1
|
Rouleau M, Schwab M, Klein K, Tremmel R, Haag M, Schaeffeler E, Guillemette C. The liver proteome of individuals with a natural UGT2B17 complete deficiency. Sci Rep 2025; 15:5458. [PMID: 39953065 PMCID: PMC11828848 DOI: 10.1038/s41598-025-89160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Glucuronidation is a crucial pathway for the metabolism and detoxification of drugs and endobiotics, and primarily occurs in the liver. UGT2B17 is one of the 22 glycosyltransferases (UGT) that catalyze this reaction. In a large proportion of the population, UGT2B17 is absent due to complete gene deletion. We hypothesized that a UGT2B17 human deficiency affects the composition and function of the liver proteome, potentially provoking compensatory responses, and altering interconnected pathways and regulatory networks. The objective was to elucidate the liver proteome of UGT2B17-deficient individuals. Liver specimens from UGT2B17-deficient and proficient individuals were compared by mass spectrometry-based proteomics using data-independent acquisition. In UGT2B17-deficient livers, 80% of altered proteins showed increased abundance with a notable enrichment in various metabolic and chemical defense pathways, cellular stress and immune-related responses. Enzymes involved in the homeostasis of steroids, nicotinamide, carbohydrate and energy metabolism, and sugar pathways were also more abundant. Some of these changes support compensatory mechanisms, but do not involve other UGTs. An increased abundance of non-metabolic proteins suggests an adaptation to endoplasmic reticulum stress, and activation of immune responses. Data implies a disrupted hepatocellular homeostasis in UGT2B17-deficient individuals and offers new perspectives on functions and phenotypes associated with a complete UGT2B17 deficiency.
Collapse
Affiliation(s)
- Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc-UL), Faculty of Pharmacy and Université Laval Cancer Research Center, Université Laval, R4701.5, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
- Departements of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc-UL), Faculty of Pharmacy and Université Laval Cancer Research Center, Université Laval, R4701.5, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.
- Canada Research Chair in Pharmacogenomics, Université Laval, Quebec, Canada.
| |
Collapse
|
2
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2025; 77:100014. [PMID: 39952686 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or are in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, for example, somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for >5 decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information, which derives from both the tumor and the germline genome, and taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular tumor boards, in which cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. SIGNIFICANCE STATEMENT: The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, the full potential of targeted therapy remains untapped owing to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Innovation and Service Unit for Bioinformatics and Precision Medicine, DKFZ, Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany; DKTK, DKFZ, Partner Site Tuebingen, Tuebingen, Germany; NCT SouthWest, a partnership between DKFZ and University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Kölz C, Gaugaz FZ, Handin N, Schaeffeler E, Tremmel R, Winter S, Klein K, Zanger UM, Artursson P, Schwab M, Nies AT. In silico and biological analyses of missense variants of the human biliary efflux transporter ABCC2: effects of novel rare missense variants. Br J Pharmacol 2024; 181:4593-4609. [PMID: 39096023 DOI: 10.1111/bph.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE The ATP-dependent biliary efflux transporter ABCC2, also known as multidrug resistance protein 2 (MRP2), is essential for the cellular disposition and detoxification of various xenobiotics including drugs as well as endogenous metabolites. Common functionally relevant ABCC2 genetic variants significantly alter drug responses and contribute to side effects. The aim of this study was to determine functional consequences of rare variants identified in subjects with European ancestry using in silico tools and in vitro analyses. EXPERIMENTAL APPROACH Targeted next-generation sequencing of the ABCC2 gene was used to identify novel variants in European subjects (n = 143). Twenty-six in silico tools were used to predict functional consequences. For biological validation, transport assays were carried out with membrane vesicles prepared from cell lines overexpressing the newly identified ABCC2 variants and estradiol β-glucuronide and carboxydichlorofluorescein as the substrates. KEY RESULTS Three novel rare ABCC2 missense variants were identified (W227R, K402T, V489F). Twenty-five in silico tools predicted W227R as damaging and one as potentially damaging. Prediction of functional consequences was not possible for K402T and V489F and for the common linked variants V1188E/C1515Y. Characterisation in vitro showed increased function of W227R, V489F and V1188E/C1515Y for both substrates, whereas K402T function was only increased for carboxydichlorofluorescein. CONCLUSION AND IMPLICATIONS In silico tools were unable to accurately predict the substrate-dependent increase in function of ABCC2 missense variants. In vitro biological studies are required to accurately determine functional activity to avoid misleading consequences for drug therapy.
Collapse
Affiliation(s)
- Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Mykkänen AJH, Tarkiainen EK, Taskinen S, Neuvonen M, Paile-Hyvärinen M, Lilius TO, Tapaninen T, Klein K, Schwab M, Backman JT, Tornio A, Niemi M. Genome-Wide Association Study of Atorvastatin Pharmacokinetics: Associations With SLCO1B1, UGT1A3, and LPP. Clin Pharmacol Ther 2024; 115:1428-1440. [PMID: 38493369 DOI: 10.1002/cpt.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].
Collapse
Affiliation(s)
- Anssi J H Mykkänen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Taskinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuomas O Lilius
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany
- Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Zwirner S, Abu Rmilah AA, Klotz S, Pfaffenroth B, Kloevekorn P, Moschopoulou AA, Schuette S, Haag M, Selig R, Li K, Zhou W, Nelson E, Poso A, Chen H, Amiot B, Jia Y, Minshew A, Michalak G, Cui W, Rist E, Longerich T, Jung B, Felgendreff P, Trompak O, Premsrirut PK, Gries K, Muerdter TE, Heinkele G, Wuestefeld T, Shapiro D, Weissbach M, Koenigsrainer A, Sipos B, Ab E, Zacarias MO, Theisgen S, Gruenheit N, Biskup S, Schwab M, Albrecht W, Laufer S, Nyberg S, Zender L. First-in-class MKK4 inhibitors enhance liver regeneration and prevent liver failure. Cell 2024; 187:1666-1684.e26. [PMID: 38490194 PMCID: PMC11011246 DOI: 10.1016/j.cell.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.
Collapse
Affiliation(s)
- Stefan Zwirner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; HepaRegeniX GmbH, Tübingen 72072, Germany
| | - Anan A Abu Rmilah
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Sabrina Klotz
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Bent Pfaffenroth
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Philip Kloevekorn
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Athina A Moschopoulou
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Svenja Schuette
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Roland Selig
- HepaRegeniX GmbH, Tübingen 72072, Germany; Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Kewei Li
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Erek Nelson
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Antti Poso
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany
| | - Harvey Chen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Bruce Amiot
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Yao Jia
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Minshew
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Michalak
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Cui
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Elke Rist
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | - Philipp Felgendreff
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| | - Omelyan Trompak
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | | | - Katharina Gries
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Thomas E Muerdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Georg Heinkele
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Torsten Wuestefeld
- Laboratory for In Vivo Genetics & Gene Therapy, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University of Singapore, Singapore 637551, Singapore
| | | | | | - Alfred Koenigsrainer
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of General-, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany
| | - Eiso Ab
- ZoBio B.V., Leiden 2333 CH, the Netherlands
| | | | | | | | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | | | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| | - Scott Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA.
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen 72076, Germany; iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD(2)), Tübingen 72076, Germany.
| |
Collapse
|
6
|
Zhai Q, Moes DJAR, van Gelder T, van der Lee M, Sanders J, Bemelman FJ, de Fijter JW, Klein K, Schwab M, Swen JJ. The effect of genetic variants in the transcription factor TSPYL family on the CYP3A4 mediated cyclosporine metabolism in kidney transplant patients. Clin Transl Sci 2024; 17:e13729. [PMID: 38380703 PMCID: PMC10880038 DOI: 10.1111/cts.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
CYP3A4 activity shows considerable interindividual variability. Although studies indicate 60%-80% is heritable, common single nucleotide variants (SNVs) in CYP3A4 together only explain ~10%. Transcriptional factors, such as the testis-specific Y-encoded-like proteins (TSPYLs) family, have been reported to regulate the expression of CYP enzymes including CYP3A4 in vitro. Here, we investigated the effect of genetic variants in TSPYL on CYP3A4 activity using data from a clinical study and a human liver bank. Five SNVs (rs3828743, rs10223646, rs6909133, rs1204807, and rs1204811) in TSPYL were selected because of a reported effect on CYP3A4 expression in vitro or suggested clinical effect. For the clinical study, whole blood concentrations, clinical data, and DNA were available from 295 kidney transplant recipients participating in the prospective MECANO study. A multivariate pharmacokinetic model adjusted for body weight, steroid treatment, and CYP3A4 genotype was used to assess the effect of the genetic variants on cyclosporine clearance. In multivariate analysis, homozygous carriers of rs3828743 had a 18% lower cyclosporin clearance compared to the wild-type and heterozygous patients (28.72 vs. 35.03 L/h, p = 0.018) indicating a lower CYP3A4 activity and an opposite direction of effect compared to the previously reported increased CYP3A4 expression. To validate, we tested associations between rs3828743 and CYP3A4 mRNA and protein expression as well as enzyme activity with data from a liver bank (n = 150). No association with any of these end points was observed. In conclusion, the totality of evidence is not in support of a significant role for TSPYL SNV rs3828743 in explaining variability in CYP3A4 activity.
Collapse
Affiliation(s)
- Qinglian Zhai
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike van der Lee
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jan‐Stephan Sanders
- Department of NephrologyUniversity Medical Center GroningenGroningenThe Netherlands
| | | | | | - Kathrin Klein
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, and Pharmacy and BiochemistryUniversity of TübingenTübingenGermany
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, and Pharmacy and BiochemistryUniversity of TübingenTübingenGermany
| | - Jesse J. Swen
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
7
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Ciarimboli G. Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease and Disease Treatment. Int J Mol Sci 2023; 24:ijms24087212. [PMID: 37108379 PMCID: PMC10138362 DOI: 10.3390/ijms24087212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This editorial summarizes the 22 scientific papers published in the Special Issue "Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment" of the International Journal of Molecular Sciences [...].
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine and Nephrology, Medical Clinic D, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|