1
|
Deng M, Pan J, Sun H, Zhang J, He H, Wang Z, Fu F, Liu X, Zhu G, Khabibulla P, Kayumov J. Utilization of deep eutectic solvent as a degumming protocol for raw silk: Towards performance and mechanism elucidation. Int J Biol Macromol 2024; 274:132770. [PMID: 38834121 DOI: 10.1016/j.ijbiomac.2024.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment. Compared to traditional alkali methods, DES could quickly remove about 26.5 % of sericin in just 40 min, and its degumming efficiency hardly decrease after seven cycles. Owing to the "tear off" degumming mechanism of DES molecules with "large volume", the resulted sericin has a large molecular weight of 250 kDa. In addition, because of antibacterial activity and stabilizing effect, no aggregation occurred and strong bacterial growth inhibition was triggered in the obtained sericin/DES solution. Furthermore, thanks to the good retention of crystalline region and slight swelling of amorphous area, the sericin-free fibroin showed significant increases in moisture absorption and dye uptake, while maintaining good mechanical properties. Featured with high efficiency, reduction in water pollution, easy storage of sericin as well as high quality fibers, this approach is of great potential for silk wet processing.
Collapse
Affiliation(s)
- Mingxiu Deng
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiana Pan
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haixun Sun
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongfan He
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengfeng Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Guocheng Zhu
- Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Parpiev Khabibulla
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology. 7, Kasansay Street, Namangan 160115, Uzbekistan
| | - Juramirza Kayumov
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology. 7, Kasansay Street, Namangan 160115, Uzbekistan
| |
Collapse
|
2
|
Lee HG, Jang MJ, Um IC. Fabrication, Structural Characteristics, and Properties of Sericin-Coated Wool Nonwoven Fabrics. Int J Mol Sci 2023; 24:14750. [PMID: 37834199 PMCID: PMC10572829 DOI: 10.3390/ijms241914750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, nonwoven fabrics from natural silk have attracted considerable attention for biomedical and cosmetic applications because of their good mechanical properties and cytocompatibility. Although these fabrics can be easily fabricated using the binding character of sericin, the high cost of silk material may restrict its industrial use in certain areas. In this study, sericin was added as a binder to a cheaper material (wool) to prepare wool-based nonwoven fabrics and investigate the effect of the amount of sericin added on the structural characteristics and properties of the wool nonwoven fabric. It was found using SEM that sericin coated the surface of wool fibers and filled the space between them. With an increase in sericin addition, the porosity, moisture regain, and the contact angle of the sericin-coated wool nonwoven fabric decreased. The maximum stress and initial Young's modulus of the nonwoven fabric increased with the increase in sericin amount up to 32.5%, and decreased with a further increase in the amount of sericin. Elongation at the end steadily decreased with the increase in sericin addition. All of the nonwoven fabrics showed good cytocompatibility, which increased with the amount of sericin added. These results indicate that sericin-coated wool-based nonwoven fabrics may be successfully prepared by adding sericin to wool fibers, and that the properties of these fabrics may be diversely controlled by altering the amount of sericin added, making them promising candidates for biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Hye Gyeoung Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Lee HG, Jang MJ, Park BD, Um IC. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers (Basel) 2023; 15:3405. [PMID: 37631462 PMCID: PMC10459888 DOI: 10.3390/polym15163405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Silk sericin has garnered the attention of researchers as a promising biomaterial because of its good biocompatibility and high water retention. However, despite its useful properties, the poor storage stability of sericin has restricted its extensive use in biorelated applications. This study extracted sericin from silkworm cocoon, dried and stored it as a solid, and then dissolved it in hot water conditions to improve the storage stability of sericin for its use. The dissolution behavior of the extracted sericin solids was examined in conjunction with the structural characteristics and properties of dissolved sericin. Consequently, the results of solution viscosity, gel strength, crystallinity index, and thermal decomposition temperature indicated that the molecular weight (MW) of the dissolved sericin remained constant until a dissolution time of 5 min, following which deterioration was observed. The optimum condition of dissolution of the extracted sericin solid was 5 min at 90 °C. Conclusively, the extracted sericin could be stored in a dry state and dissolved to prepare redissolved sericin aqueous solution with the same MW as extracted sericin, thereby improving the storage stability of the sericin aqueous solution.
Collapse
Affiliation(s)
- Hye Gyeoung Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Kim YE, Bae YJ, Jang MJ, Um IC. Effect of Sericin Content on the Structural Characteristics and Properties of New Silk Nonwoven Fabrics. Biomolecules 2023; 13:1186. [PMID: 37627251 PMCID: PMC10452508 DOI: 10.3390/biom13081186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, natural silk nonwoven fabrics have attracted attention in biomedical and cosmetic applications because of their excellent biocompatibility, mechanical properties, and easy preparation. Herein, silk nonwoven fabrics were prepared by carding silk filaments to improve their productivity, and the effect of sericin content on the structure and properties of silk nonwoven fabrics was investigated. Owing to the binding effect of sericin in silk, a natural silk nonwoven fabric was successfully prepared through carding, wetting, and hot press treatments. Sericin content affected the structural characteristics and properties of the silk nonwoven fabrics. As the sericin content increased, the silk nonwoven fabrics became more compact with reduced porosity and thickness. Further, with increasing sericin content, the crystallinity and elongation of the silk nonwoven fabrics decreased while the moisture regain and the maximum stress increased. The thermal stability of most silk nonwoven fabrics was not affected by the sericin content. However, silk nonwoven fabrics without sericin had a lower thermal decomposition temperature than other nonwoven fabrics. Regardless of the sericin content, all silk nonwoven fabrics exhibited optimal cell viability and are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Yu Jeong Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| |
Collapse
|
5
|
Choi YY, Jang MJ, Park BD, Um IC. Fabrication, Structure, and Properties of Nonwoven Silk Fabrics Prepared with Different Cocoon Layers. Int J Mol Sci 2023; 24:11485. [PMID: 37511244 PMCID: PMC10380708 DOI: 10.3390/ijms241411485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, five different nonwoven silk fabrics were fabricated with silk fibers from different cocoon layers, and the effect of the cocoon layer on the structural characteristics and properties of the nonwoven silk fabric was examined. The diameter of the silk fiber and thickness of the nonwoven silk fabric decreased from the outer to the inner cocoon layer. More amino acids with higher hydrophilicity (serine, aspartic acid, and glutamic acid) and lower hydrophilicity (glycine and alanine) were observed in the outer layers. From the outer to the inner layer, the overall crystallinity and contact angle of the nonwoven silk fabric increased, whereas its yellowness index, moisture retention, and mechanical properties decreased. Regardless of the cocoon layer at which the fiber was sourced, the thermal stability of fibroin and sericin and good cell viability remained unchanged. The results of this study indicate that the properties of nonwoven silk fabric can be controlled by choosing silk fibers from the appropriate cocoon layers. Moreover, the findings in this study will increase the applicability of nonwoven silk fabric in the biomedical and cosmetic fields, which require specific properties for industrialization.
Collapse
Affiliation(s)
- Yun Yeong Choi
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Structural Characteristics and Properties of Cocoon and Regenerated Silk Fibroin from Different Silkworm Strains. Int J Mol Sci 2023; 24:ijms24054965. [PMID: 36902396 PMCID: PMC10003124 DOI: 10.3390/ijms24054965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Silk has attracted the attention of researchers as a biomedical and cosmetic material because of its good biocompatibility and cytocompatibility. Silk is produced from the cocoons of silkworms, which have various strains. In this study, silkworm cocoons and silk fibroins (SFs) were obtained from ten silkworm strains, and their structural characteristics and properties were examined. The morphological structure of the cocoons depended on the silkworm strains. The degumming ratio of silk ranged from 22.8% to 28% depending on the silkworm strains. The highest and lowest solution viscosities of SF were shown by 9671 and 9153, respectively, showing a 12-fold difference. The silkworm strains of 9671, KJ5, and I-NOVI showed a two-fold higher work of ruptures for the regenerated SF film than 181 and 2203, indicating that the silkworm strains considerably influence the mechanical properties of the regenerated SF film. Regardless of the silkworm strain, all silkworm cocoons showed good cell viability, making them suitable candidates for advanced functional biomaterials.
Collapse
|
7
|
Lee JH, Park BK, Um IC. Preparation of Highly Crystalline Silk Nanofibrils and Their Use in the Improvement of the Mechanical Properties of Silk Films. Int J Mol Sci 2022; 23:ijms231911344. [PMID: 36232641 PMCID: PMC9570172 DOI: 10.3390/ijms231911344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their commendable biocompatibility, regenerated silk fibroin (RSF) films have attracted considerable research interest. However, the poor mechanical properties of RSF films have limited their use in various biomedical applications. In this study, a novel, highly crystalline silk fibril was successfully extracted from silk by combining degumming with ultrasonication. Ultrasonication accelerated the development of silk nanofibrils measuring 130–200 nm on the surface of the over-degummed silk fibers, which was confirmed via scanning electron microscopy. Additionally, the crystallinity index of silk fibril was found to be significantly higher (~68%) than that of conventionally degummed silk (~54%), as confirmed by the Fourier-transform infrared (FTIR) spectroscopy results. Furthermore, the breaking strength and elongation of the RSF film were increased 1.6 fold and 3.4 fold, respectively, following the addition of 15% silk nanofibrils. Thus, the mechanical properties of the RSF film were remarkably improved by the addition of the silk nanofibrils, implying that it can be used as an excellent reinforcing material for RSF films.
Collapse
Affiliation(s)
- Ji Hye Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea
| | - Bo Kyung Park
- Buildings and Transportation Science Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence:
| |
Collapse
|