cancer, which were evaluated by enriched terms, literature evidence, and relevant molecular pathways. We expect that the results will be helpful to more effective strategies for metastasis management.
Collapse
Affiliation(s)
- Yongdeuk Hwang
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Yurim Kim
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Jiin Min
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Jinmyung Jung
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| |
Collapse
|
38
|
Dumbuya I, Pereira AM, Tolaymat I, Al Dalaty A, Arafat B, Webster M, Pierscionek B, Khoder M, Najlah M. Exploring Disulfiram's Anticancer Potential: PLGA Nano-Carriers for Prolonged Drug Delivery and Potential Improved Therapeutic Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1133. [PMID: 38998738 PMCID: PMC11243172 DOI: 10.3390/nano14131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Disulfiram (DS) has been shown to have potent anti-cancer activity; however, it is also characterised by its low water solubility and rapid metabolism in vivo. Biodegradable polylactic-co-glycolic acid (PLGA) polymers have been frequently employed in the manufacturing of PLGA nano-carrier drug delivery systems. Thus, to develop DS-loaded PLGA nanoparticles (NPs) capable of overcoming DS's limitations, two methodologies were used to formulate the NPs: direct nanoprecipitation (DNP) and single emulsion/solvent evaporation (SE), followed by particle size reduction. The DNP method was demonstrated to produce NPs of superior characteristics in terms of size (151.3 nm), PDI (0.083), charge (-37.9 mV), and loading efficiency (65.3%). Consequently, NPs consisting of PLGA and encapsulated DS coated with mPEG2k-PLGA at adjustable ratios were prepared using the DNP method. Formulations were then characterised, and their stability in horse serum was assessed. Results revealed the PEGylated DS-loaded PLGA nano-carriers to be more efficient; hence, in-vitro studies testing these formulations were subsequently performed using two distinct breast cancer cell lines, showing great potential to significantly enhance cancer therapy.
Collapse
Affiliation(s)
- Ibrahim Dumbuya
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
| | - Ana Maria Pereira
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
- GMPriority Pharma Ltd., Priors Way, Coggeshall CO6 1TW, UK
| | - Ibrahim Tolaymat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
| | - Adnan Al Dalaty
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
| | - Basel Arafat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
| | - Matt Webster
- University of Winchester Sparkford Road, Winchester SO22 4NR, UK
| | - Barbara Pierscionek
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
| | - Mouhamad Khoder
- Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK
| |
Collapse
|
39
|
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J. Breast Cancer: Extracellular Matrix and Microbiome Interactions. Int J Mol Sci 2024; 25:7226. [PMID: 39000333 PMCID: PMC11242809 DOI: 10.3390/ijms25137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
40
|
Pan JJ, Xie SZ, Zheng X, Xu JF, Xu H, Yin RQ, Luo YL, Shen L, Chen ZR, Chen YR, Yu SZ, Lu L, Zhu WW, Lu M, Qin LX. Acetyl-CoA metabolic accumulation promotes hepatocellular carcinoma metastasis via enhancing CXCL1-dependent infiltration of tumor-associated neutrophils. Cancer Lett 2024; 592:216903. [PMID: 38670307 DOI: 10.1016/j.canlet.2024.216903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.
Collapse
Affiliation(s)
- Jun-Jie Pan
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Xin Zheng
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Jian-Feng Xu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Hao Xu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Rui-Qi Yin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yun-Ling Luo
- Department of Infectious Diseases, Rui'an People's Hospital, Wenzhou Medical University, 168 Ruifeng Avenue, Zhejiang 325200, China
| | - Li Shen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zheng-Ru Chen
- Department of Infectious Diseases, Rui'an People's Hospital, Wenzhou Medical University, 168 Ruifeng Avenue, Zhejiang 325200, China
| | - Yi-Ran Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Shi-Zhe Yu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Lu Lu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Wen-Wei Zhu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Lun-Xiu Qin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road, Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
41
|
Zhang Y, Chen F, Balic M, Creighton CJ. An essential gene signature of breast cancer metastasis reveals targetable pathways. Breast Cancer Res 2024; 26:98. [PMID: 38867323 PMCID: PMC11167932 DOI: 10.1186/s13058-024-01855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The differential gene expression profile of metastatic versus primary breast tumors represents an avenue for discovering new or underappreciated pathways underscoring processes of metastasis. However, as tumor biopsy samples are a mixture of cancer and non-cancer cells, most differentially expressed genes in metastases would represent confounders involving sample biopsy site rather than cancer cell biology. METHODS By paired analysis, we defined a top set of differentially expressed genes in breast cancer metastasis versus primary tumors using an RNA-sequencing dataset of 152 patients from The Breast International Group Aiming to Understand the Molecular Aberrations dataset (BIG-AURORA). To filter the genes higher in metastasis for genes essential for breast cancer proliferation, we incorporated CRISPR-based data from breast cancer cell lines. RESULTS A significant fraction of genes with higher expression in metastasis versus paired primary were essential by CRISPR. These 264 genes represented an essential signature of breast cancer metastasis. In contrast, nonessential metastasis genes largely involved tumor biopsy site. The essential signature predicted breast cancer patient outcome based on primary tumor expression patterns. Pathways underlying the essential signature included proteasome degradation, the electron transport chain, oxidative phosphorylation, and cancer metabolic reprogramming. Transcription factors MYC, MAX, HDAC3, and HCFC1 each bound significant fractions of essential genes. CONCLUSIONS Associations involving the essential gene signature of breast cancer metastasis indicate true biological changes intrinsic to cancer cells, with important implications for applying existing therapies or developing alternate therapeutic approaches.
Collapse
Affiliation(s)
- Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX, 77030, USA
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Unit for Translational Breast Cancer Research, Medical University of Graz, Graz, Austria
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
42
|
Morla-Barcelo PM, Laguna-Macarrilla D, Cordoba O, Matheu G, Oliver J, Roca P, Nadal-Serrano M, Sastre-Serra J. Unraveling malignant phenotype of peritumoral tissue: transcriptomic insights into early-stage breast cancer. Breast Cancer Res 2024; 26:89. [PMID: 38831458 PMCID: PMC11145834 DOI: 10.1186/s13058-024-01837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Early-stage invasive ductal carcinoma displays high survival rates due to early detection and treatments. However, there is still a chance of relapse of 3-15% after treatment. The aim of this study was to uncover the distinctive transcriptomic characteristics and monitoring prognosis potential of peritumoral tissue in early-stage cases. METHODS RNA was isolated from tumoral, peritumoral, and non-tumoral breast tissue from surgical resection of 10 luminal early-stage invasive ductal carcinoma patients. Transcriptome expression profiling for differentially expressed genes (DEGs) identification was carried out through microarray analysis. Gene Ontology and KEGG pathways enrichment analysis were explored for functional characterization of identified DEGs. Protein-Protein Interactions (PPI) networks analysis was performed to identify hub nodes of peritumoral tissue alterations and correlated with Overall Survival and Relapse Free Survival. RESULTS DEGs closely related with cell migration, extracellular matrix organization, and cell cycle were upregulated in peritumoral tissue compared to non-tumoral. Analyzing PPI networks, we observed that the proximity to tumor leads to the alteration of gene modules involved in cell proliferation and differentiation signaling pathways. In fact, in the peritumoral area were identified the top ten upregulated hub nodes including CDK1, ESR1, NOP58, PCNA, EZH2, PPP1CA, BUB1, TGFBR1, CXCR4, and CCND1. A signature performed by four of these hub nodes (CDK1, PCNA, EZH2, and BUB1) was associated with relapse events in untreated luminal breast cancer patients. CONCLUSIONS In conclusion, our study characterizes in depth breast peritumoral tissue providing clues on the changes that tumor signaling could cause in patients with early-stage breast cancer. We propose that the use of a four gene signature could help to predict local relapse. Overall, our results highlight the value of peritumoral tissue as a potential source of new biomarkers for early detection of relapse and improvement in invasive ductal carcinoma patient's prognosis.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Breast Neoplasms/metabolism
- Gene Expression Profiling
- Transcriptome
- Gene Expression Regulation, Neoplastic
- Neoplasm Staging
- Prognosis
- Protein Interaction Maps/genetics
- Middle Aged
- Biomarkers, Tumor/genetics
- Gene Regulatory Networks
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Phenotype
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Aged
- Adult
Collapse
Affiliation(s)
- Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciéncies de la Salut (IUNICS), Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
| | - David Laguna-Macarrilla
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
- Departamento de Patología, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - Octavi Cordoba
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
- Servicio de Obstetricia y Ginecología, Hospital Universitari de Son Espases, Palma, Illes Balears, Spain
- Facultat de Medicina, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Gabriel Matheu
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
- Departamento de Patología, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciéncies de la Salut (IUNICS), Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciéncies de la Salut (IUNICS), Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Mercedes Nadal-Serrano
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciéncies de la Salut (IUNICS), Universitat de les Illes Balears, Palma, Illes Balears, Spain.
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain.
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciéncies de la Salut (IUNICS), Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, Palma, Illes Balears, Spain
- CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Balkrishna A, Mittal R, Malik R, Verma H, Mehra KS, Chaturvedi H, Okeshwar, Ishdev S, Kumar A, Arya V. Comparative analysis of Doxycycline and Ayurvedic herbs to target metastatic breast cancer: An in-silico approach. Biomedicine (Taipei) 2024; 14:74-79. [PMID: 38939099 PMCID: PMC11204128 DOI: 10.37796/2211-8039.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 06/29/2024] Open
Abstract
Background Metastasis of breast cancer cells to distant sites including lungs, liver, lymph node, brain and many more have substantially affected the overall survival outcome and distant metastasis free survival rate amongst the diseased individuals. Several pre-clinical and clinical studies were carried out to determine the potency of vigorous inhibitors but they extensively deteriorated the patient's quality of life. Hence, there exists an urgent need to explore potent natural remedy to fight against metastatic breast cancer. Methods Ayurvedic medicinal plants documented in literature for their ability to fight against breast cancer was screened and their respective active moieties were evaluated to exert inhibitory effect against MMP9. Drug like efficacy of phytochemicals were determined using Molecular docking, MD Simulation, ADMET and MM-PBSA and were further compared with synthetic analogs i.e. Doxycycline. Results Out of 1000 phytochemicals, 12 exerted highest binding affinity (BA) even more than -9.0 kcal/mol that was significantly higher in comparison to Doxycycline which exhibited BA of -7.3 kcal/mol. In comparison to 37 × 30 × 37 Å, 53 × 45 × 66 Å offered best binding site and the highest BA was exhibited by Viscosalactone at LYS104, ASP185, MET338, LEU39, ASN38. During MD Simulation, Viscosalactone-MMP9 complex remained stable for 20 ns and the kinetic, electrostatic and potential energies were observed to be better than Doxycycline. Furthermore, Viscosalactone obtained from Withania somnifera justified the Lipinski's Rule of 5. Conclusion Viscosalactone obtained from W. somnifera may act as promising drug candidate to fight against metastatic breast cancer.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar,
India
- Department of Yog Science, University of Patanjali, Haridwar,
India
- Department of Sanskrit, University of Patanjali, Haridwar,
India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar,
India
| | - Rohan Malik
- Department of Yog Science, University of Patanjali, Haridwar,
India
| | - Hariom Verma
- Department of Yog Science, University of Patanjali, Haridwar,
India
| | | | | | - Okeshwar
- Department of Sanskrit, University of Patanjali, Haridwar,
India
| | - Swami Ishdev
- Department of Sanskrit, University of Patanjali, Haridwar,
India
| | - Ajay Kumar
- Department of Sanskrit, University of Patanjali, Haridwar,
India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar,
India
| |
Collapse
|
44
|
Ren L, Wang L, Yi X, Tan Y, Yi L, He J, Li D. Ultrasound Microbubble-Stimulated miR-145-5p Inhibits Malignant Behaviors of Breast Cancer Cells by Targeting ACTG1. Ultrasound Q 2024; 40:136-143. [PMID: 38350033 DOI: 10.1097/ruq.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ABSTRACT Ultrasound-targeted microbubble destruction (UTMD) technology combines ultrasound with a variety of functional microbubble vectors to enhance the transfection and expression of target genes, and has become a promising noninvasive method for localized gene transfer, which is widely used in gene therapy for cancer. This research aimed to explore the role of UTMD-mediated miR-145-5p on breast cancer (BC) tumorigenesis and the underlying mechanisms. To achieve UTMD-mediated miR-145-5p overexpression, BC cells were cotransfected with microbubbles (MBs) and miR-145-5p mimics. The BC cell malignant phenotypes were assessed through CCK-8, wound healing, and transwell assays. MiR-145-5p and actin gamma 1 (ACTG1) binding relationship was verified through luciferase reporter and RNA pull-down assays. MiR-145-5p and ACTG1 levels in BC cells and tissues were detected through RT-qPCR and Western blotting. ACTG1 was upregulated, whereas miR-145-5p was downregulated in BC cells and tissues. MiR-145-5p targeted ACTG1 and negatively regulated its level in BC cells. Overexpressing miR-145-5p restrained BC cell growth, migration, and invasion. Ultrasound-targeted microbubble destruction improved the overexpression efficiency of miR-145-5p and enhanced the suppressive influence on BC cell malignant phenotypes. In addition, ACTG1 overexpression compromises the repression of UTMD-mediated miR-145-5p on cellular behaviors in BC. Ultrasound-targeted microbubble destruction-delivered miR-145-5p hindered malignant behaviors of BC cells through downregulating ACTG1.
Collapse
Affiliation(s)
| | - Li Wang
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Xuelin Yi
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Yang Tan
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Lingxian Yi
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | - Jinlan He
- Yichang Yiling People's Hospital, Yichang, Hubei, China
| | | |
Collapse
|
45
|
Zhang W, Liang ZQ, He RQ, Huang ZG, Wang XM, Wei MY, Su HL, Liu ZS, Zheng YS, Huang WY, Zhang HJ, Dang YW, Li SH, Cheng JW, Chen G, He J. The upregulation and transcriptional regulatory mechanisms of Extra spindle pole bodies like 1 in bladder cancer: An immunohistochemistry and high-throughput screening Evaluation. Heliyon 2024; 10:e31192. [PMID: 38813236 PMCID: PMC11133711 DOI: 10.1016/j.heliyon.2024.e31192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
Background This study aimed to explore the expression level and transcriptional regulation mechanism of Extra Spindle Pole Bodies Like 1 (ESPL1) in bladder cancer (BC). Methods A multicentre database of samples (n = 1391) was assayed for ESPL1 mRNA expression in BC and validated at the protein level by immunohistochemical (IHC) staining of in-house samples (n = 202). Single-cell sequencing (scRNA-seq) analysis and enrichment analysis explored ESPL1 distribution and their accompanying molecular mechanisms. ATAC-seq, ChIP-seq and Hi-C data from multiple platforms were used to investigate ESPL1 upstream transcription factors (TFs) and potential epigenetic regulatory mechanisms. Immune-related analysis, drug sensitivity and molecular docking of ESPL1 were also calculated. Furthermore, upstream microRNAs and the binding sites of ESPL1 were predicted. The expression level and early screening efficacy of miR-299-5p in blood (n = 6625) and tissues (n = 537) were examined. Results ESPL1 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 0.75; 95 % CI = 0.09, 1.40), and IHC staining of in-house samples verified this finding (p < 0.0001). ESPL1 was predominantly distributed in BC epithelial cells. Coexpressed genes of ESPL1 were enriched in cell cycle-related signalling pathways, and ESPL1 might be involved in the communication between epithelial and residual cells in the Hippo, ErbB, PI3K-Akt and Ras signalling pathways. Three TFs (H2AZ, IRF5 and HIF1A) were detected upstream of ESPL1 and presence of promoter-super enhancer and promoter-typical enhancer loops. ESPL1 expression was correlated with various immune cell infiltration levels. ESPL1 expression might promote BC growth and affect the sensitivity and therapeutic efficacy of paclitaxel and gemcitabine in BC patients. As an upstream regulator of ESPL1, miR-299-5p expression was downregulated in both the blood and tissues, possessing great potential for early screening. Conclusions ESPL1 expression was upregulated in BC and was mainly distributed in epithelial cells. Elevated ESPL1 expression was associated with TFs at the upstream transcription start site (TSS) and distant chromatin loops of regulatory elements. ESPL1 might be an immune-related predictive and diagnostic marker for BC, and the overexpression of ESPL1 played a cancer-promoting role and affected BC patients' sensitivity to drug therapy. miR-299-5p was downregulated in BC blood and tissues and was also expected to be a novel marker for early screening.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Xiao-Min Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Mao-Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Hui-Ling Su
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yi-Sheng Zheng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
46
|
Peng X, Dong H, Zhang L, Liu S. Role of cancer stem cell ecosystem on breast cancer metastasis and related mouse models. Zool Res 2024; 45:506-517. [PMID: 38682432 PMCID: PMC11188611 DOI: 10.24272/j.issn.2095-8137.2023.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem, including tumor cells and microenvironment. Breast cancer stem cells (BCSCs) constitute a small population of cancer cells with unique characteristics, including their capacity for self-renewal and differentiation. Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer. The tumor microenvironment (TME), composed of stromal cells, immune cells, blood vessel cells, fibroblasts, and microbes in proximity to cancer cells, is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival, growth, and dissemination, thereby influencing metastatic ability. Hence, a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis. In this review, we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis, as well as the underlying regulatory mechanisms. Furthermore, we provide an overview of relevant mouse models used to study breast cancer metastasis, as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis. Overall, this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.
Collapse
Affiliation(s)
- Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China
| | - Haonan Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China. E-mail:
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences
- State Key Laboratory of Genetic Engineering
- Cancer Institutes
- Department of Oncology
- Key Laboratory of Breast Cancer in Shanghai
- Shanghai Key Laboratory of Medical Epigenetics
- Shanghai Key Laboratory of Radiation Oncology
- International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology
- Shanghai Medical College
- Fudan University, Shanghai 200032, China. E-mail:
| |
Collapse
|
47
|
Kwok T, Yeguvapalli S, Chitrala KN. Identification of Genes Crucial for Biological Processes in Breast Cancer Liver Metastasis Relapse. Int J Mol Sci 2024; 25:5439. [PMID: 38791477 PMCID: PMC11122209 DOI: 10.3390/ijms25105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, when advancing to a metastatic stage, involves the liver, impacting over 50% of cases and significantly diminishing survival rates. Presently, a lack of tailored therapeutic protocols for breast cancer liver metastasis (BCLM) underscores the need for a deeper understanding of molecular patterns governing this complication. Therefore, by analyzing differentially expressed genes (DEGs) between primary breast tumors and BCLM lesions, we aimed to shed light on the diversities of this process. This research investigated breast cancer liver metastasis relapse by employing a comprehensive approach that integrated data filtering, gene ontology and KEGG pathway analysis, overall survival analysis, identification of the alteration in the DEGs, visualization of the protein-protein interaction network, Signor 2.0, identification of positively correlated genes, immune cell infiltration analysis, genetic alternation analysis, copy number variant analysis, gene-to-mRNA interaction, transcription factor analysis, molecular docking, and identification of potential treatment targets. This study's integrative approach unveiled metabolic reprogramming, suggesting altered PCK1 and LPL expression as key in breast cancer metastasis recurrence.
Collapse
|
48
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
49
|
Wu M, Huang X, Wu B, Zhu M, Zhu Y, Yu L, Lan T, Liu J. The endonuclease FEN1 mediates activation of STAT3 and facilitates proliferation and metastasis in breast cancer. Mol Biol Rep 2024; 51:553. [PMID: 38642158 DOI: 10.1007/s11033-024-09524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The metastasis accounts for most deaths from breast cancer (BRCA). Understanding the molecular mechanisms of BRCA metastasis is urgently demanded. Flap Endonuclease 1 (FEN1), a pivotal factor in DNA metabolic pathways, contributes to tumor growth and drug resistance, however, little is known about the role of FEN1 in BRCA metastasis. METHODS AND RESULTS In this study, FEN1 expression and its clinical correlation in BRCA were investigated using bioinformatics, showing being upregulated in BRCA samples and significant relationships with tumor stage, node metastasis, and prognosis. Immunohistochemistry (IHC) staining of local BRCA cohort indicated that the ratio of high FEN1 expression in metastatic BRCA tissues rose over that in non-metastatic tissues. The assays of loss-of-function and gain-of-function showed that FEN1 enhanced BRCA cell proliferation, migration, invasion, xenograft growth as well as lung metastasis. It was further found that FEN1 promoted the aggressive behaviors of BRCA cells via Signal Transducer and Activator of Transcription 3 (STAT3) activation. Specifically, the STAT3 inhibitor Stattic thwarted the FEN1-induced enhancement of migration and invasion, while the activator IL-6 rescued the decreased migration and invasion caused by FEN1 knockdown. Additionally, overexpression of FEN1 rescued the inhibitory effect of nuclear factor-κB (NF-κB) inhibitor BAY117082 on phosphorylated STAT3. Simultaneously, the knockdown of FEN1 attenuated the phosphorylation of STAT3 promoted by the NF-κB activator tumor necrosis factor α (TNF-α). CONCLUSIONS These results indicate a novel mechanism that NF-κB-driven FEN1 contributes to promoting BRCA growth and metastasis by STAT3 activation.
Collapse
Affiliation(s)
- Min Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| | - Xiaoshan Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Benmeng Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yaqin Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| |
Collapse
|
50
|
Xu J, Zhou Y, He S, Wang Y, Ma J, Li C, Liu Z, Zhou X. Activation of the YY1-UGT2B7 Axis Promotes Mammary Estrogen Homeostasis Dysregulation and Exacerbates Breast Tumor Metastasis. Drug Metab Dispos 2024; 52:408-421. [PMID: 38575184 DOI: 10.1124/dmd.124.001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.
Collapse
Affiliation(s)
- Jiahao Xu
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Ying Zhou
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Shiqing He
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Yinghao Wang
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Jiachen Ma
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Changwen Li
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Zhao Liu
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| | - Xueyan Zhou
- 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China (J.X., Y.Z., S.H., Y.W., J.M., X.Z.); The First People's Hospital of Changzhou, Changzhou, China (J.X.); Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China (Z.L.); and Department of Breast Surgery, Xuzhou Central Hospital XuZhou Clinical School of Xuzhou Medical University, Xuzhou, China (C.L.)
| |
Collapse
|