1
|
Zhou L, Song W, Liu T, Yan T, He Z, He W, Lv J, Zhang S, Dai X, Yuan L, Shi L. Multi-omics insights into anti-colitis benefits of the synbiotic and postbiotic derived from wheat bran arabinoxylan and Limosilactobacillus reuteri. Int J Biol Macromol 2024; 278:134860. [PMID: 39163956 DOI: 10.1016/j.ijbiomac.2024.134860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Exploring nutritional therapies that manipulate tryptophan metabolism to activate AhR signaling represents a promising approach for mitigating chronic colitis. Arabinoxylan is a bioactive constituent abundant in wheat bran. Here, we comprehensively investigated anti-colitis potentials of wheat bran arabinoxylan (WBAX), its synbiotic and postbiotic derived from WBAX and Limosilactobacillus reuteri WX-94 (i.e., a probiotic strain exhibiting tryptophan metabolic activity). WBAX fueled L. reuteri and promoted microbial conversion of tryptophan to AhR ligands during in vitro fermentation in the culture medium and in the fecal microbiota from type 2 diabetes. The WBAX postbiotic outperformed WBAX and its synbiotic in augmenting efficacy of tryptophan in restoring DSS-disturbed serum immune markers, colonic tight junction proteins and gene profiles involved in amino acid metabolism and FoxO signaling. The WBAX postbiotic remodeled gut microbiota and superiorly enhanced AhR ligands (i.e., indole metabolites and bile acids), alongside with elevation in colonic AhR and IL-22. Associations between genera and metabolites modified by the postbiotic and colitis in human were verified and strong binding capacities between metabolites and colitis-related targets were demonstrated by molecular docking. Our study advances the novel perspective of WBAX in manipulating tryptophan metabolism and anti-colitis potentials of WBAX postbiotic via promoting gut microbiota-dependent AhR signaling.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Yan
- School of Food Science and Engineering, South China University of Technology, Guangdong 510641, China
| | - Ziyan He
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Weitai He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyi Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoshuang Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen, China
| | - Li Yuan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
2
|
Luo Z, Liu Y, Wang X, Fan F, Yang Z, Luo D. Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases. Biochem Pharmacol 2024; 230:116554. [PMID: 39332693 DOI: 10.1016/j.bcp.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Zhenzhen Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
3
|
Mao Q, Wang X, Cai H, Yang J, Zhang Y, Min W, Qian Q, Zeng Y. Research Progress on the Correlation of Atopic Dermatitis with Gut Microbiota. Clin Cosmet Investig Dermatol 2024; 17:1613-1619. [PMID: 39006130 PMCID: PMC11244069 DOI: 10.2147/ccid.s442551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/02/2024] [Indexed: 07/16/2024]
Abstract
Atopic dermatitis (AD) is a common skin disease, the pathogenesis of which has not been fully elucidated. The gut microbiota is the largest micro-ecosystem in the human body that affects the immune system and skin barrier function. Recent studies have shown that in addition to the environmental factors, skin barrier, genetic factors and immune response, gut microbiota disturbance may also cause AD. This review described the correlation of AD with gut microbiota and existing research status of AD treatment via targeting gut microbiota.
Collapse
Affiliation(s)
- Qiuyu Mao
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Wang
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haibin Cai
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Yang
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yiwen Zhang
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Wei Min
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Qihong Qian
- Department of Dermatology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Wang L, Ren B, Wu S, Song H, Xiong L, Wang F, Shen X. Current research progress, opportunities, and challenges of Limosillactobacillus reuteri-based probiotic dietary strategies. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38920093 DOI: 10.1080/10408398.2024.2369946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Limosillactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., stands out as the most extensively researched probiotic. Its remarkable intestinal adhesion has led to widespread applications in both the food and medical sectors. Notably, recent research highlights the probiotic efficacy of L. reuteri sourced from breast milk, particularly in influencing social behavior and mitigating atopic dermatitis. In this review, our emphasis is on surveying recent literature regarding the promotion of host's health by L. reuteri. We aim to provide a concise summary of the latest regulatory effects and potential mechanisms attributed to L. reuteri in the realms of metabolism, brain- and immune-related functions. The mechanism through which L. reuteri promotes host health by modulating the intestinal microenvironment primarily involves promoting intestinal epithelial renewal, bolstering intestinal barrier function, regulating gut microbiota and its metabolites, and suppressing inflammation and immune responses. Additionally, this review delves into new technologies, identifies shortcomings, and addresses challenges in current L. reuteri research. Finally, the application prospects of L. reuteri are provided. Therefore, a better understanding of the role and mechanisms of L. reuteri will contribute significantly to the development of new probiotic functional foods and enable precise, targeted interventions for various diseases.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shufeng Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
5
|
Sathyasaikumar KV, Blanco-Ayala T, Zheng Y, Schwieler L, Erhardt S, Tufvesson-Alm M, Poeggeler B, Schwarcz R. The Tryptophan Metabolite Indole-3-Propionic Acid Raises Kynurenic Acid Levels in the Rat Brain In Vivo. Int J Tryptophan Res 2024; 17:11786469241262876. [PMID: 38911967 PMCID: PMC11191616 DOI: 10.1177/11786469241262876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Alterations in the composition of the gut microbiota may be causally associated with several brain diseases. Indole-3-propionic acid (IPrA) is a tryptophan-derived metabolite, which is produced by intestinal commensal microbes, rapidly enters the circulation, and crosses the blood-brain barrier. IPrA has neuroprotective properties, which have been attributed to its antioxidant and bioenergetic effects. Here, we evaluate an alternative and/or complementary mechanism, linking IPrA to kynurenic acid (KYNA), another neuroprotective tryptophan metabolite. Adult Sprague-Dawley rats received an oral dose of IPrA (200 mg/kg), and both IPrA and KYNA were measured in plasma and frontal cortex 90 minutes, 6 or 24 hours later. IPrA and KYNA levels increased after 90 minutes and 6 hours (brain IPrA: ~56- and ~7-fold; brain KYNA: ~4- and ~3-fold, respectively). In vivo microdialysis, performed in the medial prefrontal cortex and in the striatum, revealed increased KYNA levels (~2.5-fold) following the administration of IPrA (200 mg/kg, p.o), but IPrA failed to affect extracellular KYNA when applied locally. Finally, treatment with 100 or 350 mg IPrA, provided daily to the animals in the chow for a week, resulted in several-fold increases of IPrA and KYNA levels in both plasma and brain. These results suggest that exogenously supplied IPrA may provide a novel strategy to affect the function of KYNA in the mammalian brain.
Collapse
Affiliation(s)
- Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Tonali Blanco-Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez,” Mexico City, Mexico
| | - Yiran Zheng
- Departments of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lilly Schwieler
- Departments of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sophie Erhardt
- Departments of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Germany
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
6
|
Zhang S, Fang X, Xu B, Zhou Y, Li F, Gao Y, Luo Y, Yao X, Liu X. Comprehensive analysis of phenotypes and transcriptome characteristics reveal the best atopic dermatitis mouse model induced by MC903. J Dermatol Sci 2024; 114:104-114. [PMID: 38806322 DOI: 10.1016/j.jdermsci.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Although several mouse models of exogenous-agent-induced atopic dermatitis (AD) are currently available, the lack of certainty regarding their similarity with human AD has limited their scientific value. Thus, comprehensive evaluation of the characteristics of mouse models and their similarity with human AD is essential. OBJECTIVE To compare six different exogenous-agent-induced AD mouse models and find out the optimum models for study. METHODS Female BALB/c mice underwent induction of AD-like dermatitis by MC903 alone or in combination with ovalbumin (OVA), dinitrofluorobenzene (DNFB) alone or in combination with OVA, OVA alone, or Staphylococcus aureus. Gross phenotype, total immunoglobulin E (IgE) level, histopathological manifestations, and skin lesion transcriptome were analyzed, and metagenomic sequencing of the gut microbiome was performed. RESULTS The DNFB plus OVA model showed the highest disease severity, while the OVA model showed the lowest severity. The MC903 and MC903 plus OVA models showed high expression of T-helper (Th)2- and Th17-related genes; the DNFB and DNFB plus OVA models showed upregulation of Th1-, Th2-, and Th17-related genes; while the S. aureus inoculation model showed more enhanced Th1 and Th17 immune responses. In contrast to the other models, the OVA-induced model showed the lowest expression levels of inflammation-related genes, while the MC903 model shared the largest overlap with human AD profiles. The intestinal microbiota of all groups showed significant differences after modeling. CONCLUSION Each AD mouse model exhibited different characteristics. The MC903 model was the best to recapitulate most features of human AD among these exogenous-agent-induced AD models.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Fang Li
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yuwen Gao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
7
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
8
|
C. Bergeron C, Costa MC, Segura M, de Souza LB, Bleuzé M, Sauvé F. Bacterial microbiota and proinflammatory cytokines in the anal sacs of treated and untreated atopic dogs: Comparison with a healthy control group. PLoS One 2024; 19:e0298361. [PMID: 38814946 PMCID: PMC11139270 DOI: 10.1371/journal.pone.0298361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/24/2024] [Indexed: 06/01/2024] Open
Abstract
The pathogenesis of anal sacculitis has not been extensively investigated, although atopic dogs seem to be predisposed to the disease. The aim of this study was therefore to characterize and compare the bacterial microbiota and pro-inflammatory cytokines in the anal sacs of dogs from three groups (healthy dogs, untreated atopic dogs and atopic dogs receiving antipruritic treatment or allergen-specific immunotherapy) in order to determine whether changes could be at the origin of anal sacculitis in atopic dogs. Bacterial populations of anal sac secretions from fifteen healthy dogs, fourteen untreated and six treated atopic dogs were characterized by sequencing the V4 region of the 16S rRNA gene using Illumina technology. Proinflammatory cytokines were analyzed with the Luminex multiplex test. Community membership and structure were significantly different between the anal sacs of healthy and untreated atopic dogs (P = 0.002 and P = 0.003, respectively) and between those of untreated and treated atopic dogs (P = 0.012 and P = 0.017, respectively). However, the community structure was similar in healthy and treated atopic dogs (P = 0.332). Among the proinflammatory cytokines assessed, there was no significant difference between groups, except for interleukin 8 which was higher in the anal sacs of untreated atopic dogs compared to treated atopic dogs (P = 0.02), and tumor necrosis factor-alpha which was lower in the anal sacs of healthy dogs compared to treated atopic dogs (P = 0.04). These results reveal a dysbiosis in the anal sacs of atopic dogs, which may partially explain the predisposition of atopic dogs to develop bacterial anal sacculitis. Treatments received by atopic dogs (oclacitinib, desloratadine and allergen-specific immunotherapy) shift the microbiota of the anal sacs towards that of healthy dogs. Further studies are required to identify significant cytokines contributing to anal sacculitis in atopic dogs.
Collapse
Affiliation(s)
- Camylle C. Bergeron
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Lucilene Bernardi de Souza
- Centre Hospitalier Universitaire Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Marêva Bleuzé
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Frédéric Sauvé
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
9
|
Wang Z, Zhang J, Yuan J, Min F, Gao J, Liu W, Huang M, Wu Y, Chen H. Oral administration of egg ovalbumin allergen induces dysregulation of tryptophan metabolism in sensitized BALB/c mice. Food Funct 2024; 15:4375-4388. [PMID: 38546528 DOI: 10.1039/d3fo05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Food allergy (FA), triggered by specific dietary allergens, has emerged as a substantial global concern for food safety and public health. While studies have elucidated changes in immune cells and cytokines associated with allergen exposure, a comprehensive analysis of the host's metabolic features and the interaction between metabolites and the gut microbiota has not been conducted. In this study, egg allergen ovalbumin (OVA) was administered by the oral route to sensitized BALB/c mice to faithfully replicate key aspects of human FA, including severe allergic diarrhea, mast cell infiltration, and elevated levels of serum IgE, mMCPT-1, and Th2 cell hallmark cytokines (such as IL-4, IL-5, and IL-13). Furthermore, the untargeted and targeted metabolomic analyses indicated that FA in mice precipitated a substantial decrease in the tryptophan metabolites indole-3-acrylic acid (IA) and indole-3-lactic acid (ILA). The integration of shotgun metagenome and metabolome data further unveiled that the dysregulation of indole metabolism is related to a decline in the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium. Additionally, disruption of the tryptophan indole derivative pathway compromises the maintenance of intestinal mucosal function through the AHR signaling pathway, manifested by decreased expression of Reg3g and IL22. Taken together, this study demonstrated that the anaphylaxis triggered by oral ingestion of food allergens can lead to disruptions in tryptophan metabolism, consequently impairing intestinal immune homeostasis.
Collapse
Affiliation(s)
- Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Jie Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Animal Science and Technology Center, Jiangxi University of Traditional Medicine, Nanchang 330004, China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Jinyan Gao
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Meijia Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Song J, Dong X, Lan Y, Lu Y, Liu X, Kang X, Huang Z, Yue B, Liu Y, Ma W, Zhang L, Yan H, He M, Fan Z, Guo T. Interpretation of vaginal metagenomic characteristics in different types of vaginitis. mSystems 2024; 9:e0137723. [PMID: 38364107 PMCID: PMC10949516 DOI: 10.1128/msystems.01377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Although vaginitis is closely related to vaginal microecology in females, the precise composition and functional potential of different types of vaginitis remain unclear. Here, metagenomic sequencing was applied to analyze the vaginal flora in patients with various forms of vaginitis, including cases with a clue cell proportion ranging from 1% to 20% (Clue1_20), bacterial vaginitis (BV), vulvovaginal candidiasis (VVC), and BV combined with VVC (VVC_BV). Our results identified Prevotella as an important biomarker between BV and Clue1_20. Moreover, a gradual decrease was observed in the relative abundance of shikimic acid metabolism associated with bacteria producing indole as well as a decline in the abundance of Gardnerella vaginalis in patients with BV, Clue1_20, and healthy women. Interestingly, the vaginal flora of patients in the VVC_BV group exhibited structural similarities to that of the VVC group, and its potentially functional characteristics resembled those of the BV and VVC groups. Finally, Lactobacillus crispatus was found in high abundance in healthy samples, greatly contributing to the stability of the vaginal environment. For the further study of L. crispatus, we isolated five strains of L. crispatus from healthy samples and evaluated their capacity to inhibit G. vaginalis biofilms and produce lactic acid in vitro to select the potential probiotic candidate for improving vaginitis in future clinical studies. Overall, we successfully identified bacterial biomarkers of different vaginitis and characterized the dynamic shifts in vaginal flora between patients with BV and healthy females. This research advances our understanding and holds great promise in enhancing clinical approaches for the treatment of vaginitis. IMPORTANCE Vaginitis is one of the most common gynecological diseases, mostly caused by infections of pathogens such as Candida albicans and Gardnerella vaginalis. In recent years, it has been found that the stability of the vaginal flora plays an important role in vaginitis. Furthermore, the abundant Lactobacillus-producing rich lactic acid in the vagina provides a healthy acidic environment such as Lactobacillus crispatus. The metabolites of Lactobacillus can inhibit the colonization of pathogens. Here, we collected the vaginal samples of patients with bacterial vaginitis (BV), vulvovaginal candidiasis (VVC), and BV combined with VVC to discover the differences and relationships among the different kinds of vaginitis by metagenomic sequencing. Furthermore, because of the importance of L. crispatus in promoting vaginal health, we isolated multiple strains from vaginal samples of healthy females and chose the most promising strain with potential probiotic benefits to provide clinical implications for treatment strategies.
Collapse
Affiliation(s)
- Jiarong Song
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xue Dong
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuena Kang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhonglu Huang
- Meishan Women and Children’s Hospital, Meishan, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Wenjin Ma
- Chenghua District Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Libo Zhang
- Renshou County People’s Hospital, Renshou, Sichuan, China
| | - Haijun Yan
- Meishan Traditional Chinese Medicine Hospital, Meishan, Sichuan, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Geng R, Kang SG, Huang K, Tong T. Dietary Isoeugenol Supplementation Attenuates Chronic UVB-Induced Skin Photoaging and Modulates Gut Microbiota in Mice. Nutrients 2024; 16:481. [PMID: 38398805 PMCID: PMC10892115 DOI: 10.3390/nu16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging, the primary cause of skin aging damage, results from chronic ultraviolet (UV) exposure, leading to dryness and wrinkle formation. Nutritional intervention has emerged as a practical approach for preventing and addressing the effect of skin photoaging. The primary aromatic compound isolated from clove oil, isoeugenol (IE), has antibacterial, anti-inflammatory, and antioxidant qualities that work to effectively restrict skin cancer cell proliferation. This investigation delved into the advantages of IE in alleviating skin photoaging using UVB-irradiated skin fibroblasts and female SKH-1 hairless mouse models. IE alleviated UVB-induced photodamage in Hs68 dermal fibroblasts by inhibiting matrix metalloproteinase secretion and promoting extracellular matrix synthesis. In photoaged mice, dietary IE reduced wrinkles, relieved skin dryness, inhibited epidermal thickening, and prevented collagen loss. Additionally, the intestinal dysbiosis caused by prolonged UVB exposure was reduced with an IE intervention. The results of Spearman's analysis showed a strong correlation between skin photoaging and gut microbiota. Given the almost unavoidable UVB exposure in contemporary living, this research demonstrated the efficacy of dietary IE in reversing skin photoaging, presenting a promising approach to tackle concerns related to extrinsic skin aging.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea;
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
12
|
Vazquez-Medina A, Rodriguez-Trujillo N, Ayuso-Rodriguez K, Marini-Martinez F, Angeli-Morales R, Caussade-Silvestrini G, Godoy-Vitorino F, Chorna N. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis. Front Microbiol 2024; 15:1326584. [PMID: 38318337 PMCID: PMC10838991 DOI: 10.3389/fmicb.2024.1326584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The emergent recognition of the gut-brain axis connection has shed light on the role of the microbiota in modulating the gut-brain axis's functions. Several microbial metabolites, such as serotonin, kynurenine, tryptamine, indole, and their derivatives originating from tryptophan metabolism have been implicated in influencing this axis. In our study, we aimed to investigate the impact of running exercises on microbial tryptophan metabolism using a mouse model. We conducted a multi-omics analysis to obtain a comprehensive insight into the changes in tryptophan metabolism along the microbiota-gut-brain axis induced by running exercises. The analyses integrated multiple components, such as tryptophan changes and metabolite levels in the gut, blood, hippocampus, and brainstem. Fecal microbiota analysis aimed to examine the composition and diversity of the gut microbiota, and taxon-function analysis explored the associations between specific microbial taxa and functional activities in tryptophan metabolism. Our findings revealed significant alterations in tryptophan metabolism across multiple sites, including the gut, blood, hippocampus, and brainstem. The outcomes indicate a shift in microbiota diversity and tryptophan metabolizing capabilities within the running group, linked to increased tryptophan transportation to the hippocampus and brainstem through circulation. Moreover, the symbiotic association between Romboutsia and A. muciniphila indicated their potential contribution to modifying the gut microenvironment and influencing tryptophan transport to the hippocampus and brainstem. These findings have potential applications for developing microbiota-based approaches in the context of exercise for neurological diseases, especially on mental health and overall well-being.
Collapse
Affiliation(s)
- Alejandra Vazquez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nicole Rodriguez-Trujillo
- Nutrition and Dietetics Program, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Kiara Ayuso-Rodriguez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Roberto Angeli-Morales
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
13
|
Yu T, Xing Y, Gao Q, Wang D, Chen H, Wang H, Zhang Y. Ginkgo biloba Extract Drives Gut Flora and Microbial Metabolism Variation in a Mouse Model of Alzheimer's Disease. Pharmaceutics 2023; 15:2746. [PMID: 38140087 PMCID: PMC10747232 DOI: 10.3390/pharmaceutics15122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. Numerous investigations have demonstrated that medications that regulate the "brain-gut" axis can ameliorate disease symptoms of AD. Studies have shown that Ginkgo biloba extract (EGb) is involved in intestinal metabolism to meet the goal of illness treatment. EGb is currently utilized extensively in the clinical prevention and treatment of cardiovascular and cerebrovascular diseases. However, the regulatory effect of EGb on intestinal flora and its metabolites in AD pathology remains largely speculative. In this study, the Morris water maze test showed a significant improvement of spatial memory in the AD mouse model (APP/PS1 mice) after EGb treatment. We next confirmed the positive effects of EGb on the gut flora and metabolites of APP/PS1 mice and further showed that EGb treatment reshaped the disturbed gut microbiome, in particular by reducing the Firmicutes/Bacteroides ratio and increasing the abundance of Bacteroidetes, Uroviricota, Streptophyta, and Spirochaetes. Meanwhile, a non-targeted metabolomics analysis showed that EGb treatment significantly reversed the dysfunction of the microbial metabolic phenotype by altering Limosilactobacillus and Parvibacte, with 300 differential metabolites modulated (131 up-regulated, 169 down-regulated). Our findings highlight the significant regulatory impact of EGb on intestinal microflora and microbial metabolism in AD mice models and provide a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Ting Yu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (T.Y.); (Q.G.)
| | - Yueyang Xing
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai 201203, China; (Y.X.); (D.W.)
| | - Qi Gao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (T.Y.); (Q.G.)
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai 201203, China; (Y.X.); (D.W.)
| | - Dandan Wang
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai 201203, China; (Y.X.); (D.W.)
| | - Hongzhuan Chen
- Department of Clinical Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (T.Y.); (Q.G.)
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Fuochi V, Furneri PM. Applications of Probiotics and Their Potential Health Benefits. Int J Mol Sci 2023; 24:15915. [PMID: 37958897 PMCID: PMC10650470 DOI: 10.3390/ijms242115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Probiotics have garnered significant attention in recent years due to their potential health benefits and their role in promoting a balanced gut microbiome [...].
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95124 Catania, Italy;
| | | |
Collapse
|
15
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
16
|
Xue Y, Zhang L, Chen Y, Wang H, Xie J. Gut microbiota and atopic dermatitis: a two-sample Mendelian randomization study. Front Med (Lausanne) 2023; 10:1174331. [PMID: 37425302 PMCID: PMC10323683 DOI: 10.3389/fmed.2023.1174331] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Accumulating evidence suggests that alterations in gut microbiota composition and diversity are associated with Atopic dermatitis (AD). But until now, the causal association between them has been unclear. Methods We employed a two-sample Mendelian Randomization (MR) study to estimate the potential causality of gut microbiota on AD risk. The summary statistics related to the gut microbiota were obtained from a large-scale genome-wide genotype and 16S fecal microbiome dataset from 18,340 individuals (24 cohorts) analyzed by the MiBioGen Consortium, comprising 211 gut microbiota. AD data were also derived from strictly defined AD data collected by FinnGen biobank analysis, which included 218,467 European ancestors (5,321 AD patients and 213,146 controls). The inverse variance weighted method (IVW), weighted median (WME), and MR-Egger were used to determine the changes of AD pathogenic bacterial taxa, followed by sensitivity analysis including horizontal pleiotropy analysis, Cochran's Q test, and the leave-one-out method to assess the reliability of the results. In addition, MR Steiger's test was used to test the suppositional relationship between exposure and outcome. Results A total of 2,289 SNPs (p < 1 × 10-5) were included, including 5 taxa and 17 bacterial characteristics (1 phylum, 3 classes, 1 order, 4 families, and 8 genera), after excluding the IVs with linkage disequilibrium (LD). Combining the analysis of the results of the IVW models, there were 6 biological taxa (2 families, and 4 genera) of the intestinal flora positively associated with the risk of AD and 7 biological taxa (1 phylum, 2 classes, 1 order, 1 family, and 2 genera) of the intestinal flora negatively associated. The IVW analysis results showed that Tenericutes, Mollicutes, Clostridia, Bifidobacteriaceae, Bifidobacteriales, Bifidobacterium, and Christensenellaceae R 7 group were negatively correlated with the risk of AD, while Clostridiaceae 1, Bacteroidaceae, Bacteroides, Anaerotruncus, the unknown genus, and Lachnospiraceae UCG001 showed the opposite trend. And the results of the sensitivity analysis were robust. MR Steiger's test showed a potential causal relationship between the above intestinal flora and AD, but not vice versa. Conclusion The present MR analysis genetically suggests a causal relationship between changes in the abundance of the gut microbiota and AD risk, thus not only providing support for gut microecological therapy of AD but also laying the groundwork for further exploration of the mechanisms by which the gut microbiota contributes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Yan Xue
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
| | - Linzhu Zhang
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yajun Chen
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Han Wang
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
| | - Jiang Xie
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu, China
| |
Collapse
|
17
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
18
|
Du Y, Gao Y, Hu M, Hou J, Yang L, Wang X, Du W, Liu J, Xu Q. Colonization and development of the gut microbiome in calves. J Anim Sci Biotechnol 2023; 14:46. [PMID: 37031166 PMCID: PMC10082981 DOI: 10.1186/s40104-023-00856-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 04/10/2023] Open
Abstract
Colonization and development of the gut microbiome are crucial for the growth and health of calves. In this review, we summarized the colonization, beneficial nutrition, immune function of gut microbiota, function of the gut barrier, and the evolution of core microbiota in the gut of calves of different ages. Homeostasis of gut microbiome is beneficial for nutritional and immune system development of calves. Disruption of the gut microbiome leads to digestive diseases in calves, such as diarrhea and intestinal inflammation. Microbiota already exists in the gut of calf fetuses, and the colonization of microbiota continues to change dynamically under the influence of various factors, which include probiotics, diet, age, and genotype. Colonization depends on the interaction between the gut microbiota and the immune system of calves. The abundance and diversity of these commensal microbiota stabilize and play a critical role in the health of calves.
Collapse
Affiliation(s)
- Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya Gao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linhai Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghuang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Jiang X, Liu Z, Ma Y, Miao L, Zhao K, Wang D, Wang M, Ruan H, Xu F, Zhou Q, Xu S. Fecal microbiota transplantation affects the recovery of AD-skin lesions and enhances gut microbiota homeostasis. Int Immunopharmacol 2023; 118:110005. [PMID: 36924566 DOI: 10.1016/j.intimp.2023.110005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Accumulating evidence has shown that gut microbiota plays a key role in the progression of atopic dermatitis (AD). Fecal microbiota transplantation (FMT), as an effective method to restore gut microbiota homeostasis, has been successfully applied for treating many inflammatory diseases. However, the therapeutic effect of FMT on AD remains unclear. The following study examined the effect and mechanism of FMT on AD-skin lesions in an AD mouse model. METHODS In this study, we exposed the shaved back skin of BALB/c mice to calcipotriol (MC903) to induce AD model. Mice were then treated with FMT, which was performed with gut microbiota from healthy mice. The gut microbiota of treated mice was tracked by 16S rRNA gene sequencing. Mice skin tissues were examined by histopathology and inflammatory cytokines change in serum by ELISA. RESULTS FMT had a faster trend on the reversion of the increases in skin epidermal layer thicknesses and suppressed some of the representative inflammatory cytokines. The gut microbial community in the natural recovery process varied significantly in the FMT group at day 7 (ANOSIM P = 0.0229, r = 0.2593). Notably, FMT had a long-lasting and beneficial impact on the gut microbial compositions of AD mice by increasing the ratio of Firmicutes to Bacteroidetes and the amount of butyric-producing bacteria (BPB), including Erysipelotrichaceae, Lactobacillaceae, and Eubacteriacea. Furthermore, the relative abundances of gut microbiota-mediated functional pathways involved in the cell growth and death, amino acid, energy, lipid, and carbohydrate metabolisms, and immune system increased after FMT treatment. CONCLUSION FMT modulated the gut microbiota homeostasis and affected the recovery from AD-related inflammations, suggesting that it could be used as a treatment strategy for AD patients in the clinic.
Collapse
Affiliation(s)
- Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Linlin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Keyu Zhao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dianchen Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Mengmeng Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China; Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Feng Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China
| | - Qiongyan Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, Zhejiang, China.
| |
Collapse
|
20
|
Zhuang H, Ren X, Jiang F, Zhou P. Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis. Mol Med 2023; 29:17. [PMID: 36721094 PMCID: PMC9890697 DOI: 10.1186/s10020-023-00614-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic disease characterized by chronic inflammation and extracellular matrix degradation. Indole-3-propionic acid (IPA) is a tryptophan metabolite secreted by intestinal flora, which can exert anti-inflammatory effects in a variety of diseases. In this study, we further investigated the potential therapeutic role of IPA in OA and the underlying mechanism. METHODS IL-1β was utilized to induce chondrocyte inflammation. Then, the cytotoxicity of IPA on rat chondrocytes was assessed. Meanwhile, RT-qPCR, Griess reaction, ELISA, Western blot and immunofluorescence were performed to evaluate the expression of inflammatory factors and stromal proteins, and the NF-κB pathway in chondrocytes treated with IL-1β alone, with IPA or with aryl hydrocarbon receptor (AhR) knockdown. An OA rat model was established by anterior cruciate ligament transection, and hematoxylin-eosin staining, Safranin-O/Fast Green staining and immunochemistry were applied to estimate OA severity. RESULTS IPA did not affect cellular viability at concentrations up to 80 µM. IPA significantly inhibited the IL-1β-induced expression of inflammatory factors (Nitric oxide, PGE2, TNF-α, IL-6, iNOS and COX-2) and matrix-degrading enzymes (MMP-3, MMP-13 and ADAMTS-5), upregulated the expression of anabolic markers (aggrecan and collagen-II) and inactivated the NF-κB pathway. However, AhR knockdown could abolish the above protection capabilities and the suppression of the NF-κB pathway induced by IPA. Furthermore, IPA significantly reduced serum inflammatory cytokines expression, cartilage destruction and synovitis in vivo, demonstrating its protective role in OA progression. CONCLUSION IPA improved IL-1β-induced chondrocyte inflammation and extracellular matrix degradation through the AhR/NF-κB axis, which provides an innovative therapeutic strategy for OA.
Collapse
Affiliation(s)
- Huangming Zhuang
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Xunshan Ren
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Fuze Jiang
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Panghu Zhou
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
21
|
Hulme J. Staphylococcus Infection: Relapsing Atopic Dermatitis and Microbial Restoration. Antibiotics (Basel) 2023; 12:antibiotics12020222. [PMID: 36830133 PMCID: PMC9952585 DOI: 10.3390/antibiotics12020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Atopic Dermatitis (AD) skin is susceptible to Staphylococcus aureus (SA) infection, potentially exposing it to a plethora of toxins and virulent determinants, including Panton-Valentine leukocidin (PVL) (α-hemolysin (Hla) and phenol-soluble modulins (PSMs)), and superantigens. Depending on the degree of infection (superficial or invasive), clinical treatments may encompass permanganate (aq) and bleach solutions coupled with intravenous/oral antibiotics such as amoxicillin, vancomycin, doxycycline, clindamycin, daptomycin, telavancin, linezolid, or tigecycline. However, when the skin is significantly traumatized (sheathing of epidermal sections), an SA infection can rapidly ensue, impairing the immune system, and inducing local and systemic AD presentations in susceptible areas. Furthermore, when AD presents systemically, desensitization can be long (years) and intertwined with periods of relapse. In such circumstances, the identification of triggers (stress or infection) and severity of the flare need careful monitoring (preferably in real-time) so that tailored treatments targeting the underlying pathological mechanisms (SA toxins, elevated immunoglobulins, impaired healing) can be modified, permitting rapid resolution of symptoms.
Collapse
Affiliation(s)
- John Hulme
- Gachon Bio-Nano Institute, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
22
|
Xie A, Chen A, Chen Y, Luo Z, Jiang S, Chen D, Yu R. Lactobacillus for the treatment and prevention of atopic dermatitis: Clinical and experimental evidence. Front Cell Infect Microbiol 2023; 13:1137275. [PMID: 36875529 PMCID: PMC9978199 DOI: 10.3389/fcimb.2023.1137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, accompanied by itching and swelling. The main pathological mechanism of AD is related to the imbalance between Type 2 helper cells (Th2 cells) and Type 1 helper cells (Th1 cells). Currently, no safe and effective means to treat and prevent AD are available; moreover, some treatments have side effects. Probiotics, such as some strains of Lactobacillus, can address these concerns via various pathways: i) facilitating high patient compliance; ii) regulating Th1/Th2 balance, increasing IL-10 secretion, and reducing inflammatory cytokines; iii) accelerating the maturation of the immune system, maintaining intestinal homeostasis, and improving gut microbiota; and iv) improving the symptoms of AD. This review describes the treatment and prevention of AD using 13 species of Lactobacillus. AD is commonly observed in children. Therefore, the review includes a higher proportion of studies on AD in children and fewer in adolescents and adults. However, there are also some strains that do not improve the symptoms of AD and even worsen allergies in children. In addition, a subset of the genus Lactobacillus that can prevent and relieve AD has been identified in vitro. Therefore, future studies should include more in vivo studies and randomized controlled clinical trials. Given the advantages and disadvantages mentioned above, further research in this area is urgently required.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| |
Collapse
|