1
|
Maiese K. Diabetes mellitus and glymphatic dysfunction: Roles for oxidative stress, mitochondria, circadian rhythm, artificial intelligence, and imaging. World J Diabetes 2025; 16:98948. [DOI: 10.4239/wjd.v16.i1.98948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments. These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis. New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States
| |
Collapse
|
2
|
Pal B, Ghosh R, Sarkar RD, Roy GS. The irreversible, towards fatalic neuropathy: from the genesis of diabetes. Acta Diabetol 2024:10.1007/s00592-024-02429-4. [PMID: 39636401 DOI: 10.1007/s00592-024-02429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Diabetic neuropathy is the most prevalent diabetes-associated complication that negatively impacts the quality of life of the patients. The extensive complications of diabetic peoples in the world are the leading cause of neuropathic pain, and over-activation of different biochemical signalling process induces the pathogenic progression and are also corresponding the epidemic painful symptom of diabetic neuropathy. The main prevalent abnormality is neuropathy, which further causing distal symmetric polyneuropathy and focal neuropathy. The exact pathological complication of diabetes associated neuropathic algesia is still unclear, but the alteration in micro-angiopathy associated nerve fibre loss, hyper polyol formation, MAPK signalling, WNT signalling, tau-derived insulin signalling processes are well known. Furthermore, the post-translational modification of different ion channels, oxidative and nitrosative stress, brain plasticity and microvascular changes can contributes the development of neuropathic pain. However, in the current review we discussed about these pathogenic development of neuropathic pain from the genesis of diabetes, and how diabetes affects the physiological and psychological health, and quality of life of the patients. Furthermore, the treatment of diabetic neuropathy with conventional monotherapy and emerging therapy are discussed. In addition, the treatment with phytochemical constituents their mechanisms and clinical evidences are also reported. The future investigation is required on pathological alteration occurs in neuropathic individuals, and on molecular mechanisms as well as the adverse effect of phytochemicals to determine all aspects of neuropathic algesia including effective treatments, which will prevents the sympathetic pain in patients.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Mothabari, Malda, West Bengal, India.
| | - Rashmi Ghosh
- Bengal College of Pharmaceutical Science & Research, Durgapur, West Bengal, India
| | - Raktimava Das Sarkar
- Department of Pharmaceutical Technology, Bengal School of Technology, Sugandha, Delhi Road, Chinsurah, Hooghly, West Bengal, India
| | - Gouranga Sundar Roy
- Department of Pharmaceutical Technology, Bengal School of Technology, Sugandha, Delhi Road, Chinsurah, Hooghly, West Bengal, India
| |
Collapse
|
3
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Wang S, Wang X, Chen J, Wang M, Zhang C. Identification of key genes and biological pathways associated with vascular aging in diabetes based on bioinformatics and machine learning. Aging (Albany NY) 2024; 16:9369-9385. [PMID: 38809515 PMCID: PMC11210242 DOI: 10.18632/aging.205870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Vascular aging exacerbates diabetes-associated vascular damage, a major cause of microvascular and macrovascular complications. This study aimed to elucidate key genes and pathways underlying vascular aging in diabetes using integrated bioinformatics and machine learning approaches. Gene expression datasets related to vascular smooth muscle cell (VSMC) senescence and diabetic vascular aging were analyzed. Differential expression analysis identified 428 genes associated with VSMC senescence. Functional enrichment revealed their involvement in cellular senescence, ECM-receptor interaction, PI3K-Akt and AGE-RAGE signaling pathways. Further analysis of diabetic vascular aging datasets revealed 52 differentially expressed genes, enriched in AMPK signaling, AGE-RAGE signaling, cellular senescence, and VEGF signaling pathways. Machine learning algorithms, including LASSO regression and SVM-RFE, pinpointed six key genes: TFB1M, FOXRED2, LY75, DALRD3, PI4K2B, and NDOR1. Immune cell infiltration analysis demonstrated correlations between diabetic vascular aging, the identified key genes, and infiltration levels of plasma cells, M1 macrophages, CD8+ T cells, eosinophils, and regulatory T cells. In conclusion, this study identified six pivotal genes (TFB1M, FOXRED2, LY75, DALRD3, PI4K2B, and NDOR1) closely associated with diabetic vascular aging through integrative bioinformatics and machine learning approaches. These genes are linked to alterations in the immune microenvironment during diabetic vascular aging. This study provides a reference and basis for molecular mechanism research, biomarker mining, and diagnosis and treatment evaluation of diabetes-related vascular aging.
Collapse
Affiliation(s)
- Sha Wang
- Department of Endocrinology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xia Wang
- Department of Endocrinology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jing Chen
- Department of Endocrinology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Chi Zhang
- Department of Endocrinology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
5
|
Yang DR, Wang MY, Zhang CL, Wang Y. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne) 2024; 15:1359255. [PMID: 38645427 PMCID: PMC11026568 DOI: 10.3389/fendo.2024.1359255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.
Collapse
Affiliation(s)
- Dong-Rong Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Celebi Torabfam G, Porsuk MH. The Role of the Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Vascular Diseases: A Therapeutic Approach. Angiology 2024:33197231226275. [PMID: 38171493 DOI: 10.1177/00033197231226275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cardiovascular and bone diseases contribute independently to mortality and global health. The exact mechanisms involved in the pathophysiology shared between bone and vascular diseases are not well defined. Endothelial cells and osteoblasts communicate during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. One shared mechanism may involve osteoprotegerin (OPG) and its ligand Receptor Activator of NF-κB Ligand (RANKL). The RANKL/OPG ratio is an important modulator for the skeletal, immunological, and vascular systems. OPG levels are elevated due to either osteogenic causes or inflammatory responses in the vasculature. The data obtained from clinical and in vitro studies support the role of the RANKL/OPG ratio as a potential marker for the progression of endothelial damage. Therefore, determining the therapeutic approaches for the targeting RANKL/OPG ratio and evaluating its usage as a biomarker in cardiovascular and bone pathophysiology are needed. By integrating the protective and disease-causing role of OPG with its ligand, this review outlines the role of the RANKL/OPG ratio at the molecular level. We also consider targeted therapeutic approaches.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Melis Hazal Porsuk
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul, Turkey
| |
Collapse
|
7
|
Maiese K. Artificial Intelligence and Disease Signature Pathways: Driving Innovation to Elucidate Underlying Pathogenic Mechanisms. Curr Neurovasc Res 2024; 21:229-233. [PMID: 38910427 DOI: 10.2174/1567202621999240621122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
8
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
9
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Ji X, Yang X, Gu X, Chu L, Sun S, Sun J, Song P, Mu Q, Wang Y, Sun X, Su D, Su T, Hou S, Lu Y, Ma C, Liu M, Zhang T, Zhang W, Liu Y, Wan Q. CUL3 induces mitochondrial dysfunction via MRPL12 ubiquitination in renal tubular epithelial cells. FEBS J 2023; 290:5340-5352. [PMID: 37526061 DOI: 10.1111/febs.16919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease worldwide and the strongest predictor of mortality in patients with diabetes. Despite its significance, the pathological mechanism underlying the onset and progression of DKD remains incompletely understood. In this study, we have shown that mitochondrial ribosomal protein L12 (MRPL12) plays a significant role in DKD by modulating mitochondrial function. We demonstrated that MRPL12 was mainly ubiquitinated at K150 in renal tubular epithelial cells. We have found that Cullin3 (CUL3), an E3 ubiquitin ligase, directly interacts with MRPL12 and induces the K63-linked ubiquitination of MRPL12, resulting in mitochondrial biosynthesis dysfunction. Moreover, under high-glucose (HG) conditions in renal tubular epithelial cells, we observed up-regulation of CUL3 expression, significant increase in CUL3-mediated ubiquitination of MRPL12 and dysregulation of mitochondrial biosynthesis. Notably, CUL3 knockdown stabilised the MRPL12 protein and protected mitochondrial biosynthesis under HG conditions. Our findings provide novel insight into how CUL3 affects mitochondrial biosynthesis in renal tubular epithelial cells through MRPL12 ubiquitination and suggest a potential therapeutic strategy for DKD in the future.
Collapse
Affiliation(s)
- Xingzhao Ji
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoli Yang
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
| | - Xia Gu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lingju Chu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Sun
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Song
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Mu
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Wang
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoming Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dun Su
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Su
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
| | - Shaoshuai Hou
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Lu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
| | - Chen Ma
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingqiang Liu
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyi Zhang
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weiying Zhang
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Liu
- Department of Allergy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan central hospital, Shandong University, Jinan, China
- Center of Cell Metabolism and Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
12
|
Zhang F, Wang S, Zhao C, Jiang D, Wang Y, Qi J, Li Y. D-beta-hydroxybutyrate reduced the enhanced cardiac microvascular endothelial FoxO1 to play protective roles in diabetic rats and high glucose-stimulated human cardiac microvascular endothelial cells. Tissue Cell 2023; 81:102031. [PMID: 36701897 DOI: 10.1016/j.tice.2023.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The O subfamily of forkhead (FoxO) 1 may participate in the pathogenesis of diabetic microvascular endothelial injury. However, it is unknown whether D-beta-hydroxybutyrate (BHB) regulates cardiac microvascular endothelial FoxO1 to play protective roles in diabetes. In the study, limb microvascular morphological changes, endothelial distribution of the tight junction protein Claudin-5 and FoxO1, and FoxO1 content in limb tissue from clinical patients were evaluated. Then the effects of BHB on cardiac microvascular morphological changes, cardiac FoxO1 generation and its microvascular distribution in diabetic rats were measured. And the effects of BHB on FoxO1 generation in high glucose (HG)-stimulated human cardiac microvascular endothelial cells (HCMECs) were further analyzed. The results firstly confirmed the enhanced limb microvascular FoxO1 distribution, with reduced Claudin-5 and endothelial injury in clinical patients. Then the elevated FoxO1 generation and its enhanced cardiac microvascular distribution were verified in diabetic rats and HG-stimulated HCMECs. However, BHB inhibited the enhanced cardiac FoxO1 generation and its microvascular distribution with attenuation of endothelial injury in diabetic rats. Furthermore, BHB reduced the HG-stimulated mRNA expression and protein content of FoxO1 in HCMECs. In conclusion, BHB reduced the enhanced cardiac microvascular endothelial FoxO1 to play protective roles in diabetic rats and HG-stimulated HCMECs.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China; Department of Surgery, First Hospital of Hebei Medical University, Hebei, People's Republic of China
| | - Shuai Wang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China
| | - Chao Zhao
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China
| | - Di Jiang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China.
| | - Yanning Li
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Hebei, People's Republic of China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China.
| |
Collapse
|